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Abstract— Kernel-based adaptive filters present a new 
opportunity to re-cast nonlinear optimization problems over a 
RKHS and transform the original nonlinear task into a linear 
one, where one may employ linear and well-known adaptive 
algorithms. It also allows different types of nonlinearities to be 
treated in a unifying way. This method has been used in the 
machine learning community for some time. Now, its use in 
adaptive filters elevates the subject of adaptive filtering theory to 
a new level, presenting a new designing methodology of 
nonlinear adaptive filters.  
    We have recently applied the complex Gaussian kernel to 
develop Affine Projection (AP)-based complex algorithms for 
Kernel Adaptive Filtering. In this paper, we now consider the 
performance of these algorithms for different input signal 
distributions, specifically the circularity of the complex input. 
Recent work has shown the use of widely-linear filtering leads to 
use of complete second-order statistical data when performing 
mean square estimation for complex data. We also extend 
recently developed complex kernel-based algorithms using the 
idea of widely-linear (WL) estimation. Simulations are used to 
verify our theoretical results. 

I. INTRODUCTION 

For applications such as communications, image processing 
and biological systems, nonlinear adaptive filters can be seen 
to well describe the physically occurring phenomena. The 
performance of linear systems for these cases can be highly 
suboptimal, illustrating the need for understanding nonlinear 
filtering algorithms. For these cases, many new methods have 
proven useful, some of which are discussed in recent 
references such as [1-4], along with several recent papers. 

In particular, nonlinear methods known as kernel learning 
algorithms have gained considerable interest. The recent book 
Kernel Adaptive Filters [5] describes a comprehensive, 
unifying introduction to online learning algorithms using 
Reproducing Kernel Hilbert Spaces (RKHS), introducing a  
new design methodology for nonlinear adaptive filters. The 
book serves as a useful guide to understand the practical 
implementation of nonlinear adaptive filters. 

Recently, the complex Kernel Affine Projection Adaptive 
(CKAPA) algorithm [6] was developed as an extension of the 
Complex Kernel Least Mean Square (CKLMS) algorithm. It 
was derived with the new Wirtinger calculus for RKHS of [7], 
[8], which allowed for determining the gradient of the APA-
based cost function which, although real-valued, was defined 
on a complex RKHS. 

For both complex algorithms (CKLMS, CKAPA), the MSE 
performance can vary substantially, depending on the 
circularity of the complex input. This was observed when 
using the complex Gaussian kernel from [7] to implement 
these algorithms. The circularity of complex data is a known 
statistical characteristic, which essentially considers whether 
the input signal probability distribution (pdf) is invariant 
under rotation or not. An input signal whose pdf is rotation 
invariant is known as circular. Otherwise, the input signal is 
considered noncircular. 

In this work, we extend the kernel-based adaptive 
algorithms previously developed [6], [7] considering widely-
linear (WL) estimation [9], [10]. The benefits of this approach 
when using complex input data of various circular 
distributions is demonstrated using simulations. We first give 
a very brief overview of the new Kernel-based adaptive filter 
algorithms for complex-valued data recently obtained. These 
filters are based on the theory of Reproducing Kernel Hilbert 
Space (RKHS). We then describe the widely-linear (WL) 
estimator, and the benefits for estimation with complex data. 
Afterwards, the kernel-based methods are extended for WL 
estimation. Finally, we evaluate the performance of the 
algorithms developed using practical simulation applications. 
A discussion of the performance benefits is provided (based 
on the polynomial kernel), and simulations are used to verify 
the results. 

This paper is organized as follows: In Section II, we give a 
brief overview of the complex kernel-based adaptive 
algorithms. Section III describes background of widely-linear 
estimation. In Section IV, we extend the complex kernel-
based algorithms considering WL estimation. This section 
also provide an analysis of the channel modeling capability of 
the extended algorithms considering the polynomial kernel. 
Simulation results for the new algorithms are provided in 
Section V. Conclusions and summary of results are presented 
in Section VI. 

II. COMPLEX KERNEL-BASED LMS AND APA 

Here, we briefly summarize the Complex Kernel LMS 
(CKLMS) [7], and the Complex Kernel APA (CKAPA) [6] 
algorithms. 
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Both algorithms make use of a complex kernel transform to 
map complex input to a nonlinear space (known as a 
Reproducing Kernel Hilbert Space, or RKHS) where a 
complex nonlinear channel can be learned linearly, i.e. using 
an LMS or APA-based approach. Since a complex kernel is 
used, the associated RKHS is referred to as a complex RKHS. 

