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Abstract—Recent years, shift-reduce parsing has gained 
popularity for its efficiency, but its performance still has a gap 
with the state of art parsers. In this paper, we construct a 
baseline Chinese shift-reduce parser using the common features. 
According to the error patterns in the baseline system, we 
explore the use of constituent label features and Lexical Relation 
Pair (LRP) information. The parser is trained and evaluated on 
the Tsinghua Chinese Treebank. After using the new features 
the boundary F-score arises from 85.19% to 86.25%. 
Additionally, we investigate the use of LRP extracted from raw 
text automatically, and the parser can also get a competitive 
result.  

I. INTRODUCTION 

Parsing is always the research focus in the natural language 
processing (NLP) communities. Over the past decade, many 
statistical parsers have been developed and achieve high 
levels of accuracy. In the early years, the most popular data-
driven parsers ([1], [2]) are based on generative models that 
are closely related to probabilistic context-free grammars 
(PCFG). These parsers reach a high accuracy, but with high 
complexity. Recently, Reference [3] presented a classifier-
based dependency parser and showed that the deterministic 
parser can also achieve high levels of accuracy, in spite of its 
simplicity. Reference [4] showed that deterministic parsing is 
suitable for constituent parsing too. 

The parser used in this paper is a transition based, also 
represented as shift-reduce parser. Compared with the 
traditional generative parser, a shift-reduce parser has a 
simple structure and is easy to implement. It can have a linear 
time complexity [3]. However, there is still a gap in 
performance between the shift-reduce parser and the state of 
art ones. The best F-score of the shift-reduce parser is about 
5% lower than the chart parser. To narrow the gap, we can do 
work in two ways. One is to optimize the parsing strategy, 
such as expanding the search space using beam search [5] or 
best first search [4], or to integrate shift-reduce parser with 
other parsers [6]. The other is to apply more features to help 
the classifier to select the actions in parsing more accurately. 
Reference [7] used clausal information of a sentence to 
improve the performance of dependency shift-reduce parsing. 
In this paper we will focus on the affection of the features of 

lexical relation pairs and constituent label combinations in 
shift-reduce parsing. 

A deterministic parser uses a series of actions to build a 
syntactic tree. It uses only the local information to determine 
which action should be applied. Since natural language is so 
complex, the local information cannot solve all the 
ambiguities. An assumption is that, if we can use more 
information in the action selection of the deterministic parser, 
more ambiguities can be solved. 

The remaining sections of this paper are organized as 
follows: in section 2 we introduce the structure and feature 
schema of the baseline parser. We talk about the experiment 
in section 3 and make analysis of the experimental result and 
find out the frequent unrecalled patterns. In section 4, 
according to the error in the baseline system, we introduce 
two types of new features, and the performance improves. We 
compare our work with other’s in section 5 and conclude the 
paper in section 6. 

II. PARSER IMPLEMENTATION 

The structure of this parser is similar to [8], adopting a 
greedy strategy. Some details of the parser will be illustrated 
in this section, first is action schema, and feature selection 
follows. 

A. Parser Actions 
A deterministic shift-reduce parser uses a series of actions 

to build a syntactic tree from the raw text. As our parser is 
based on the Tsinghua Chinese Treebank (TCT)[9], it is 
designed for constituent parsing. Shift-reduce parser is 
intrinsically incapable of handling multi-node constituent. To 
overcome this weakness, researchers usually do some 
preprocessing. Reference [8] transformed the multi-children 
node to binary node in training process and transformed the 
binary node back to multi-children node after parsing. 
Reference [10] transformed the constituent syntactic tree to 
dependency syntactic tree and transformed it back after 
parsing. Contrasted to these transform methods, we design a 
special action to handle multiple-node constituent parsing 
directly. This can make the parser structure simpler and run 
faster. 

