
Introducing More Features to Improve Chinese
Shift-Reduce Parsing
Hongxian Wang, Qiang Zhou and Liou Chen
Center for Speech and Language Technologies,

Research Institute of Information Technology, Tsinghua University
Center for Speech and Language Technologies, Division of Technology Innovation and Development,

Tsinghua National Laboratory for Information Science and Technology
wanghongxian@gmail.com, zq-lxd@mail.tsinghua.edu.cn, chouou@gmail.com

Abstract—Recent years, shift-reduce parsing has gained
popularity for its efficiency, but its performance still has a gap
with the state of art parsers. In this paper, we construct a
baseline Chinese shift-reduce parser using the common features.
According to the error patterns in the baseline system, we
explore the use of constituent label features and Lexical Relation
Pair (LRP) information. The parser is trained and evaluated on
the Tsinghua Chinese Treebank. After using the new features
the boundary F-score arises from 85.19% to 86.25%.
Additionally, we investigate the use of LRP extracted from raw
text automatically, and the parser can also get a competitive
result.

I. INTRODUCTION

Parsing is always the research focus in the natural language
processing (NLP) communities. Over the past decade, many
statistical parsers have been developed and achieve high
levels of accuracy. In the early years, the most popular data-
driven parsers ([1], [2]) are based on generative models that
are closely related to probabilistic context-free grammars
(PCFG). These parsers reach a high accuracy, but with high
complexity. Recently, Reference [3] presented a classifier-
based dependency parser and showed that the deterministic
parser can also achieve high levels of accuracy, in spite of its
simplicity. Reference [4] showed that deterministic parsing is
suitable for constituent parsing too.

The parser used in this paper is a transition based, also
represented as shift-reduce parser. Compared with the
traditional generative parser, a shift-reduce parser has a
simple structure and is easy to implement. It can have a linear
time complexity [3]. However, there is still a gap in
performance between the shift-reduce parser and the state of
art ones. The best F-score of the shift-reduce parser is about
5% lower than the chart parser. To narrow the gap, we can do
work in two ways. One is to optimize the parsing strategy,
such as expanding the search space using beam search [5] or
best first search [4], or to integrate shift-reduce parser with
other parsers [6]. The other is to apply more features to help
the classifier to select the actions in parsing more accurately.
Reference [7] used clausal information of a sentence to
improve the performance of dependency shift-reduce parsing.
In this paper we will focus on the affection of the features of

lexical relation pairs and constituent label combinations in
shift-reduce parsing.

A deterministic parser uses a series of actions to build a
syntactic tree. It uses only the local information to determine
which action should be applied. Since natural language is so
complex, the local information cannot solve all the
ambiguities. An assumption is that, if we can use more
information in the action selection of the deterministic parser,
more ambiguities can be solved.

The remaining sections of this paper are organized as
follows: in section 2 we introduce the structure and feature
schema of the baseline parser. We talk about the experiment
in section 3 and make analysis of the experimental result and
find out the frequent unrecalled patterns. In section 4,
according to the error in the baseline system, we introduce
two types of new features, and the performance improves. We
compare our work with other’s in section 5 and conclude the
paper in section 6.

II. PARSER IMPLEMENTATION

The structure of this parser is similar to [8], adopting a
greedy strategy. Some details of the parser will be illustrated
in this section, first is action schema, and feature selection
follows.

A. Parser Actions
A deterministic shift-reduce parser uses a series of actions

to build a syntactic tree from the raw text. As our parser is
based on the Tsinghua Chinese Treebank (TCT)[9], it is
designed for constituent parsing. Shift-reduce parser is
intrinsically incapable of handling multi-node constituent. To
overcome this weakness, researchers usually do some
preprocessing. Reference [8] transformed the multi-children
node to binary node in training process and transformed the
binary node back to multi-children node after parsing.
Reference [10] transformed the constituent syntactic tree to
dependency syntactic tree and transformed it back after
parsing. Contrasted to these transform methods, we design a
special action to handle multiple-node constituent parsing
directly. This can make the parser structure simpler and run
faster.

APSIPA ASC 2011 Xi’an

Reduce: this action will combine the item at the top of the
stack and the item in the head of the buffer to be a new tree
node. To do this, the item at the top of the stack is popped as
item A, and the one in the head of the buffer is popped as item
B. A new tree node is constructed, and the item A is as the left
child and the item B as the right. At last, the new tree node is
pushed into the head of the buffer.

Shift: This action is the simplest of all. It pops the item in
the head of the buffer and pushes it to the top of the stack.