A block diagram of the system (for channel estimation) is 
shown in Figure 1. 

 
Figure 1: Channel Estimation using Kernel-based Methods 
 

The goal for both algorithms is to find a filter w to estimate 

the desired response, d(n), using: , 

where z(n) = [z(n)...z(n-M+1)]T is the complex input vector 
(length M) at iteration n, Φ(.) is a complex kernel transform 
mapping, and < . >S denotes an inner product in the complex 
RKHS. However, the cost function to be minimized for the 
CKLMS, CKAPA algorithms differ and are described later. 

( )ˆ( ) ( ), Sd n nΦ z w

From [6-8], notations Φ(.) and < . >S may also refer to a 
complexified kernel transform map and complexified RKHS, 
respectively. However, for the analysis here we only consider 
the complex case. The performance of the complexified case 
will be considered later in the simulations section. 

For the CKLMS, the cost function to minimize is the 
instantaneous square error, i.e. |e(n)|2. The algorithm is 
summarized here (see [7], [8] for details). 

The weights for the CKLMS algorithm are: 
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where  is the estimation error, and µ is the 

filter update step-size. 

ˆ( ) ( ) ( ) e n d n d n

For the CKAPA algorithhm, the cost function is based on 
the principle of minimum disturbance [16]. The cost function 
is formed with the goal of finding the minimum increment for 
the weights forcing the estimation error for the past K input 
vectors to zero. This can be written as follows: 

Keeping the K most recent input vectors and observations: 
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To obtain the required cost function, the method of 
Lagrange multipliers is used to convert equation (4) into an 
unconstrained form, which becomes: 
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The resulting weight update algorithm, based on finding the 
cost function gradient, can be shown to be as follows (see [6] 
for details).: 
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where  is the estimation error. ˆ( ) ( ) ( ) ap ap apn ne d d

While the weights at iteration n (assuming w(0) = 0), can 
be shown to be of the following form, in general: 
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where aj(n-1), for j = 1...(n-1), are coefficients applied to the 
transformed input vectors, ( )( jΦ z  to find the weights. These 

coefficients are determined based on (6) (see Appendix A).  
The filter output for CKAPA is: 
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where  is a vector of the K most recent output estimates. ˆ ( )ap nd

For both algorithms, it was necessary to express the 
equations entirely in terms of inner product, < . >S. This form 
is visible with equations (2) and (8). 

Expressing these equations entirely using inner products 
allows for the use of kernel functions to evaluate the estimate 
(note complex kernel function κ(·,·) defines the inner product 
< . >S for a complex RKHS [5-8]). This, in turn, allows for the 
finite computation of (2), (8), even for kernels associated with 
an infinite-dimension RKHS since the kernel evaluation is 
still of finite complexity in this case. This is known as the 
kernel trick [5-8]. Example kernel functions, κ (·,·), will be 
shown later. 

Next we describe the idea of widely-linear estimation, 
which will be used to extend these algorithms. 

III. WIDELY-LINEAR ESTIMATION 

Widely-linear (WL) estimation, and its benefits for 
adaptive filtering, are considered in references [9-11]. Here 
we briefly describe the approach. 



WL estimation allows for improved mean-square 
estimation (MS) performance with complex data. For mean-
square estimation, the problem can be described as estimating 
some scalar random variable y, in terms of an observed 
random vector, x. The estimate, , minimizing mean-square 

error (MSE) is the regression based on conditional 
expectation, E[y|x]. 

ŷ

When x and y are jointly Gaussian and real-valued, the 
regression is linear in x. However with complex-valued data, 
the regression is linear in x as well as x*, and is referred to as 
widely-linear (WL) [9]. 

For linear MSE (LMSE), the estimate has the form: 

 Hy h x          (9) 

where h is the optimum linear weight vector for estimation, 
and  H denotes the Hermitian transpose. 

And for the widely-linear MSE (WLMSE): 
*  H Hy h x g x .        (10) 

Equation (10) is the general form for the regression with 
complex data. From (10), we see estimate y' is not a linear 
function of x. However the order k moments for y' are 
completely defined from moments of order k of x and x*, 
forming a type of linearity known as wide sense linear [9]. 