APSIPA ASC 2011 Xi’an



Reduce: this action will combine the item at the top of the 
stack and the item in the head of the buffer to be a new tree 
node. To do this, the item at the top of the stack is popped as 
item A, and the one in the head of the buffer is popped as item 
B. A new tree node is constructed, and the item A is as the left 
child and the item B as the right. At last, the new tree node is 
pushed into the head of the buffer. 

Shift: This action is the simplest of all. It pops the item in 
the head of the buffer and pushes it to the top of the stack. 

Reduce-Left: This is a variant of the action reduce. It is 
designed to process the multi-children node. When applying 
this action, the element at the top of the stack is popped out as 
A, and the one in the head of the buffer is popped out as B. 
This action makes B as the most right child of A, and push A 
to the head of the buffer. 

Reduce-unary: This action is another variant of the action 
reduce. It is designed for the single-child node. As a result of 
this action, the element at the head is popped out and become 
a child of the new constructed tree. The tree, which has only 
one child, is pushed back to the head of the buffer. 

The four actions above are illustrated in Table 1. In the 
table, the pipe line (vertical bar) means the separator between 
the stack and the buffer. The stack is on the left of the pipe 
line, and the right most is the top of the stack. On the right of 
the pipe line is the buffer and the left most is the head of the 
buffer. The letters a, b etc. represent words。 

Table 1: Action Illustration 

shift [a b] | c d  [a b] c | d 
reduce [a b] | c d  |[[a b] c] d 
reduce-left [a b] | c d  |[a b c] d 
reduce-unary [a b] | c d  [a b] | [c] d
 
There are some restriction rules for the four actions to use:  
(1) Only a shift or a reduce-unary action is allowed when 

the stack is empty.  
(2) A reduce-left action is allowed only if the item at the 

top of the stack is a partial tree and the buffer is not empty.  
(3) A reduce-unary action is not allowed if the item at the 

head of the buffer is a partial tree. It is to avoid the unary tree 
more than one hierarchy. 

B. Classifiers 
Since Maximum Entropy model is inherently suitable for 

multi-class classification, we use Maximum Entropy classifier 
as our default classifier. The Maximum Entropy toolkit in this 
paper is developed by Zhang Le (2004)1. 

C. Basic Features 
In order to reveal the affection of the new features, first we 

use some basic features in the parser as baseline. Following 
other researchers([8], [10], [11]), we use the common basic 
features. 
                                                           
1 http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html 

To explain the feature extraction better, we represent the 
stack by S, the item at the top of the stack is S(1), and the 
second item of the stack is S(2), and so on. Similarly, the 
buffer is represented as B, and the first item of the buffer is 
B(1), which is also called the analysis focus. The following 
are B(2), B(3), and so on. In the following sections, we 
assume the stack and the buffer are connected, 
like …S(2)S(1)B(1)B(2)B(3)…. We consider B(1) as the 
focus of analysis when rebuild the syntactic tree. B(1) is also 
the center of the window when we use refer to the size of a 
window. 

 

Figure 1: Illustration of feature extraction  

Unigram Features: This feature is most simple feature of 
all. We extract all the words and POS tags as unigram feature 
in a window with size of 7 words. If the item is a partial tree, 
the left-most and right-most child’s words and POS tags will 
be used instead. 

Bigram Features: This feature is generated from two 
neighbor single words or POS tags combined together. They 
are extracted from a window with a size of 7 words. For 
example in the parsing state in Figure 2, we can extract 
features: w1w2=购买_国库券, p1p2=v_n, and so on. If the 
item is a partial tree, it will be ignored. 

Trigram Features: Similar to bigram feature, a trigram 
feature is generated from three neighbor words or POS tags 
combined together. The size of the window for trigram feature 
extraction is 3 words, that is to say there is only one trigram 
feature can be extracted in a step. 

