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Abstract—The aim of this work is to highlight and discuss
a new paradigm for representing high-dynamic range (HDR)
images that can be used for both its coding and describing its
multimedia content. In particular, the new approach defines a
new representation domain that, conversely from the classical
compressed one, enables to identify and exploit content metadata.
Information related to content are used here to control both the
encoding and the decoding process and are directly embedded
in the compressed data stream. Firstly, thanks to the proposed
solution, the content description can be quickly accessed without
the need of fully decoding the compressed stream. This fact
ensures a significant improvement in the performance of search
and retrieval systems, such as for semantic browsing of image
databases. Then, other potential benefits can be envisaged espe-
cially in the field of management and distribution of multimedia
content, because the direct embedding of content metadata
preserves the consistency between content stream and content
description without the need of other external frameworks, such
as MPEG-21.

The paradigm proposed here may also be shifted to Mul-
tiple description coding, where different representations of the
HDR image can be generated accordingly to its content. The
advantages provided by the new proposed method are visible at
different levels, i.e. when evaluating the redundancy reduction.
Moreover, the descriptors extracted from the compressed data-
stream could be actively used in complex applications, such as
fast retrieval of similar images from huge databases.

I. INTRODUCTION

Content analysis and coding are two key issues in the cre-
ation of new interactive multimedia applications able to fulfill
user requests and expectations (for both professional and non-
professional end-users). The possibility to efficiently represent
an information source with high quality whilst using a rela-
tively small bandwidth enables, for example, to display video
with good quality on mobile devices connected to networks
with relatively limited capabilities (e.g. UMTS). Furthermore,
the possibility to efficiently describe the multimedia content
enables to speed up the searching processes, to increase the
quantity and to improve the quality of the information that
users may require. In fact, one of the critical issues in current
multimedia applications is the actual possibility to efficiently
access the desired information. So far, solutions for the prob-
lem of data compression and multimedia content indexing have
been independently studied. This is probably due to historical
reasons related to the two scientific communities and because
of the apparently different goals of the two applications.

The state-of-the-art in image and video coding can include

references to several standards such as, MPEG-4/AVC and
JPEG2K, whereas for the description of multimedia content
MPEG-7 is the reference standard. In the classical model
adopted by compression systems, the data source is first
compressed and then the data-stream is either stored or
transmitted. At the decoder side, the end user can access
the original source representation or a “lower-quality” version
of it, which requires fewer resources in terms of bandwidth
or storage space. Anticipating what will be requested in the
near future by advanced multimedia applications, R.W. Picard
has already introduced a fundamental modification to such
model. Her model envisages the possibility to access and edit
the multimedia content directly in the compressed domain,
without the decoding of the compressed data. This approach
is defined as “midstream content access” [15]. According to
this, in addition to the three classical parameters that have to
be optimized in the coding systems, i.e. reduction of required
bandwidth, distortion and computational load, R.W. Picard
introduces “the fourth criterion”: the minimization of the
required work to access and/or modify a particular content
included into a compressed data-stream. The target defined
by the Piccard’s criterion has been indirectly pursued by
the proposal of the MPEG-4 standard, which introduces the
concept of object coding. Such approach assumes to identify
and separate the different components within a scene (such
as the background and the foreground objects) and then to
independently code each component. Alternatively from the
classical coding techniques, the different components (objects)
are described by means of mathematical models that evolve
over time in order to represent a particular scene. The main
aim of the coding systems based on the objects is the reduction
of the rate required to represent the content, even if this led
to a considerable increase of the encoder complexity (more
than exponential). Object coding indirectly satisfies the “fourth
criterion” by providing for the first time the possibility to
directly access to a specific audio/visual content within the
coded representation (and in case, to modify it), in a similar
way as in computer graphics, where a scene is generated using
models derived from reality. However, even after several years
by the definition of the MPEG-4 standard, at the moment
the use of coding systems based on objects has not been
proposed yet in real applications. A possible reason for the
failure of the object coding (as defined in MPEG-4) is the
way in which the “objects” are defined and used. If on the one
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side models can be effectively used to reproduce a scene in a
realistic way, on the other hand it is impractical at the moment
to extract accurate models from each real scene, given the
existing variety of possible scenes. This consideration suggests
that even if the object coding is potentially a very efficient
coding approach, both from a source coding point of view and
for the content description at high level of abstraction, it is not
a feasible approach for the representation of images and/or
video of real scenes. For this reason, the only descriptions
available for the scene representation are those at a low
semantic level (e.g. color, texture, aesthetic elements, etc.),
since they can be directly extracted from the image. At the
moment, a quick access to such descriptions can be done using
the tools provided by the MPEG-7 and MPEG-21 standards.
In particular, MPEG-7 offers descriptors and schemes for
multimedia content description, whereas MPEG-21 defines
particular structures for the interoperable distribution of the
contents and their related descriptions.