This approach can be seen to utilize the full second-order 
statistics of complex input x, which can be described from 
two covariance matrices. The covariance matrix: 

[ ] HEC xx          (11) 

and the pseudo-covariance matrix (also referred to as the 
complementary covariance matrix) [10]: 

[ ] TEP xx .         (12) 

These statistical quantities can be seen to vary based on the 
circularity of the complex input. 

In general, the circularity of a complex random vector, x, is 
based on whether its pdf is rotation invariant (i.e. if x and xejθ 
have same pdf, for all θ). In this case, the vector x is 
considered circular in the strict sense [10], or simply circular. 

However, if complex vector x is zero-mean and E[xxT] = 0, 
it is said to be second-order circular (or proper). Otherwise, x 
is considered noncircular (i.e. if E[xxT] ≠ 0). 

The circularity of the complex input for MS estimation is 
known to affect the performance for LMSE [9], [10]. The 
WLMSE, however, improves the MSE performance based on 
use of complete second-order input statistics. Here we 
consider the use of WL estimation with the CKLMS, CKAPA 
algorithms. 

IV. EXTENSION OF CKLMS AND CKAPA BASED ON 

WIDELY-LINEAR ESTIMATION 

In order to combine WL estimation with the CKLMS, 
CKAPA algorithms, we replace the previous estimation form: 
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with the estimate: 
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and wWL are the optimum weights for the widely linear based 
method. For analysis convenience (observed later) we define 
the function, ξ(.): 
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WLn n n nz z z z   (15) 

which will be used in place of the zWL(n) notation. 

To evaluate the weights for estimate (14) using an LMS-
based approach (i.e. WL-CKLMS), we use the following 
weight update equation: 
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where is the estimation error. ˆ( ) ( ) ( )  WLe n d n d n

Assuming initial weights, wWL(0) = 0, at iteration n we get : 
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Equation (18) forms the WL-CKLMS algorithm. 

In a similar way, considering [6], an APA-based approach 
(WL-CKAPA) can be seen to have the following form. Based 
on the K most recent input vectors and observations: 
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The weight update for WL-CKAPA may be expressed as: 
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The weights at iteration n, assuming w(0) = 0, can be 
shown to be of the following form, in general: 
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where aj(n-1), for j = 1...(n-1) are coefficients determined 
based on (19) (see Appendix B).  

The filter output for WL-CKAPA is: 
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where  is a vector of the K most recent channel 

output estimates. 

,
ˆ ( )WL ap nd

For both methods, it can be observed that the difference 
between the original algorithms and the WL estimation-based 
algorithms is only in the kernel evaluation, which changes 
from: 

( , ) ( ), ( )   Su v Φ u Φ v  

to the form: 

( ) ( )( , ) ( ), ( )    WL Su v Φ u Φ v .      (22) 

This is straightforward to see, considering the input vector 
transformation of (15). 

In order to convert the CKLMS, CKAPA algorithms (or 
any other complex kernel-based methods) to consider widely-
linear estimation, we may simply replace the complex kernel 
evaluation with a form considering WL estimation. 

Here we illustrate with a few examples. Considering the 
standard Hermitian inner product, i.e.: 
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The WL estimation-based form is: 
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Use of equation (23) in (2) can be seen to reduce the 
CKLMS to an algorithm equivalent to the Complex LMS 
(since the kernel function used is the standard Hermitian inner 
product). Meanwhile, use of (24) in (18) reduces the WL-
CKLMS to the Widely-Linear LMS algorithm of [10]. 
Although, for both cases here, these algorithms are now cast 
entirely in terms of inner products. A similar claim can be 
made considering (23) in the CKAPA, and (24) in the WL-
CKAPA, i.e. they become the Complex APA, and WL form 
of Complex APA, respectively.  

We can also similarly consider other complex kernels. For 
example, with the complex Gaussian kernel of [7]: 
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The WL estimation-based form is: 
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The kernel function (26) represents the widely-linear version 
of the complex Gaussian kernel (25). We will also consider 
the polynomial kernel later in this section. 

An important consideration, however, is whether the 

function κWL(·,·) of (22) remains a kernel function when κ(·,·) 

is a kernel. This is considered in Appendix C, where 
requirements for a function to be a kernel are outlined, and a 

proof that κWL(·,·) is a kernel function is described. 

To understand the benefits of the widely-linear methods 
described for learning with complex nonlinear channels, we 
consider an example using the polynomial kernel. 

The polynomial kernel may be written as [5]: 

( , ) (1 )  T qK u v v u .   