Action Features: Inspired from the work of [4], we add 
action feature as basic features. However, we find that only 
the previous action is not efficient, so we combine two 
neighbor previous actions together as a bigram action feature. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Data Preparation 
The data corpus used in our experiment is the training and 

testing set of CIPS-ParsEval-2010 Task 2 [12]. There are 
17529 sentences in the training set and 1000 sentence in the 
testing set. The sentences in the training set are all gold-
standard segmented and POS tagged, and each consistent in 
the tree is assigned with a label. The test data in CIPS-
ParsEval-2010 are gold-standard segmented but without POS 



tag. However, we use test data with gold-standard POS tagged 
sentence for convenience. The average length of the sentence 
in training data is 27.44 words, and 25.23 in testing data. 

B. Evaluation Measure 
Since our parser can give the boundary and label of the 

constituent simultaneously, we use two measures to evaluate 
the performance of the parser. First is the evaluation of the 
boundary. As many natural language processing tasks, we use 
three measures: Precision, recall and F-score, which are 
computed as follows: 

 

 

 

  
To evaluate the performance of the parser on constituent 

labeling, we use the same measures as we do for boundary. 
The only difference is the constituent must be with correct 
boundary and correct label. Now we have six measures to 
evaluate the parser. 

C. Experimental Results and Analysis 
Table 2 shows the overall experimental results based on 

Maximum Entropy Classifier with the basic features. 

Table 2: Results of Maximum Entropy Parser with basic 
features 

 Precision (%) 84.87 
Boundary Recall (%) 85.51 

 F-Score (%) 85.19 
Boundary Precision (%) 79.67 

and Recall (%) 80.28 
Label F-score (%) 79.97 

 

 

Figure 2: F-score on different constituents 

Beside these overall results, we want to know some detail 
performance of the parser on different constituents2. Figure 2 
                                                           
2 The consitutent tags used in the paper: dj-simple sentence, vp-verb phrase, 
ap-adjective phrase, np-noun phrase, sp-space phrse, tp-time phrase, mp-

shows the F-score on each constituent. We can see that, the 
performance differ on different constituents. It is quite high 
on some constituents (reaches 94.46%), while quite low on 
some others.  

In order to improve the performance of the parser, we 
investigate the combination patterns of the unrecalled 
constituents, and get a list of the typical combination patterns 
of unrecalled constituents. 

We select the most frequent error patterns of the 
constituents with low F-score, such as pp, sp, np, etc. They 
are listed in Table 3. It shows that, most of the unrecalled 
patterns are consist of a word and a constituent. However, in 
the basic feature schema, only word and POS features are 
extracted, such pattern can’t be recognized. To overcome this 
problem, new features are needed. 

Table 3: Examples of unrecalled patterns 

Type #Unrecalled #All UR rate 
pp(overall) 130 817 0.16 
p-np 43 284 0.15 
p-sp 13 103 0.13 
p-tp 11 83 0.13 
sp(overall) 55 275 0.20 
n-f 16 60 0.27 
np-f 22 103 0.21 
np(overall) 903 5379 0.17 
dj-uJDE-n 20 52 0.38 
np-uJDE-n 26 74 0.35 
np-np 64 196 0.33 
n-np 37 131 0.28 

IV. NEW FEATURES 

Since the basic features can’t distinguish many ambiguities, 
such as the ambiguity listed in Table 3 We need to introduce 
some new features. There are two principles for the new 
features selection: (1) the new features should be pertinent to 
the error patterns, (2) the amount of the new features should 
be controlled, so as not to reduce the speed of the parser. 

A. Constituent Combination Features 
Complete Combination Feature: Since the basic features 

can’t distinguish the word and constitute combination 
ambiguity, an intuitive idea is to add new features to represent 
the structure of the combination of words and constitutes. We 
introduce two types of new features to improve the 
performance of the parser: 

• Combination of constituent label and neighbor POS 
tags 

• Combination of constituent label and neighbor words 
Table 4 list the overall result of the parser with the 

combination features. A notable thing is that, after adding the 
                                                                                                     
numeral phrase, mbar—numeral word, dp-adverb phrase, pp-preposition 
phrase. 



new features, the model is so big that ME classifier can’t load 
correctly, therefore we use a linear SVM classifier of 
liblinear3 as a replacement. Our experiment shows that the 
parsers based on these two classifiers have similar 
performances.  