Usually the content is generated, encoded and
stored/distributed; successively, depending on the application,
one or more scene descriptors are extracted and linked with
the content itself. It is quite evident that this approach has
two main disadvantages in terms of efficiency: an additional
computational load is required to extract the descriptors, and
additional data (additional bandwidth or storage space) are
needed to represent the descriptors that partially duplicate the
information provided by the compressed data itself. Recently
some techniques to jointly perform source coding and content
indexing at a low-middle semantic level have been proposed
[16]- [1], without the need of complex description models
(such as MPEG4 objects).

The main idea of the contribution is to investigate and pro-
pose new techniques for a joint source coding and multimedia
content description for HDR images. Conversely from the
“normal images” that contain only the information required
to represent the content on a particular visualization device
(monitor, TV, etc.), the high dynamic range images represent
the scene captured by an acquisition device. This means that
a high dynamic range image contains the information related
to the absolute luminance and colors, corresponding to the
properties of the psychic phenomena. In this way the dynamic
of the captured signal is ideally equal to the real one. Basically,
two main motivations could be identified behind the study of
such high dynamic signals. The first one is that after the high
definition (HD), the high dynamic (already used in particular
professional applications) is considered to be the next step to
increase the realism and consequently the perceived quality in
multimedia applications. The second one, even more important
for research purposes, is the possibility to use more detailed
information, which is closer to the properties of the psychic
phenomena. In particular, the latter aspect should enable a
more accurate analysis and the extraction of higher quality
descriptors.

To better clarify, next section synthesize the state of the
art concerning the three research topics, covered by the
here proposed coding paradigm namely: HDR Image coding,

Content Description and Joint Image Coding and Content
Description. Possible implementations of this new paradigm
are then provided in Section III and in Section V.

II. RELATED WORKS

This contribution deals with three fields: high dynamic
range images, content descriptors and scalable joint coding
of images and descriptors.

A. High dynamic range images coding
Traditionally, digital images have been represented using

8 bit code for each color component (bpcc). This value has
been chosen in order to suit images to the color gamut of
the visualization devices (monitors, printers, etc.). For this
reason, standard formats, such as TIFF and JPEG, are referred
to as “related to the device”. However, the light intensity
in the real world is characterized by a high dynamic range
and the human visual system is able to perceive variations
into a relative interval of five orders of magnitude. High
dynamic range images aiming at emulating this ability by
storing absolute information of luminance and color, and are
referred to as “related to the scene”. At first, they were used
in the computer graphic field and in professional photography
and currently also in cinematography. The field that deals with
the representation and coding of this kind of images is the so
called High Dynamic Range Imaging. Nowadays there are few
devices able to acquire and display this type of images and
the amount of related scientific literature is growing, even if
still poor.

Up to now, research efforts have been focused on two main
topics: source coding and the representation of high dynamic
range signals on traditional devices. When a device able to
display a high dynamic range source is not available, it this
possible to transform the source itself into a low dynamic
range one, using some Tone Mapping Operators (TMOs)
which work applying a non-linear local or global processing
[17]–[9]. These tools are usually computational expensive and
it is consequently better to avoid their use every time an image
needs to be displayed.

A solution might be coding the high dynamic range image
into a compress stream containing a low dynamic version of
the original image, and the signal that has to be added to the
low dynamic image in order to regain the high dynamic one
[22]. The efficiency of these methods is very low, because of
the diversity of the signals involved. To solve these problems,
a number of techniques aiming at reducing the prediction error
have been developed; these methods basically use polynomial
models to expand the values of the low dynamic range image
[13].