Using the Hermitian inner product (since u, v are complex): 

( , ) (1 )  H qK u v v u .         (27) 

Note we have not yet considered use of WL estimation. 

To simplify the analysis, we consider the q = 2 case only. 
The results can be seen to extend for larger values of q. Also, 
we will consider u, v as vectors of length M = 2 (again to 
simply the analysis). The length, M, of u, v corresponds to the 
input vector length used in estimating the nonlinear channel 
(same as z(n) in (2)). The effect of this length will be 
considered in the analysis to follow. 

For q = 2, equation (27) can be expanded as: 
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which can be expressed using the form: 
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Note that any function (in this case equation (27)) that can be 
written equivalently with the form φ(v)Hφ(u) can be shown to 
be a kernel function, and is referred to as a Mercer kernel [5]. 

Thus, the complex polynomial kernel form of (27) can be 
seen as defining the inner product for a nonlinear transform 

space (i.e. complex RKHS of a complex kernel), where φ(·) is 

the transform mapping function. 
Considering (30), the 2-dimensional input is nonlinearly 

mapped to a transform space with dimension size 6. The 
transform space can be considered as follows. Based on Fig. 1 

and equations (1), (2), we can see that function φ(·) of (30) 

may be viewed as the definition of function Φ(·) when 

equation (27)  is the kernel being considered. 

And, if we evaluate Φ(z(n)): 
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Thus, the input is transformed to a space where all the 
various correlations of the elements of z(n), up to order q=2, 

are the dimensions of the transform space for mapping Φ(·) 

(i.e. dimensions are 1, z(n), z(n-1), z2(n), z(n)·z(n-1), z2(n-1) ). 

Thus linear weights, w, applied to transformed input, Φ(z(n)), 

can learn nonlinear channels up to order q=2. 

However, to improve the nonlinear MS estimation 
performance with complex data, we consider an approach 

which allows the moments of estimate to be described 

by moments of order k of inputs z(n), z(n-1) and their 
conjugates, similar to the widely-linear analysis of Section III. 
This clearly is not the case using (31), since the conjugate 
forms of z(n), z(n-1) are not present. 
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Using (32), we again consider the q=2, M=2 case: 
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Which can be written in the form: 
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Using φξ(·) of equation (35), the 2-dimensional input vector is 

nonlinearly mapped to a transform space of dimension size 15. 

Considering the transform space of φξ(·) in a similar fashion 

to the transform space of φ(·), the dimensions of the transform 

space for mapping  Φ( ξ(z(n)) ) can be seen to consist of: 

   1,     z(n),      z(n-1),      z*(n),      z*(n-1), 
   z(n)·z(n-1),        z(n)·z*(n),        z(n)·z*(n-1),    
   z(n-1)·z*(n),    z(n-1)·z*(n-1),    z*(n)·z*(n-1),    
   z2(n),       z2(n-1),       z*2(n),       z*2(n-1) 
Thus, the input is now transformed into a space where all 

the various correlations of the elements of z(n) along with 
their conjugates, up to order q=2, form the dimensions of the 
transform space for the mapping. 

Use of kernel (33) (i.e. transform mapping (35)), should 
allow for improved nonlinear MS estimation performance 
with complex data, since the moments of the estimate can be 
completely described using moments of order k of the input 
samples, z(n), z(n-1) and their conjugates. The result obtained 
can also be seen to extend for larger values of q and M. 



Thus, the use of widely-linear estimation can clearly be 
seen to provide benefit using the polynomial kernel (27) and 
the standard Hermitian inner product (23). A proof of the 
benefits for the complex Gaussian kernel (25) is not as 
straightforward to determine via analysis, however, and 
simulations are used here to verify the benefit. 

Simulation results using complex input data (both circular, 
noncircular) are used to verify the MSE performance benefits 
of the WL estimation-based forms. A comparison with the 
complexified form of the real Gaussian kernel, from [8] which 
is an approach for extending the real Gaussian kernel for 
complex data is also considered. 

It may be observed that the use of the WL estimation form 
can affect convergence behavior, since the dimension size of 
the resulting transform space increases substantially (i.e. from 
6 to 15 for the polynomial example with q=2, M=2). Thus, the 
choice of µ, in addition to kernel parameter σ, should be 
carefully considered. However, the convergence behavior of 
kernel-based methods, specifically the KLMS and Complex 
KLMS algorithms, are currently not as well-studied as their 
non kernel-based forms. An analysis of the convergence 
behavior of the algorithms described here may be considered 
for future work. 