Though new features are added, the performance decreases. 
Figure 3 shows the detail comparison with the baseline. We 
can see the np, vp, dj decrease much, the possible reason is 
that, these constitutes don’t have regular combination patterns, 
the new features bring in little information but much more 
noise. Furthermore, adding all the combination features will 
also harm the speed of the parser. To avoid the noise we 
should add feature according to the unrecalled patterns listed 
in Table 3. 

Table 4: Results of the parser with complete combination 
feature and a SVM classifier 

  Baseline Com-fea
 Precision (%) 84.07 65.54 
Boundary Recall (%) 85.15 81.51 
 F-Score (%) 84.61 72.65 
Boundary Precision (%) 78.92 60.87 
and Recall (%) 79.94 75.70 
Label F-score (%) 79.43 67.48 

 

Figure 3: Detail result of the parser with complete 
combination feature and a SVM classifier 

Selected Combination Feature: Experimental result 
shows adding combination features roughly will bring in 
noise and harm the speed of the parser. So we try to add the 
combination features only when they appear in the unrecalled 
patterns. This processing step will filter most of the noise 
features, and only a small amount of features are remained. 
The speed of the parser is not be harmed either. 

Table 5 and Figure 4 show the performance difference of 
the parser after using the new features. Table 5 shows the 
overall difference, and Figure 4 shows the difference on each 
constituent. We can see the performance improves almost on 
every constituent, especially on pp, sp, np, etc. The reason for 
this is that these constituents usually have a regular 
                                                           
3 http://www.csie.ntu.edu/~cjlin/liblinear/ 

combination pattern, and the new features can give more 
information to help the parser to select a suitable action.  

Discussions: From the two experiments we can see that 
feature should be pertinent to the error patterns. A rough 
overall feature schema will bring in much noise, and will 
increase the scale of feature set. A possible way to improve 
the parser is to find more features according to the unrecalled 
patterns. 

Table 5: Results of the parser with constituent combination 
features 

  Baseline Com-fea
 Precision (%) 84.87 85.85 

Boundary Recall (%) 85.51 86.65 
 F-Score (%) 85.19 86.25 

Boundary Precision (%) 79.67 80.92 
and Recall (%) 80.28 81.68 

Label F-score (%) 79.97 81.29 

 

Figure 4: F1 score of two systems on different constituents  

B. Lexical Relation Pair Features 
Though the combination features of constituent label and 

neighbor words or POS tag can bring more information to 
help the parser to distinguish different conditions and improve 
the performance, we notice that there are some conditions that 
a word can be both combined with the left word or the right 
word in semantic view. For example, in the sentence : 两口子

/the couple 决定/decide 买/to buy 国库券/state treasury bill. 
The word ‘买/to buy’ can be combined with its left adjacent 
word ‘决定/decide’ and right adjacent word ‘国库券/state 
treasury bill’ under this POS structure “v-v-n”(verb-verb-
noun). But to understand the sentence correctly, only one 
combination is suitable. To recognize the correct combination, 
the parser needs to understand the sentence in meaning. 

To overcome this problem, we introduce a new feature 
called Lexical Relation Pair (LRP). LRP is a triple like 

，in which  and  is two words, and  is a 
string representing the relation between the two words. Some 
researchers use Collocation to handle the ambiguity problem 
in natural language processing tasks ([13],[14]). “A 
collocation is an expression consisting of two or more words 
that correspond to some conventional way of saying things.” 



[15]. Lexical Relation Pair is similar to the term: 
“Collocation”, the difference is that the two words in Lexical 
Relation Pair usually have a semantic or syntactic relation and 
this relation is specified explicitly, while the words in a 
collocation only need to have a high co-occurrence rate. In the 
above example: 决定/v 购买/v 国库券/n(decide to buy state 
treasury bill), “购买/to buy 国库券/state treasury bill” will 
have a PO (Predicate Object) relation, this can help the parser 
combine the two words together. 