Moreover, several techniques that code high dynamic range
images using traditional methods like JPEG2K have been
proposed [11]. In [4] a fast and scalable approach for tone
mapping zones of interest in HDR videos is proposed . It
combines the benefits of both local and global tone mapping
operators, and it is designed for a video-surveillance purpose,
in fact it is applied in the context of object detection and



tracking. Due to its adaptivity, it also enhances the visual
quality of the image in all light conditions, which facilitated
surveillance tasks for both human and automatic operators.

B. Content description

Content description is part of the multimedia analysis field
and aims at defining elements able to characterize the content
of a media. Using the nomenclature specified in the MPEG7
standard, a Descriptor (D) represents a particular characteristic
of a content, such as the average color of an image, while
a Descriptor Scheme (SD) concerns the relations between
different descriptors and the related multimedia content. There
are different types of Descriptors and Descriptor Schemes
according to different multimedia content they can describe
(images, audio, etc.) and to the semantic level of the infor-
mation they convey. MPEG7 provides a rich set of D and SD
but it does not specify methods to be used in the extraction
and the generation of D and SD themselves. Speaking about
low-level Descriptors, in the academic literature, there are lots
of techniques dealing with their extraction and comparison.
Several works have demonstrated the ability of low-level
descriptors in defining higher semantic level operations [10]
such as clustering [2] and retrieval [6]. Clustering allows the
association of images which are similar in meaning, while
retrieval is about finding contents into a database according to
a query.

These operations associate descriptors to mathematics con-
cepts, like vectors or stochastic processes. Besides the mathe-
matics formats of the input data, it is necessary to decide the
approach to the work, in other words if the optimization has
to be done for each couple of elements, between each cluster
or by using statistical models. Each approach has several
advantages and disadvantages, and the choice has to be made
according to the operation to do.

Recently, several low-level characteristics linked with high-
level concepts have been studied; they would be useful for
improving the quality of the available descriptors and for
bridging the semantic gap between what the user wants and
what he can obtain with a specific request.

In [14] authors identify six fundamental dimensions which
allow the aesthetic characterization of an image. This is based
on the human visual system, which is composed by “inde-
pendent modules”, each of them focused on a particular task.
Starting from such a type of analysis, the following aesthetic
primitives have been defined: color (dominant colors, the
presence of complementary colors, dynamic), form (clarity of
form, silhouette), spatial organization (clarity of organization,
golden mean, visual scheme), dynamism, depth (perspective)
and identification of human bodies (principal axes). In [5]
authors propose a system for the retrieval of similar images,
using descriptors related to visual elements and aesthetic
criteria. Used characteristics are almost the same as those in
[14] but are applied in the wavelet domain.

C. Joint scalable coding and content description

Nowadays several algorithms for image and video coding
are available [20]. Each of them exploits redundancies (spatial,
temporal and perceptual) to obtain a better compression ratio.
In 1994, R.W. Picard proposed a new coding paradigm, which,
differently from the classical method, works directly onto the
coded bitstream for access and manipulation, without operat-
ing the data decompression. Consequently, other than the three
classical criterions for quality evaluation of an encoder, which
are “bit rate”, “distortion” and “computational cost”, a new
one was added, called the fourth criterion. It represents the
effort, which must be done to access a given content inside the
coded stream. If an encoder supports this new concept, it could
be used for applications that in an effective and efficient way
could do operations of retrieval, browsing and manipulation of
multimedia content. Three advantages are carried by this new
modality of work directly onto the coded stream: first is the
fast content access, second is the possibility of semantic coding
of the multimedia data and third is the opportunity to create a
new scalability dimension. Below there are contributions that
describe some methods of encoding using descriptors (used
for coding, retrieval, etc.). However seems that no methods
proposed in literature implement a joint optimization of the
four criteria.

