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Abstract—Multipliers are the fundamental arithmetic units in 
most high speed signal and multimedia processing SoCs. In most 
cases, the final products of the multiplications can be rounded 
with lower precisions to avoid the continuous growth of word 
length while the computation carries on. A class of modified 
multipliers which is called truncated multipliers could 
significantly reduce the hardware cost and energy consumption 
of the final implementation. This paper proposes an optimized 
design of truncated multipliers based on comprehensive analysis 
of statistical properties of the input operands. The proposed 
design architectures are modeled in Matlab codes using Fixed-
point toolbox and in RTL using Verilog. The synthesis results on 
FPGA show that the proposed multiplier architectures could 
achieve almost 37% reduction on logic resource and consume 
about 33% less dynamic power over the full-size multipliers. The 
average error can be reduced by 30% to 50% compared to the 
traditional constant correction truncated multipliers. This paper 
also explores the efficiency of the proposed design in actual 
systems. Simulation results show that the proposed design has 
obvious advantages on power efficiency in applications against 
traditional truncated multipliers.  

I. INTRODUCTION 
Multiplication has been pervasively used in Digital Signal 

Processing (DSP) applications like filtering, convolution and 
compression [1]. For most DSP systems, the exact result with 
full precision word length is not always required and modified 
design of standard multipliers could reduce power dissipation 
and increase throughput [2]. Since a full-precision n × n 
multiplier computes the 2n output, rounding the result to n 
bits could avoid the continuous growth of word length while 
the computation carries on.  

Several approaches have been proposed in the literature [2-13] 

to reduce the area and improve the latency on the critical path 
for the implementation of truncated multipliers. The basic 
idea of these techniques is to remove the least significant bits 
of the partial products and introduces adjusting circuit to 
compensate for the errors introduced. It was shown that by 
saving corresponding hardware in the multipliers’ reduction 
array and final carry propagation chain, the dynamic power 
dissipation can also be proportionally reduced. However, the 
traditional schemes usually introduce a non-zero DC (Direct 
Current) component on the final product for all data inputs [7], 
which would cause obvious mistakes when one of the 
multiplicand is zero.  

To address this issue, this paper proposes a new algorithm 
and corresponding hardware design of the truncated multiplier 
based on traditional CCT (Constant Correction Truncated) 
multiplier algorithm [4], which could further improve the area 
and power efficiency while minimizing the average and 
maximum error by 30% to 50% compared to CCT multiplier. 
The proposed scheme can be applied to both signed and 
unsigned multipliers [14],[15]. We also verify the new scheme in 
designing power efficiency multipliers in several real 
applications, which could reduce the logic resource by 36.9% 
than a 16-bit standard multiplier and 9.3% than a 16-bit 
traditional CCT multiplier. As to power dissipation, the 
proposed scheme consumes 33.0% less power than a standard 
multiplier and 30.2% less a traditional CCT multiplier.  

II. OVERVIEW OF THE CONSTANT CORRECTION 
TRUNCATED MULTIPLIERS 

The CCT multiplier is first introduced in [4]. Assuming 
multiplication of two n-bit numbers A and B results in a 2n-bit 
product P, which are of the form 
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Where ai and bi denote each bit of A and B, pi denotes each 
bit of P. The relationship between the partial product bit       
πij=aj·bi and the final products pi in the multiplication matrix 
is shown as follows:  

 
The n2  partial products πij are summed to compute the 2n-

bit product P, which is usually then rounded to n bits in most 
applications to avoid continuous growth of the word-length of 
the results. Truncation could also be conducted to reduce the 
area and power consumption by omitting the least significant 
columns of the multiplication matrix and summing only the 
(n+k) most significant columns, i.e. column (n-k) to column 
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Fig. 1   n×n Multiplication Matrix 
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(2n-1) in Fig. 1. However, both the rounding and truncation 
would introduce errors to the final products.  