We still follow the two principles at the beginning of this 
section when applying this feature. To meet the requirements, 
this feature is also pertinent to the unrecalled patterns. This 
feature is extracted only when the specific pattern appears. 
We using a trigram of the LRP to present the feature, 

, in which  indicates 
the relation between words in position  and , S(1) represents 
the first item in the stack, B(1) represents the first item in the 
buffer. Furthermore, we combine the trigrams of LRP with 
the current patterns. 

Manually Extracted LRPs: The LRPs used in this paper 
are extracted from four manually annotated data sources, 
including Tsinghua Chinese Treebank, Chinese collocation 
dictionary, People’s Daily annotated corpus and PKU 
grammatical dictionary. The final manual knowledge base 
contains 961907 LRP entries. 

Table 6: Overall results after adding LRP features 

  Com-fea LRP
 Precision (%) 85.85 86.19

Boundary Recall (%) 86.65 87.15
 F-Score (%) 86.25 86.67

Boundary Precision (%) 80.92 81.53
and Recall (%) 81.68 82.44

Label F-score (%) 81.29 81.98

 

Figure 5: Detail results comparison before and after adding 
LRP features 

The overall results after adding LRP features are listed in 
Table 6, and the detail results are showed in Figure 5. The 
results are compared with the ones before adding LRP 
features. Along with the overall improvement, the parser 
improves on almost all consistent, especially on the 
constituents of dj, np and sp. The reason for this is that, these 

phrases usually have a complicated structure, and the sub-
constituents in these phrases often have combination 
ambiguities, the LRP features can help the parser to select the 
correct actions.  

Automatically Extracted LRPs: The experimental results 
show that LRP features are useful in improving the 
performance of the parser. The LRP knowledge base used in 
last subsection are extracted from manually annotated corpus, 
however using manual LRP knowledge base has some 
shortages: 1) Manual Annotation are very expensive and the 
corpus is usually small; 2) NLP task is often domain related, 
so it is difficult to apply the manual LRP to the new domain. 

A reasonable idea is to use automatically extracted LRP 
knowledge base. We use a LRP corpus [16] extracted 
automatically from the corpus of 1998 and 2000 People’s 
Daily4. The extraction method is based on a Basic Chunk 
Parser[17]. The automatically extracted data has 561,119 LRP 
entries. 

We use the automatically extracted LRPs as a replacement 
of the manual LRP Knowledge base. After applying it to the 
parser, we find the result almost the same as the ones when 
using the manual LRP knowledge base. Table 7 and Figure 6 
display the comparison of results when using manual and 
automatic LRP knowledge base. Figure 6 shows the detail 
comparison on each constituent. The performances of the 
parser are similar almost on each constituent when using two 
different knowledge bases. We also note that, in the overall 
results showed in Table 7, though the precision is a little 
higher when using manual LRPs, the recall is a little higher 
when using automatic LRPs. 

Table 7: Comparison of the manual LRP and Automatic 
LRP 

  Man-LRP Auto-LRP
 Precision (%) 86.19 86.07 
Boundary Recall (%) 87.15 87.18 
 F-Score (%) 86.67 86.62 
Boundary Precision (%) 81.53 81.47 
and Recall (%) 82.44 82.53 
Label F-score (%) 81.98 82.00 

 

Figure 6: Comparison of the manual LRPs and Automatic 
LRPs in detail 

                                                           
4 http://icl.pku.edu.cn/icl_res/default_en.asp 



 
Discussion: The real factor which affects the performance 

of the parser is the coverage of the LRP knowledge base 
rather than the scale. We calculate the coverage of the manual 
and automatic LRP knowledgebase. The coverage of manual 
LRPs is 41.38%, while the one of automatic LRPs is 53.41%. 
That is why the automatic LRP knowledge base with a 
smaller scale has comparable result with the manual LRPs. 
The manually extracted LRPs are more credible, so the parser 
has a higher precision even with a lower coverage. In spite of 
the automatic LRPs’ lower confidence, its wider coverage 
helps the recall much more. 