[16] proposes a method based on techniques SBIC, CPAM
and VQ. The Segmentation-Based Image Coding algorithm
splits the image into different homogeneous regions, with no
fixed size and each of them is allocated with a number of bits
directly dependent from his property. After that, the image
channels Y, Cb and Cr are split using the Colored Pattern
Appearance Model. In this step, three types of information
are extracted for each region: the stimulus strength (SS), the
achromatic spatial pattern (ASP) and the chromatic spatial
pattern (CSP). The last coding step is the vector quantization,
which maps multidimensional vectors into an indexes series
of the codebook’s word (called codeword). The descriptor
of the entire image is build merging the indexes set of
SBIC/CPAM/VQ; in fact having these data is very simple to
extract the description of each region in terms of shape and
color. This technique appears to offer good performance with
regard to retrieval of similar content in large databases; but it
has not been evaluated in terms of compression ratio achieved.
In [18] the image encoder is based on CVPIC technique (Color
Visual Pattern Image Coding). The data available at the output
of this encoder, for each block in which the image is split,
describe the color (in CIEL*a*b* space) and the planarity
or the irregularity (presence of edge, corner, gradient). Then,
the image descriptor is represented by edge map and color
map. Starting from the proposed results, this technique appears
to offer good retrieval performance, but it is not possible to
evaluate the performance of encoding.

[23] proposes a compression method for videos, where from
each shot of the video are extracted the “key-objects”. They
are particular descriptors that can characterize the entire shot,
and they are outlined in terms of color, texture, shape, motion



(from optical flow) and their life cycle. Similarly to the coding
standard MPEG4, the metadata extracted for all key-objects
are used for building the coded stream. Authors provide no
information about real system performance in compression
and retrieval work. In [19] a technique for collection of images
coding is described. It allows retrieving of content information
working directly inside the coded domain. Each image is
decomposed in a group of objects associated to semantic in-
dexes (like “tree”, “house”). Then, the different areas are split
in rectangular blocks and they are coded separately, using a
JPEG-like coding method. Hence, the coded stream is made by
indexes, by their spatial relations and by the true compressed
content. In [1] the authors use Visual CodeBook as a content
descriptor for image collection. Through a vector quantization
process, applied to a collection of similar images, the VCB is
obtained. The bitstream produced for one collection of images
contains the descriptor (VCB) and, for each image, the array
of indexes for VQ reconstruction and a reminder, used for
decoding the image at a certain quality. This method offer good
performance both for retrieval/classification of similar images,
and for coding efficacy, which is comparable to modern image
compression methods, likes JPEG2K.

In [3] authors propose an effective implementation of a
scalable encoder for images, with the active use of embedded
descriptors during coding. In the proposed example the de-
scriptors are the faces in the picture. According to the proposed
method, at first, images areas containing faces are detected
and encoded using a scalable method, where the base layer is
represented by the corresponding eigenface, and the enhance-
ment layer is formed by the prediction error. The remaining
areas are then encoded by using a traditional approach. Sim-
ulations show that achievable compression performances are
comparable with those provided by conventional, making the
proposed approach convenient for source coding and content
description.

III. HDRI MULTIPLE DESCRIPTION

In general, a Tone Mapping Operator applied to an HDR
image provides a low dynamic range image that can be seen
as a particular description of the original content whereas
different TMOs provide different descriptions of the same
visual content. Considering the problem of reconstructing an
HDR image from the knowledge of its different low dynamic
range versions can be seen as a Multiple Description issue.
Hereafter a scheme able to reconstruct an HDR image starting
from three globally tone mapped version is proposed.

A. TM Operator 1
The first tone map operator is very easy to implement, but

it makes a fast and reversible tone map of the HDR image.
Saying H(x, y, c) the floating point value of the pixel in
position (x, y) of the HDR image H in the color component
c, the tone mapped value for the same pixel of the same
component in the LDR image L is:

L(x, y, c) =
H(x, y, c)

H(x, y, c) + 1
(1)

This function, as a tone map operator does, remaps the
values from the HDR range [0,∞) to a limited one [0, 1)
by expanding the low–value components and compressing the
high–value ones. The expansion/compression of this tone map
operator is hence related to the inverse of the HDR value itself.

This operator is perfectly invertible, and the HDR recon-
struction H is given by:

H(x, y, c) =
L(x, y, c)

1− L(x, y, c)
(2)

1) Practical troubles: Practical problems are made by the
quantization introduced in the LDR image. In fact, the LDR
image is typically stored as a 8–bit image, so its values must
be quantized. In theory, according to the Equation 1, L(x, y, c)
is never one for a finite HDR input image; however, during
the reconstruction quantization effects can shift that value to
one.