Reduce-Left: This is a variant of the action reduce. It is
designed to process the multi-children node. When applying
this action, the element at the top of the stack is popped out as
A, and the one in the head of the buffer is popped out as B.
This action makes B as the most right child of A, and push A
to the head of the buffer.

Reduce-unary: This action is another variant of the action
reduce. It is designed for the single-child node. As a result of
this action, the element at the head is popped out and become
a child of the new constructed tree. The tree, which has only
one child, is pushed back to the head of the buffer.

The four actions above are illustrated in Table 1. In the
table, the pipe line (vertical bar) means the separator between
the stack and the buffer. The stack is on the left of the pipe
line, and the right most is the top of the stack. On the right of
the pipe line is the buffer and the left most is the head of the
buffer. The letters a, b etc. represent words。

Table 1: Action Illustration

shift [a b] | c d [a b] c | d
reduce [a b] | c d |[[a b] c] d
reduce-left [a b] | c d |[a b c] d
reduce-unary [a b] | c d [a b] | [c] d

There are some restriction rules for the four actions to use:
(1) Only a shift or a reduce-unary action is allowed when

the stack is empty.
(2) A reduce-left action is allowed only if the item at the

top of the stack is a partial tree and the buffer is not empty.
(3) A reduce-unary action is not allowed if the item at the

head of the buffer is a partial tree. It is to avoid the unary tree
more than one hierarchy.

B. Classifiers
Since Maximum Entropy model is inherently suitable for

multi-class classification, we use Maximum Entropy classifier
as our default classifier. The Maximum Entropy toolkit in this
paper is developed by Zhang Le (2004)1.

C. Basic Features
In order to reveal the affection of the new features, first we

use some basic features in the parser as baseline. Following
other researchers([8], [10], [11]), we use the common basic
features.

1 http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html

To explain the feature extraction better, we represent the
stack by S, the item at the top of the stack is S(1), and the
second item of the stack is S(2), and so on. Similarly, the
buffer is represented as B, and the first item of the buffer is
B(1), which is also called the analysis focus. The following
are B(2), B(3), and so on. In the following sections, we
assume the stack and the buffer are connected,
like …S(2)S(1)B(1)B(2)B(3)…. We consider B(1) as the
focus of analysis when rebuild the syntactic tree. B(1) is also
the center of the window when we use refer to the size of a
window.

Figure 1: Illustration of feature extraction

Unigram Features: This feature is most simple feature of
all. We extract all the words and POS tags as unigram feature
in a window with size of 7 words. If the item is a partial tree,
the left-most and right-most child’s words and POS tags will
be used instead.

Bigram Features: This feature is generated from two
neighbor single words or POS tags combined together. They
are extracted from a window with a size of 7 words. For
example in the parsing state in Figure 2, we can extract
features: w1w2=购买_国库券, p1p2=v_n, and so on. If the
item is a partial tree, it will be ignored.

Trigram Features: Similar to bigram feature, a trigram
feature is generated from three neighbor words or POS tags
combined together. The size of the window for trigram feature
extraction is 3 words, that is to say there is only one trigram
feature can be extracted in a step.

Action Features: Inspired from the work of [4], we add
action feature as basic features. However, we find that only
the previous action is not efficient, so we combine two
neighbor previous actions together as a bigram action feature.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Data Preparation
The data corpus used in our experiment is the training and

testing set of CIPS-ParsEval-2010 Task 2 [12]. There are
17529 sentences in the training set and 1000 sentence in the
testing set. The sentences in the training set are all gold-
standard segmented and POS tagged, and each consistent in
the tree is assigned with a label. The test data in CIPS-
ParsEval-2010 are gold-standard segmented but without POS

tag. However, we use test data with gold-standard POS tagged
sentence for convenience. The average length of the sentence
in training data is 27.44 words, and 25.23 in testing data.

B. Evaluation Measure
Since our parser can give the boundary and label of the

constituent simultaneously, we use two measures to evaluate
the performance of the parser. First is the evaluation of the
boundary. As many natural language processing tasks, we use
three measures: Precision, recall and F-score, which are
computed as follows:

To evaluate the performance of the parser on constituent

labeling, we use the same measures as we do for boundary.
The only difference is the constituent must be with correct
boundary and correct label. Now we have six measures to
evaluate the parser.

C. Experimental Results and Analysis
Table 2 shows the overall experimental results based on

Maximum Entropy Classifier with the basic features.