V. SIMULATION RESULTS 

Here, we compare the performance of the WL-CKLMS and 
WL-CKAPA with their CKLMS, CKAPA counterparts, for a 
nonlinear channel estimation task. The testing is performed 
using the complex Gaussian kernel, and circular, noncircular 
complex data. 

The nonlinear channel model used consisted of the widely-
linear filter: 

* *
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     (36) 

followed by memoryless nonlinearity: 
2 3( ) ( ) (0.1 0.15 ) ( ) (0.06 0.05 ) ( )      q n t n i t n i t n     (37) 

The approach is based on a standard model for nonlinear 
channel estimation tasks (from [1-3]), though modified 
considering widely-linear estimation. The signal, r(n), at the 
receiver is corrupted using white Gaussian noise, i.e. r(n) = 
q(n) + v(n). The noise, v(n), is added such that the SNR is 
16dB at the receiver. 

The complex input data was generated using: 
        2( ) 0.7( 1 ( ) ( ))s n X n i     Y n  

where X(n), Y(n) are Gaussian random variables with unity 
variance, and ρ is a variable controlling circularity. The value  
ρ=0.7071 generates circular input, while values close to either 
0 or 1 generate highly noncircular input [7]. Here we use 
ρ=0.7071 for tests with circular input, and ρ=0.1 for tests with 
noncircular input. 

 

 
Fig. 2:  WL-CKLMS, CKLMS with Circular Input 
 

 
Fig. 3:  WL-CKLMS, CKLMS with Noncircular Input 
 

 
Fig. 4:  WL-CKAPA, CKAPA with Circular Input 
 

 
Fig. 5:  WL-CKAPA, CKAPA with Noncircular Input 



The following tests are shown here: 

Figure 2:  WL-CKLMS, CKLMS with Circular Input 
Figure 3:  WL-CKLMS, CKLMS with Noncircular Input 
Figure 4:  WL-CKAPA, CKAPA with Circular Input  
Figure 5:  WL-CKAPA, CKAPA with Noncircular Input 

Each of the tests includes simulation results with the 
corresponding algorithm based on the complexified form of 
the real Gaussian kernel described in reference [8]. Also K=3 
was used for WL-CKAPA and CKAPA. 

For both Figures 2, 3, we see WL-CKLMS has improved 
MSE performance compared to CKLMS (a 15dB difference 
for circular input, 3-4dB for noncircular input). The 
substantial difference for the circular input case is similar to 
the results in [10] for the same scenario (i.e. use of circular 
data for a channel with a nonlinear form modeled well by WL 
estimation), and a detailed reason for the MSE difference is 
described therein. However, the MSE performance for the 
complexified kernel method (from [8]) is essentially similar to 
the WL-CKLMS in both cases. 

Both methods appear near-optimal with both circular data, 
as well as noncircular data. Any remaining suboptimality may 
be due to the choice of kernel parameter, σ, for (25), which 
affects the nonlinear mapping. The parameter was chosen, in 
both cases, through extensive trial-and-error testing, and the 
optimal performance for both may vary. 

For Figures 4, 5, we see similar test results based on the 
WL-CKAPA and CKAPA algorithms. The MSE performance 
difference between WL-CKAPA and CKAPA in steady-state 
again differ by 15dB for circular data and 3-4dB for 
noncircular data, respectively. And the MSE performance of 
WL-CKAPA compared to the complexified approach is 
similar, with suboptimalities likely due to choice of kernel 
parameter, σ, similar to before. 

However, the convergence benefit for the APA version 
compared to LMS is not clearly visible from Figures 2-5. 
APA-based  algorithms are known to provide a convergence 
benefit, however typically for colored input signals [15], [16]. 

A simulation result illustrating the convergence rate benefit 
for WL-CKAPA compared to WL-CKLMS can be seen in 
Figure 6, where a non-linear equalization test is performed 
(instead of channel estimation) using the same nonlinear 
channel used for Figures 1-4 (i.e. equations (36), (37)). The 
system model is illustrated in Figure 7. The benefit of faster 
initial convergence is demonstrated here for WL-CKAPA. 
However, channel equalization can often lead to enhancement 
of noise, affecting misadjustment performance. 