Even though in such case the reconstructions would not be
feasible, we remove a small finite quantity to the L(x, y, c)
values when it is one, making always possible the inversion.

B. TM Operator 2

The second operator is explained in [7]. It is a global
operator which applies a histogram–like equalization to the
HDR image for tone mapping. It is a fast algorithm, which uses
a statistical model that approximates the mean square error
(MSE) distortion resulting from the combined processes of
tone–mapping and compression. Is also provides LDR images
with a good visual quality.

As explained in [7], the steps of the tone mapping operation
are:

1) HDR image is passed through a logarithm operator.
2) The histogram (base 10) of the luminance is computed,

with bin step of δ = 0.1. Here, each bin (K = 1 . . . N )
has a proper counter (pK) and a codeword (lK).

3) From the histogram, a set of remapping slopes (one for
each bin) is computed as sK =

v
max·p1/3

K

δ·
∑N

K=1 p1/3
K

This equa-
tion is the close form solution of the related optimization
problem.

4) The tone map equation, for a generic pixel of the HDR
image is:

L(x, y, c) = (log10 H(x, y, c)− lK) · sK + vK (3)

where lK , sK and vK are respectively the codeword
associated to the logarithm of the pixel value, the slopes
of that bin, and the mapped LDR value of the bin.

5) The inversion equation is:

log10 H(x, y, c) =

{ L(x,y,c)−vK
sK

+ lK for sK > 0∑
l l · pL(l) for sK > 0

(4)



This tone map operator remaps the HDR values to the
range [0, vmax]. The inversion formula is feasible even if
quantization of the LDR image is applied. The main idea
used in this algorithm is taken from the histogram equalization
theory, i.e. the slope of the remapping function is higher where
the bins contain more pixel in.

As stated in [7] the reconstruction of the HDR content,
starting from the LDR one, is visually better than other global
tone mapping operators.

C. TM Operator 3
The third tone map operator is based on the logarithm of the

values. It applies a companding operator (like the ones used
in the telephone coding, such as µ−law or A−law). The key
idea for this tone map operator is to enhance the contrast for
low values of the HDR image, and decrease it for high values,
following a log–scale.

By using this operator, the LDR version of the generic HDR
pixel H(x, y, c) is:

L(x, y, c) = (logH(x, y, c) +∆) · α (5)

where ∆ and α are two parameters (offset and scale factor)
such that the output of the Equation 5 is never outside the
range [0, 1].

The inversion formula is:

H(x, y, c) = exp
( (L(x, y, c)−∆)

α

)
(6)

1) Practical troubles: When the HDR image has zero
values a small offset is added, because it is not possible
to compute a logarithm of a negative number. There are no
problems with quantization of the LDR image as happens in
TM1.

IV. ARCHITECTURE

The system can be split into two parts: the encoder side
and the decoder one. The encoder does the work of multiple
description of the original HDR image, producing many LDR
images with embedded metadata; the decoder uses one or more
LDR image and their metadata to reconstruct a high fidelity
HDR image.

A. Encoder
A high–level schema of the encoder is shown in Figure 1.
The HDR image is firstly decoded, then the three tone map

operators explained in the previous section are applied. Three
LDR images are obtained at this point, and each of them has
a proper remapping function embedded in the metadata (e.g.
the TMO 2 has the scale vector).

The next step is the joint choice of the best inversion
for the HDR reconstruction. Here, a remapping function is
created to be applied to the three LDR pictures, in order to
build the best approximation of the original HDR image. The
L2 norm has been used, i.e. the value v of the LDRX is
chosen for reconstruct the HDR image if its tone mapped

inverse TMO−1
X (v) is the best approximation of the HDR

value HDR.
For each LDR image and for each pixel value of them

is inserted a measure of distance about its “goodness” in
reconstruction, or, alternatively, its “goodness” ranking in
reconstruction.