To calculate the expected value of reduction error, it is 
assumed that each bit of the input operand ai or bi has an 
equal probability of being ‘1’ or ‘0’, which means each partial 
product bitπij has an expected value of 1/4, and the positional 
weight is 2-2n+i+j. The reduction error, which is the sum of all 
partial products in columns 0 to (n-k-1), is calculated as 
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Rounding error occurs because the (n+k)-bit product is 
rounded to n bits. To estimate the expected value of rounding 
error, it is assumed the probability of each product bit, pn-1 to 
pn-k, being one is 0.5, and the expected value of rounding error 
is 
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The expected value of the total error is the sum of reduction 
error Ereduct and rounding error Eround, and correction constant 
is selected to be the inverse value of the total error with (n+k) 
bits precision, which is given as below: 
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where round(x) indicates x is rounded to the nearest integer. 
The expected value of the average error is given as 

totalavg ECE +=  
Two assumptions are made in previous conduction of (3) 

and (4). However, in previous studies, we have found these 
assumptions were not reasonable. By simulating A and B from 
0 to 2N-1 using Fixed-Point Toolbox in Matlab R2009a and 
comparing the average error with theoretical results, we get 

 
From Fig. 2, we could see that there is big deviation 

between theoretical and true value for some values of k. The 
reason for the inconsistence is that the assumption made to 
calculate the reduction and rounding error is unwarranted.  

In the traditional scheme[4], to calculate the expected value 
of rounding error, it is assumed that the probability of each 
output bit being one is 0.5, while in fact, pi is the sum of 
partial products in column i, and the partial products are 
relevant to multiplicands. Simulation result of pi being one in 

an 8-bit multiplier is shown in Fig. 3, and it is clearly that the 
output bit is not uniformly distributed. 

 
When it comes to the expected value of reduction error, it is 

also assumed that the probability of each input bit being one 
is 0.5. While in fact, input data is not distributed uniformly, 
either. 

Taking the input statistical characteristic into consideration 
will contribute to more accurate estimation of total error and 
improvement in precision by selecting correction constant 
wisely. Therefore, by following this idea, this paper proposes 
a novel method to estimate the error and select correction 
constant to solve the problems above. 

III. INPUT-STATISTICALLY-BASED (ISB) CCT 
MULTIPLIER 

A. Theoretical Analysis 
The multiplication matrix of Fig. 1 can be rearranged as the 

multiplication array [2]  shown in Fig. 4, where we take n=8 
for instance.  

 

 

Fig. 4   An 8×8 Multiplier Array 
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Fig. 3   Probability of an 8-bit Multiplier Product Bit Being One  

 

Fig. 2   Average Error Comparison of 8-bit Multiplier between Simulation 
and Theoretical result 
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Where “A” represents AND gate, “FA” represents full 
adder, “HA” represents half adder in the picture above. 

Let p(ai) and p(bj) be the probabilities of input bit being one, 
p(i,j) be the probability of partial product at column i and row 
j being one. Thus p(i,j)= p(ai) ∙ p(bj). Let ps(i,j) denote the 
probability that the sum bit of the adder at the ith column and 
jth row is one and, pc(i,j) the carry bit being one. q(i,j)=1-p(i,j)  

For 0≤i≤N-2, j=1, we have 
)1,1(),(),( −+⋅= jipjipjipc  
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For 0≤i≤N-2, 2≤j≤N-1 

 

 

As has been analyzed in Section 2, the reduction error is the 
sum of the partial products in 0 to (n-k-1) diagonals, which 
gives a formula of the expected value of 
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The expected value of rounding error is the sum of product 

pn-1 to pn-k . 
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And new form of correction constant is calculated as 
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B. Mathematical Models of the ISB-CCT-Multiplier 

Fig.5 illustrates the mathematical model of the proposed 
truncated multiplier. M and N are the input length. L is the 
output length. K is number of additional partial product 
columns. First of all, analyze the M-bit and N-bit input 
database and obtain the probability of each input bit being one, 
PA and PB. Calculate output bit distribution PC according to 
formula (5)-(8), and total error and correction constant using 
(9)-(11). Summing up the (L+k) most significant columns of 
multiplication matrix and (L+k) bit correction constant, and 
the final result is rounded to L bits. 