Table 2: Results of Maximum Entropy Parser with basic
features

 Precision (%) 84.87
Boundary Recall (%) 85.51

 F-Score (%) 85.19
Boundary Precision (%) 79.67

and Recall (%) 80.28
Label F-score (%) 79.97

Figure 2: F-score on different constituents

Beside these overall results, we want to know some detail
performance of the parser on different constituents2. Figure 2

2 The consitutent tags used in the paper: dj-simple sentence, vp-verb phrase,
ap-adjective phrase, np-noun phrase, sp-space phrse, tp-time phrase, mp-

shows the F-score on each constituent. We can see that, the
performance differ on different constituents. It is quite high
on some constituents (reaches 94.46%), while quite low on
some others.

In order to improve the performance of the parser, we
investigate the combination patterns of the unrecalled
constituents, and get a list of the typical combination patterns
of unrecalled constituents.

We select the most frequent error patterns of the
constituents with low F-score, such as pp, sp, np, etc. They
are listed in Table 3. It shows that, most of the unrecalled
patterns are consist of a word and a constituent. However, in
the basic feature schema, only word and POS features are
extracted, such pattern can’t be recognized. To overcome this
problem, new features are needed.

Table 3: Examples of unrecalled patterns

Type #Unrecalled #All UR rate
pp(overall) 130 817 0.16
p-np 43 284 0.15
p-sp 13 103 0.13
p-tp 11 83 0.13
sp(overall) 55 275 0.20
n-f 16 60 0.27
np-f 22 103 0.21
np(overall) 903 5379 0.17
dj-uJDE-n 20 52 0.38
np-uJDE-n 26 74 0.35
np-np 64 196 0.33
n-np 37 131 0.28

IV. NEW FEATURES

Since the basic features can’t distinguish many ambiguities,
such as the ambiguity listed in Table 3 We need to introduce
some new features. There are two principles for the new
features selection: (1) the new features should be pertinent to
the error patterns, (2) the amount of the new features should
be controlled, so as not to reduce the speed of the parser.

A. Constituent Combination Features
Complete Combination Feature: Since the basic features

can’t distinguish the word and constitute combination
ambiguity, an intuitive idea is to add new features to represent
the structure of the combination of words and constitutes. We
introduce two types of new features to improve the
performance of the parser:

• Combination of constituent label and neighbor POS
tags

• Combination of constituent label and neighbor words
Table 4 list the overall result of the parser with the

combination features. A notable thing is that, after adding the

numeral phrase, mbar—numeral word, dp-adverb phrase, pp-preposition
phrase.

new features, the model is so big that ME classifier can’t load
correctly, therefore we use a linear SVM classifier of
liblinear3 as a replacement. Our experiment shows that the
parsers based on these two classifiers have similar
performances.

Though new features are added, the performance decreases.
Figure 3 shows the detail comparison with the baseline. We
can see the np, vp, dj decrease much, the possible reason is
that, these constitutes don’t have regular combination patterns,
the new features bring in little information but much more
noise. Furthermore, adding all the combination features will
also harm the speed of the parser. To avoid the noise we
should add feature according to the unrecalled patterns listed
in Table 3.

Table 4: Results of the parser with complete combination
feature and a SVM classifier

 Baseline Com-fea
 Precision (%) 84.07 65.54
Boundary Recall (%) 85.15 81.51
 F-Score (%) 84.61 72.65
Boundary Precision (%) 78.92 60.87
and Recall (%) 79.94 75.70
Label F-score (%) 79.43 67.48

Figure 3: Detail result of the parser with complete
combination feature and a SVM classifier

Selected Combination Feature: Experimental result
shows adding combination features roughly will bring in
noise and harm the speed of the parser. So we try to add the
combination features only when they appear in the unrecalled
patterns. This processing step will filter most of the noise
features, and only a small amount of features are remained.
The speed of the parser is not be harmed either.

Table 5 and Figure 4 show the performance difference of
the parser after using the new features. Table 5 shows the
overall difference, and Figure 4 shows the difference on each
constituent. We can see the performance improves almost on
every constituent, especially on pp, sp, np, etc. The reason for
this is that these constituents usually have a regular

3 http://www.csie.ntu.edu/~cjlin/liblinear/

combination pattern, and the new features can give more
information to help the parser to select a suitable action.

Discussions: From the two experiments we can see that
feature should be pertinent to the error patterns. A rough
overall feature schema will bring in much noise, and will
increase the scale of feature set. A possible way to improve
the parser is to find more features according to the unrecalled
patterns.