 
Fig. 6:  WL-CKAPA,WL-CKLMS with Colored Noncircular Input 

 

 
Fig. 7:  System Model for Channel Equalization (used for Figure 6)  

Finally, we note the complexified kernel method from [8] 
has similar performance to the WL estimation-based methods 
described here. However the work here shows an approach for 
improving the performance of complex kernel-based methods 
(described in both [7] and [8]), allowing for improved MSE 
performance and broadening the understanding of the 
complex kernel method. A detailed comparison between the 
complexified methods and WL estimation-based complex 
kernel methods are left for future work. 

VI. CONCLUSIONS 

In this work, we extended the complex kernel-based 
methods of CKLMS and CKAPA based on the widely-linear 
estimation approach. The approach used involved deriving 
widely-linear versions of complex kernel functions, and may 
easily be applied to other complex kernel methods, not just 
CKLMS, CKAPA. 

Also, an analysis of the estimation benefit using the widely-
linear approach (based on the polynomial kernel) was 
illustrated, indicating the full statistical information needed 
for MS estimation with complex data is available using this 
approach. 

Simulation results also demonstrate the benefits compared 
to the original complex kernel methods, and similarity with 
the complexified method from [8]. Future work may involve a 
more detailed comparison of the widely-linear and 
complexified approaches.  



APPENDIX A 

Here we consider the update for coefficients, aj(n), of: 
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based on the weight update: 
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Initially, we rewrite (A.2) as: 
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where: 
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Combining (A.1) and (A.3), we get: 
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Which can be expanded as: 
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where is the k-th element of vector . ( )
k ne ( ) ne

From equation (A.5), we can see that only the coefficients 
an-k+1 to a n-1 are modified from iteration n-1 to n. 

Thus, the update: 
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can be used to update the aj(n) coefficients. 

APPENDIX B 

Similar to Appendix A, we consider here the update for the 
coefficients, aj(n), of: 

1

1

( ( ))( 1) ( 1) (




  
n

j
j

n a nw Φ z              (B.1) 

based on weight update: 
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Rewriting (B.2) as: 

             (B.3) 
,( ) ( 1) ( ) ( )   WL WL apn n nw w X e

where: 
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And combining (B.1), (B.3): 
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We obtain the same update form for updating the aj(n) 
coefficients as Appendix A, i.e.: 
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However in this case is now defined from (B.3). ( ) ne

APPENDIX C 

Briefly, a function κ(·,·) is considered a kernel function if it 

meets the following conditions (from [8]). 

For a function: :   X X , where x1, ..., xN   X 
defines the set of possible inputs, and   is a general field 
(which may be   (real), or   (complex)), define the N x N 
matrix, K, with elements Ki,j = ( ,i )j x x , for i, j = 1, ..., N. 

The resulting matrix K is referred to as the Gram (or Kernel) 
matrix of  with respect to x1, ..., xN. 

If matrix K is Hermitian and positive definite, i.e. 

  
,

*
,

1, 1

c c K 0
 

 c Kc
N N

H
i j i j

i j

 

for all c i  , i = 1, ..., N  (where * denotes conjugation), then 

the function ( , ) i jx x is referred to as a positive definite 

kernel, which is often referred to simply as a kernel. 

For every positive definite kernel, κ, it has been shown that 
there exists a single class, , of functions (i.e. functions f 

defined on the set X) where  is a Hilbert space with a unique 

inner product, and where κ can reproduce the entire space of 
functions,  [8]. Due to this, the function κ is also referred to 

as a reproducing kernel, and  as its associated Reproducing 

Kernel Hilbert Space (or RKHS) [8]. Note, for the complex 
kernel case,  is a class of complex-valued functions, and is 

referred to as a complex RKHS. 

Thus we have described the conditions for a function κ to 
be a kernel function, and its associated RKHS. However, to 
determine if the function κWL(·,·) of (22) is also a kernel 
function, consider that the inputs are transformed by ( )   

before applying the kernel κ(·,·) in (22). This scenario can be 
described as follows. With the original kernel function: 

:  K X X  , and a function : S X
:

, we can then 

define the composite function:   S K S . Thus: 

  1 2( , ) x xK 1 2( ) (( ,  x xK )) . 

From [17] (see Proposition 5.13), the composite function 
K  is a kernel function on S for any arbitrary function,  . 

The associated Hilbert space ( )K  is referred to as the 

pull-back of  along ( )K   (Definition 5.15), and can be 

written as: ( ) { ): ( }  f K f K   (Theorem 5.14). 

Thus the function κWL(·,·) of (22) may be considered a 
kernel function when the original function, κ(·,·), is a kernel.  
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