The experimental result here enables us to apply the parser 
to different domains even without a homologous Treebank. 
We need only to apply a chunk parser on the raw domain texts 
and extract enough LRPs to improve the parser’s performance 
on the new domain. 

V. RELATED WORK 

Due to its lower time complexity and simplicity in 
implementation, shift-reduce parser attracts much attention. 
However, its performance still has a gap with the state of art 
parsers. To narrow the gap, researchers have made great 
efforts. 

Shift-reduce parser adopts a greedy strategy, so it is 
difficult to correct a previous error. To overcome this problem, 
reference [4]used best-first search to enlarge the search space, 
and get a better result. Similar to them, reference [5] used 
beam search to improve the performance of the parser. 
Reference [7] maintained multiple transition paths after each 
transition step to alleviate effect of the previous error. All 
these work improve the performance more or less. But they 
all tried to enlarge the search space of the parser, which 
inevitably harms the speed of the parser. Contrast to their 
work, we propose a different way: introducing new features to 
get more information from the state of the parser. Benefit by 
the pertinence of the new features, we add a small amount of 
features, and the performance improves without speed 
reduction. Table 8 lists the speed of the parser in each feature 
schema. The latter features are added to previous ones directly. 

Table 8: Speed of the parser in different features schemas 

Feature Schema Speed 
Baseline 50 sentences/s 

+Combination Feature 50 sentences/s 
+LRP Features 50 sentences/s 

 
Performance Comparison: CIPS-ParsEval-2010 used 

automatic POS annotation, but we use manual POS 
annotation, so the results cannot be compared directly. 
Noticing that CIPS-ParsEval-2009 [18] used manual POS 
annotation, we select two best single model systems to 
compare with. Reference [20] used a traditional PCFG 
method, and reference [19]used multipath transition state and 
online training at the same time and achieved a high score on 
both boundary F-score and boundary&label F-score. Table 9 

shows the comparison. Though we do not do any optimization 
on the CIP-ParsEval-2009 corpus, the performance of the 
parser improves by applying new features, and gets a 
comparable result with the traditional PCFG method. 
Although it still has a gap with the method using enlarging 
search space method, but we achieve this without any speed 
reduction. 

Table 9: Comparison with other’s work on the ParEval 
2009 corpus 

 Boundary Boundary&Label
(Jiang 2009) 90.09 87.15 
(Song 2009) 87.10 83.51 
Our baseline 86.08 81.13 

Our best 87.02 82.73 
 
Speed comparison: Efficiency is a high light of shift 

reduce parser. We select two high efficiency systems to 
compare with in the speed in similar hardware conditions. 
One is a CCG parser presented in the summer workshop 2009 
in John Hopkins University[21], another is also a shift reduce 
parser presented by[11]. These are two fastest parsers we can 
find. Table 10 shows the comparison. We can see our speed 
exceeds the shift reduce parser by, but lags behind the CCG 
parser. Since their goal is to implement a fast parser, they did 
much optimization on speed, however we focus on improving 
the performance of the parser without speed reduction. 

Table 10: Comparison with other’s work in speed 

 Corpus Speed (sent/s)
JHU 2009 Penn Treebank 60-100 

(Wang, 2006) Penn CTB 29 
Our System ParsEval 2010 50 

VI. CONCLUSIONS 

Shift-reduce Parser has a very high efficiency but its 
performance lag behind the state of art parser. In this paper, 
we improve the performance of the parser without speed 
reduction by introducing new features. 

This paper has two main contributions: 
1) We analyze the result of the baseline parser, and report 

the frequent unrecalled constituent pattern. Depending on the 
analysis, we introduce constituent label combination feature 
and LRP feature and the F-score of the boundary improves 
from 85.19% to 86.25% without any speed reduction. 

2) We explore the use of automatically extracted LRP in 
shift-reduce parsing, and prove that it can achieve a 
comparable result with the one when using manually 
extracted LRP. This encourages us to apply the parser to 
different domains. 
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