Table 5: Results of the parser with constituent combination
features

 Baseline Com-fea
 Precision (%) 84.87 85.85

Boundary Recall (%) 85.51 86.65
 F-Score (%) 85.19 86.25

Boundary Precision (%) 79.67 80.92
and Recall (%) 80.28 81.68

Label F-score (%) 79.97 81.29

Figure 4: F1 score of two systems on different constituents

B. Lexical Relation Pair Features
Though the combination features of constituent label and

neighbor words or POS tag can bring more information to
help the parser to distinguish different conditions and improve
the performance, we notice that there are some conditions that
a word can be both combined with the left word or the right
word in semantic view. For example, in the sentence : 两口子

/the couple 决定/decide 买/to buy 国库券/state treasury bill.
The word ‘买/to buy’ can be combined with its left adjacent
word ‘决定/decide’ and right adjacent word ‘国库券/state
treasury bill’ under this POS structure “v-v-n”(verb-verb-
noun). But to understand the sentence correctly, only one
combination is suitable. To recognize the correct combination,
the parser needs to understand the sentence in meaning.

To overcome this problem, we introduce a new feature
called Lexical Relation Pair (LRP). LRP is a triple like

，in which and is two words, and is a
string representing the relation between the two words. Some
researchers use Collocation to handle the ambiguity problem
in natural language processing tasks ([13],[14]). “A
collocation is an expression consisting of two or more words
that correspond to some conventional way of saying things.”

[15]. Lexical Relation Pair is similar to the term:
“Collocation”, the difference is that the two words in Lexical
Relation Pair usually have a semantic or syntactic relation and
this relation is specified explicitly, while the words in a
collocation only need to have a high co-occurrence rate. In the
above example: 决定/v 购买/v 国库券/n(decide to buy state
treasury bill), “购买/to buy 国库券/state treasury bill” will
have a PO (Predicate Object) relation, this can help the parser
combine the two words together.

We still follow the two principles at the beginning of this
section when applying this feature. To meet the requirements,
this feature is also pertinent to the unrecalled patterns. This
feature is extracted only when the specific pattern appears.
We using a trigram of the LRP to present the feature,

, in which indicates
the relation between words in position and , S(1) represents
the first item in the stack, B(1) represents the first item in the
buffer. Furthermore, we combine the trigrams of LRP with
the current patterns.

Manually Extracted LRPs: The LRPs used in this paper
are extracted from four manually annotated data sources,
including Tsinghua Chinese Treebank, Chinese collocation
dictionary, People’s Daily annotated corpus and PKU
grammatical dictionary. The final manual knowledge base
contains 961907 LRP entries.

Table 6: Overall results after adding LRP features

 Com-fea LRP
 Precision (%) 85.85 86.19

Boundary Recall (%) 86.65 87.15
 F-Score (%) 86.25 86.67

Boundary Precision (%) 80.92 81.53
and Recall (%) 81.68 82.44

Label F-score (%) 81.29 81.98

Figure 5: Detail results comparison before and after adding
LRP features

The overall results after adding LRP features are listed in
Table 6, and the detail results are showed in Figure 5. The
results are compared with the ones before adding LRP
features. Along with the overall improvement, the parser
improves on almost all consistent, especially on the
constituents of dj, np and sp. The reason for this is that, these

phrases usually have a complicated structure, and the sub-
constituents in these phrases often have combination
ambiguities, the LRP features can help the parser to select the
correct actions.

Automatically Extracted LRPs: The experimental results
show that LRP features are useful in improving the
performance of the parser. The LRP knowledge base used in
last subsection are extracted from manually annotated corpus,
however using manual LRP knowledge base has some
shortages: 1) Manual Annotation are very expensive and the
corpus is usually small; 2) NLP task is often domain related,
so it is difficult to apply the manual LRP to the new domain.

A reasonable idea is to use automatically extracted LRP
knowledge base. We use a LRP corpus [16] extracted
automatically from the corpus of 1998 and 2000 People’s
Daily4. The extraction method is based on a Basic Chunk
Parser[17]. The automatically extracted data has 561,119 LRP
entries.

We use the automatically extracted LRPs as a replacement
of the manual LRP Knowledge base. After applying it to the
parser, we find the result almost the same as the ones when
using the manual LRP knowledge base. Table 7 and Figure 6
display the comparison of results when using manual and
automatic LRP knowledge base. Figure 6 shows the detail
comparison on each constituent. The performances of the
parser are similar almost on each constituent when using two
different knowledge bases. We also note that, in the overall
results showed in Table 7, though the precision is a little
higher when using manual LRPs, the recall is a little higher
when using automatic LRPs.