 

C. Simulation Results 
Simulate two multiplicands from 0 to 2N-1 (N=8) and 

compare the difference between the true value and theoretical 
value of total error using traditional and proposed method. We 
can get 

 
Fig.6 shows that compared to traditional CCT, the proposed 

design estimates the error more accurately, and the difference 
could be reduced by 30%-50%. 

IV. IMPLEMENTATION OF THE ISB-CCT 
MULTIPLIER 

 

 

Fig. 7   A constant correction truncated 8×8 multiplier 

 

Fig. 6   Difference of Total Error between True Value and Theoretical 
Value of an 8-bit Multiplier 

 

Fig. 5   Model of input-statistically-based truncated multiplier  
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Fig. 7 shows the architecture of a constant correction 
truncated 8×8 multiplier with k=2. We have implemented it 
in Verilog HDL and synthesized using Altera Quartus II 8.0 
Web Edition with EP2S15F484C3 device in Stratrix II family. 

The synthesis results show that 8-bit standard multiplier 
(which is not truncated, as shown in Fig. 4) needs 110 ALUTs 
and 48.35mW, and 16-bit standard multiplier needs 510 
ALUTs and 270.07mW. The detailed results for traditional 
CCT and proposed scheme are shown in Table I, where the 
hardware cost is measured in the number of LUTs (Look-Up-
Tables) used including both combinational and register 
elements. The power consumption is reported in the value of 
dynamic power dissipation since the static power is the same 
with identical FPGA devices. 

 
Compared to standard multiplier, 8-bit ISB-CCT consumes 

29.1% less logic resource, and 16-bit 36.9%. Besides, the 
proposed scheme consumes 7.9% less logic resource for 8-bit 
and 9.3% less for 16-bit than traditional CCT multiplier. 

As to power dissipation, compared to standard multiplier, 
ISB-CCT consumes 33.0% lower power for 8-bit and 31.95% 
for 16-bit. As the proposed scheme occupies less logic 
resource, the power dissipation is lower than traditional CCT 
with 8-bit 17.4% less and 16-bit 30.2%. 

V. APPLICATION OF THE TRUNCATED MULTIPLIER 
IN DSP SYSTEMS 

In this section, we apply the proposed truncated multipliers 
to implement the JPEG baseline sequential codec [16] and 

weighted filter to demonstrate the validity of the proposed 
scheme. 

A. DCT/IDCT Simulation 
Test images are divided into 8×8 blocks for processing. 2-

D DCT could be implemented by performing 1-D DCT on 
each row, then performing it again on each column, which 
could be depicted as C=DPDT, where C is the matrix after 
transformation, P is the image for processing, and D is the 
DCT operator matrix. For IDCT, it is given as P=DTCD. 

For comparison, performing DCT/IDCT using the methods 
given as below: 1) Matlab dct2/idct2 function; 2) double 
precision operation; 3) fixed-point operation using standard 
multiplier; 4) fixed-point operation using Non-Correction 
Truncated (NCT) multiplier; 5) fixed-point operation using 
traditional CCT multiplier; 6) fixed-point operation using 
ISB-CCT multiplier. The PSNR (Peak Signal-to-Noise Ratio) 
of the transformed picture is shown in Table II. 

 
The data shows that in DCT/IDCT, the proposed 

architecture has the same result as traditional CCT. The 
reason is that the novel scheme is based on the probability 
distribution of the input operands, and it takes four 
multiplications before obtaining the final results in 
DCT/IDCT. In fact, the intermediate results has an 
uninformed distribution for each bit, which coincides with the 
assumption in traditional CCT. 