Here is an intuitive example: if the value of a pixel in the
HDR image is 2.34 and the reconstructed values starting from
the LDR images are respectively 2.35, 2.10 and 2.40, the best
approximation in this example is given by the inversion of
the tone map of first picture, so it will contain the ranking
position 1 for the related LDR pixel value. Then, the second
image will contain the ranking position 3, and the third 2.

For the three LDR images, metadata use no more than 2−bit
for each LDR value, so exactly 64 bytes. Furthermore, it is
possible to see that this data can be compressed into intervals
(e.x. values from 0 to 10 have ranking 1), so 64 bytes is an
upper bound.

B. Decoder

The decoder is shown in Figure 2.
It is possible to discern three types of configuration at the

decoder side: only one LDR image is available; all the LDR
images are available and only 2 LDR (i.e. not all) images are
available.

1) One LDR image available at the decoder: In the first
case, the remapping function is applied to the LDR image, in
order to retrieve the HDR one. Metadata are used for correctly
set the parameters of the reconstruction (for example, is the
third tone map is used, offset and amplification are necessary
during the reconstruction).

This reconstruction produces the best possible approxima-
tion of the HDR image, by using all the information known
at the decoder side (that is only one third of the source
information).

2) All the LDR images are available at the decoder side:
In this case all the information of the encoder is carried to
the decoder, and it is possible the production of the best
approximation of the original HDR image.

All the tone map operators of the three LDR images are
inverted, and, by using the metadata inserted in them, it is
possible to build the HDR image using always the first ranking
for each pixel, i.e.:

H(x, y, c) = 1strank
(
TMO−1LDRx(x, y, c)

)
, x = 1, 2, 3

(7)
In case of multiple first ranks, an average between the top

tanked values is used.
3) A partial number of LDRs images are available at the

decoder side: In this case some information has been lost in
the communication channel between encoder and decoder. The
reconstruction of the HDR image is then made using the best
ranking among the available pixels of the LDR images. The
reconstruction is hence:
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H(x, y, c) = best rank
(
TMO−1LDRx(x, y, c)

)
, x = 1, 2, 3

(8)
In case of equal ranking among 2 or 3 values, their average

is used.

C. Example and performances
In Figure 3 a possible result is shown on the

mpi atrium 31 HDR image. The input HDR image is ini-
tially tone mapped with three TMOs, then it is reconstructed

1Creative Commons 3.0 license, see
http://pfstools.sourceforge.net/hdr gallery.html

using two different approaches (single LDR image inversion
and joint inversion with all the candidates).

For measuring the performance of the proposed architecture,
the HDR-VDP metric [8] has been used. It compares both
visibility and quality in terms of probability, and it is mostly
used for testing fidelity between HDR images. High values
are associated with images with a bad quality, low values for
hi–fidelity images.

As it can be seen in the example, the visual quality increases
(in terms of a low percentage of differences between the
original and the reconstructed one) if more than one LDR
image is used.

In the Figure 4 numeric performance are shown, averaged
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Fig. 3. An example of the proposed architecture, and the performance on the test image.

on a big set of HDR images, when the decoder reconstructs
the HDR image with 1, 2 or 3 LDR images, in terms of VDP
and MSE (the average is also applied when only 1 or 2 LDR
images are used for the reconstruction).

Both HDR VDP and MSE decrease if more than one LDR
is taken into consideration at the decoder side, following an
exponential–like function.

V. HDR IMAGE CODING WITH FACE DESCRIPTION
EMBEDDING

In this section a system for encoding images with embedded
face descriptors is proposed. According to this method, regions
corresponding to faces in the HDR image are at first roughly
encoded by adopting a PCA/eigenfaces based technique, while
the residual image (reconstruction error) is compressed with
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Fig. 4. Performance in terms of VDP and MSE, when the HDR image is
reconstructed at the decoder side with 1, 2 and 3 LDR images.

JPEG2K like coding method [12]. By using this architecture,
faces (the image descriptors) can be retrieved using only a
dot product operation; hence, a fast access to the content
description is guaranteed. The overall encoding process is
accomplished in two main steps: the first stage concerns all
the operations needed to train a learning machine based on
eigenfaces (explained in Section V-A), while the real encoding
process is realized in a second stage. The produced output is
formed by: a series of coefficients and a residual image. The
formers are used as descriptors for face recognition and to
build a prediction signal of the face; the latter is needed to
reconstruct, lossy or lossless, the original input image.