Table 7: Comparison of the manual LRP and Automatic
LRP

 Man-LRP Auto-LRP
 Precision (%) 86.19 86.07
Boundary Recall (%) 87.15 87.18
 F-Score (%) 86.67 86.62
Boundary Precision (%) 81.53 81.47
and Recall (%) 82.44 82.53
Label F-score (%) 81.98 82.00

Figure 6: Comparison of the manual LRPs and Automatic
LRPs in detail

4 http://icl.pku.edu.cn/icl_res/default_en.asp

Discussion: The real factor which affects the performance

of the parser is the coverage of the LRP knowledge base
rather than the scale. We calculate the coverage of the manual
and automatic LRP knowledgebase. The coverage of manual
LRPs is 41.38%, while the one of automatic LRPs is 53.41%.
That is why the automatic LRP knowledge base with a
smaller scale has comparable result with the manual LRPs.
The manually extracted LRPs are more credible, so the parser
has a higher precision even with a lower coverage. In spite of
the automatic LRPs’ lower confidence, its wider coverage
helps the recall much more.

The experimental result here enables us to apply the parser
to different domains even without a homologous Treebank.
We need only to apply a chunk parser on the raw domain texts
and extract enough LRPs to improve the parser’s performance
on the new domain.

V. RELATED WORK

Due to its lower time complexity and simplicity in
implementation, shift-reduce parser attracts much attention.
However, its performance still has a gap with the state of art
parsers. To narrow the gap, researchers have made great
efforts.

Shift-reduce parser adopts a greedy strategy, so it is
difficult to correct a previous error. To overcome this problem,
reference [4]used best-first search to enlarge the search space,
and get a better result. Similar to them, reference [5] used
beam search to improve the performance of the parser.
Reference [7] maintained multiple transition paths after each
transition step to alleviate effect of the previous error. All
these work improve the performance more or less. But they
all tried to enlarge the search space of the parser, which
inevitably harms the speed of the parser. Contrast to their
work, we propose a different way: introducing new features to
get more information from the state of the parser. Benefit by
the pertinence of the new features, we add a small amount of
features, and the performance improves without speed
reduction. Table 8 lists the speed of the parser in each feature
schema. The latter features are added to previous ones directly.

Table 8: Speed of the parser in different features schemas

Feature Schema Speed
Baseline 50 sentences/s

+Combination Feature 50 sentences/s
+LRP Features 50 sentences/s

Performance Comparison: CIPS-ParsEval-2010 used

automatic POS annotation, but we use manual POS
annotation, so the results cannot be compared directly.
Noticing that CIPS-ParsEval-2009 [18] used manual POS
annotation, we select two best single model systems to
compare with. Reference [20] used a traditional PCFG
method, and reference [19]used multipath transition state and
online training at the same time and achieved a high score on
both boundary F-score and boundary&label F-score. Table 9

shows the comparison. Though we do not do any optimization
on the CIP-ParsEval-2009 corpus, the performance of the
parser improves by applying new features, and gets a
comparable result with the traditional PCFG method.
Although it still has a gap with the method using enlarging
search space method, but we achieve this without any speed
reduction.

Table 9: Comparison with other’s work on the ParEval
2009 corpus

 Boundary Boundary&Label
(Jiang 2009) 90.09 87.15
(Song 2009) 87.10 83.51
Our baseline 86.08 81.13

Our best 87.02 82.73

Speed comparison: Efficiency is a high light of shift

reduce parser. We select two high efficiency systems to
compare with in the speed in similar hardware conditions.
One is a CCG parser presented in the summer workshop 2009
in John Hopkins University[21], another is also a shift reduce
parser presented by[11]. These are two fastest parsers we can
find. Table 10 shows the comparison. We can see our speed
exceeds the shift reduce parser by, but lags behind the CCG
parser. Since their goal is to implement a fast parser, they did
much optimization on speed, however we focus on improving
the performance of the parser without speed reduction.

Table 10: Comparison with other’s work in speed

 Corpus Speed (sent/s)
JHU 2009 Penn Treebank 60-100

(Wang, 2006) Penn CTB 29
Our System ParsEval 2010 50

VI. CONCLUSIONS

Shift-reduce Parser has a very high efficiency but its
performance lag behind the state of art parser. In this paper,
we improve the performance of the parser without speed
reduction by introducing new features.