B. Weighted Filter Implementation 
Now implement the truncated multiplier into another 

application in DSP, weighted filter, which could remove noise 
in real images. 

The filtering template is given as 

















32/132/132/1
32/14/332/1
32/132/132/1

 
Taking double-precision operation, standard multiplier, 

non-correction truncated multiplier, traditional CCT 
multiplier and ISB-CCT multiplier to filter the noise in 
images, and the PSNR is shown in Table III. 

 
The filtering results show that the PSNR of the ISB-CCT is 

better than that achieved with standard multipliers and 
traditional CCT multipliers, which is due to the non-
uniformed distribution of the input operand bit in filtering 

 
TABLE   III 

PSNR USING DIFFERENT METHODS FOR FILTERING(DB)  
Original Noise 20.1562 k 1 2 3 

Double Precision 22.3445 NCT 22.1420 22.1420 22.1420 
Standard Mul 22.3445 CCT 22.1054 22.2654 22.3179 

  ISB 22.3374 22.3374 22.3374 
 

 
TABLE   II 

PSNR USING DIFFERENT METHODS FOR DCT/IDCT(DB)  
Matlab func 31.4713 k 1 2 3 

Double Precision 31.4713 NCT  25.2662 29.8745 31.0590 
Standard  Mul 31.1184 CCT 26.2466 30.3544 29.7303 

  ISB 26.2466 30.3544 29.7303 
 

 
TABLE   I 

LOGIC RESOURCE AND POWER COMPARISON BETWEEN TRADITIONAL CCT 
AND ISB-CCT MULTIPLIERS 

n=8 
Logic Resource 

(LUTs) 
Dynamic Power 

(mW) 
k CCT ISB CCT ISB 
1 78 78 39.2 32.38 
2 88 86 39.56 35.54 
3 102 100 45.24 46.88 
4 107 100 41.66 48.41 
5 110 105 50.5 51.17 
6 114 105 43.18 45.6 
7 118 109 42.54 48.72 
8 119 118 49.49 44.56 

n=16 
Logic Resource 

(LUTs) 
Dynamic Power 

(mW) 
k CCT ISB CCT ISB 
2 343 342 230.38 228.16 
4 413 386 243.77 250.83 
6 413 386 305.84 238.89 
8 491 456 319.97 252.39 
10 522 486 316.1 253.13 
12 527 504 259.98 270.1 
14 541 518 259.01 287.92 
16 544 519 298.23 257.11 

 



matrix. The novel algorithm takes the distribution of input bit 
into consideration, thus it estimates the error more accurately. 

The use of truncated multiplier in the implementation of 
JPEG compression using DCT/IDCT and weighted filter has 
been examined and it is found that the proposed design has 
obvious advantages against traditional truncated multipliers in 
applications based on non-uniformed input distribution, while 
the advantages are not as obvious in uniformly distributed 
input cases. Under the same precision, the ISB-CCT 
multiplier has a higher PSNR than traditional CCT multiplier. 
On the other hand, within a certain precision, the ISB-CCT 
multiplier consumes less power than the traditional one.  

VI. CONCLUSIONS 
This paper proposes an optimized design of truncated 

multipliers based on comprehensive analysis of statistical 
properties of the input operands. By giving detailed error 
analysis on both reduction error and rounding error, we have 
revealed that the basic assumption of the equalized 
distribution of the probability of the bit in the partial products 
and the input operands are not reasonable. Therefore, a new 
statistic scheme is introduced and an optimized correction 
algorithm is generalized. We also propose the hardware 
implementation of the architecture, verify and synthesize the 
design on FPGA. At last, two applications in DSP are given. 
In summary, our proposed multiplier achieves lower error, 
less area, lower power dissipation than traditional CCT 
multiplier, and it could be used for the implementation of 
digital filter, DCT and IDCT hardware accelerators and so on. 
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