A. Eigenfaces technique

The eigenface technique is nowadays widely used for face
recognition purposes. As stated in [21] it is a variation of the
PCA (Principal Component Analysis) method, applied to the
faces in the images. The goal of this process is to generate a
reduced set of eigenvectors which can describe the principal
components of the input faces (named eigenfaces).

The result of the Principal Component Analysis technique
is given by the most relevant K eigenfaces ([ϕ1,ϕ2, . . . ,ϕK ])
and the average face image.

B. Training

The training scheme of the proposed architecture is shown
in Figure 5.
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Fig. 5. Training chain

For each image in the training set, the faces contained in it
are extracted with a face detection algorithm. The output of
this initial step is a list of rectangles: every face in the image
is described by its displacement and size within the picture.
Successively, the faces are resizes to a standard size (C × R
pixels) and converted to a grayscale image.

When all the faces of the training set have been processed
and placed in the database, eigenfaces are generated using the
process described in Section V-A. Then, the most relevant K
eigenfaces are selected as projection base, together with the
averaged face used for input normalization. Each element of
this projection base is a vector of C×R floating point values.

It is very important to train the system by using different
faces. It is needed to have at least a few training samples
for each sex, race, age, position, illumination and rotation of
the possible face. In such way the K eigenvectors of the
base contain more information, and they can be used for
providing a better reconstruct approximation of different type
of faces. It has to be noted that different strategies can be
applied to eigenfaces extraction, according to the considered
application. In this work we limit to the case where a unique
projection base, available both at the encoder and at the
decoder, is used for retrieval and coding of all faces detected
in images. Another strategy could be, for example, to generate
a projection base for any given collection of similar images
and include the eigenfaces in the compressed bitstream. In this
case the projection base, which is essential to reconstruct the
original signal, could also be used to cluster image collection
containing similar faces.

C. Encoder
The encoder and decoder scheme are shown in Figure 62.

Initially faces are detected in the input image. Assuming that
N faces are found; therefore, a list of N rectangles is provided
by the face detection system. Each face is then resized (for
matching the eigenface size) and converted to its grayscale
representation. Successively, every face is projected, after the
subtraction of the average–face, on the base of eigenfaces,
obtaining a set of K representative coefficients. They are then
quantized to the nearest integer and outputted together with
the rectangle description. So far, for each face in the input
image, a complete description is obtained; in fact, by using
only these data, it is possible to create an approximation of the
original face (in the exact position within the input image) and
also to perform an automatic face recognition. The next block
reconstructs all the faces by using the above coefficients and
reversing the operations implemented during face projection.
Clearly, these reconstructed signals are good approximations
of the originals, and so they are used as predictors. Predicted
faces are then subtracted from the original ones, generating a
residual image. All this operations are performed only on the
luminance channel leaving chrominance unaltered.

The last step concerns entropy coding: the 3–channels image
is compressed by using JPEG2K while metadata are instead

2This anonymized HDR image was taken using the HDR camera Ims chips
- HDRC



placed in a XML file, and then compressed using a lossless
compression algorithm.
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Fig. 6. Scheme of the encoder-decoder

D. Decoder

The decoder side requests less computational power com-
pared to the encoder part. The first step of the decoding chain
is composed by the face reconstruction. In order to obtain the
face predictors in the image, it is needed to decompress the
metadata file, project the faces coefficients on the eigenfaces
base and reshape the faces to fit their original size. It has
to be noted that face coefficients and locations contained in
metadata can also be used for fast content access and retrieval.
In order to reconstruct the input image, the residual image
is then decompressed. Successively, the predicted faces and
residuals are recombined.

VI. CONCLUSION

In this paper a new paradigm for representing high-dynamic
range (HDR) images which can be used for both its coding
and describing its multimedia content has been introduced. The
proposed approach has tailored in two different contexts: the
reconstruction of HDR images forms multiple LDRs and the
HDR encoding with the embedding of face descriptors. In both
cases the additional information carried by the HDR images

are actively used, and many benefits in the encoder/decoder
chain are gained.
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