This paper has two main contributions:
1) We analyze the result of the baseline parser, and report

the frequent unrecalled constituent pattern. Depending on the
analysis, we introduce constituent label combination feature
and LRP feature and the F-score of the boundary improves
from 85.19% to 86.25% without any speed reduction.

2) We explore the use of automatically extracted LRP in
shift-reduce parsing, and prove that it can achieve a
comparable result with the one when using manually
extracted LRP. This encourages us to apply the parser to
different domains.

ACKNOWLEDGMENT

This work was supported by National Natural Science
Foundation of China (Granted No.: 60873173), Tsinghua-
Intel Joint Research Project.

REFERENCES

[1] E. Charniak,. "A maximum-entropy-inspired parser". In Proc.N.

American ACL (NAACL), pp.132–139. 2000.
[2] M. Collins. "Three generative, lexicalised models for statistical

parsing". In Proc. of ACL, pp. 16–23. 1997.
[3] J. Nivre and M. Scholz, "Deterministic dependency parsing of

English text". In Proc. of COLING, 2004.
[4] K. Sagae and A. Lavie, "A best-first probabilistic shift-reduce

parser". In Proc. of the COLING/ACL, pp. 691-698. 2006.
[5] Y. Zhang and S. Clark, "Transition-based parsing of the Chinese

treebank using a global discriminative model". In Proc. of the
11th International Conference on Parsing Technologies, pp.
162-171. 2009.

[6] J. Nivre and R. McDonald. "Integrating graph-based and
transition-based dependency parsers". In Proc. of ACL-HLT, pp.
950-958, 2008.

[7] P. Gadde, K. Jindal, S. Husain, D. M. Sharma and R. Sangal,
"Improving Data Driven Dependency Parsing using Clausal
Information". In Proc. of NAACL-HLT, 2010.

[8] K. Sagae and A. Lavie, "A classifier-based parser with linear
run-time complexity". In Proc. of the Ninth International
Workshop on Parsing Technology, pp. 125-132. 2005.

[9] Q. Zhou, "Chinese Treebank Annotation Scheme". Journal of
Chinese Information. 18(4), pp. 1-8. 2004. (in Chinese)

[10] X. Ma, X. Zhang, H. Zhao and B. L. Lu, "Dependency Parser
for Chinese Constituent Parsing" In Proc. of CIPS-SIGHAN
Joint Conference on Chinese Language Processing. 2010.

[11] M. Wang, K. Sagae and T. Mitamura, "A fast, accurate
deterministic parser for Chinese". In Proc. of COLING-ACL, pp.
425-432. 2006.

[12] Q. Zhou and J. Zhu, "Chinese Parsing Evaluation". In Proc. of
CIPS-SIGHAN Joint Conference on Chinese Language
Processing, 2010.

[13] J. Chen and M. Palmer, "Towards Robust High Performance
Word Sense Disambiguation of English Verbs Using Rich
Linguistic Features". In Proc. of IJCNLP, pp. 933-944. 2005

[14] D. Xiong, Q. Liu and S. Lin, "Maximum entropy based phrase
reordering model for statistical machine translation".In Proc. of
ACL-44, pp. 521-528. 2006.

[15] C. D. Manning, H. Schütze and MITCogNet, Foundations of
statistical natural language processing, vol.59. MIT Press, 1999.

[16] H. Qiu, " Automatic Extraction of Chinese Lexical Relation Pair
and Basic Concept Unit," In Proc. of NCMMSC (in press), 2011

[17] H. Yu, "Research on Automatic Chinese Chunk Parsing,"
Bachelor's thesis dissertation, Department of Computer Science
and Technology, Tsinghua University, Beijing, 2007.

[18] Q. Zhou and Y. Li, "First Workshop on Chinese Syntactic
Parsing Evalation Report," In Proc. of the First Workshop on
Chinese Syntactic Parsing Evaluation. 2009.

[19] W. Jiang, H. Xiong and Q. Liu, "Muti-Path Shift-Reduce
Parsing with Online Training," in Proc. of 1st Workshop on
Chinese Syntactic Parsing Evaluation. 2009.

[20] Y. Song and C. Kit, "PCFG Parsing with CRF tagging for head
recognition". In Proc. of 1st Workshop on Chinese Syntactic
Parsing Evaluation. 2009.

[21] S. Clark, A. Copestake, J. R. Currany, Y. Zhangz, A. Herbelot
and J. Haggertyy, et al., "Large-Scale Syntactic Processing:
Parsing the Web," JHU Summer Research Workshop, 2009.

