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Abstract—Underdetermined sparse sources separation is a
challenge problem especially in adverse environment, where
there are often some non-sparse interferences or more than one
sparse interferences located closely to the target sources. While
in some applications, such as in-car or hands-free environments,
references of the interferences (P ≥ 2) coming from loudspeakers
are available. Common sparse source separation approaches
have not yet used these reference information, we call them
traditional approaches in this paper. We propose a FD-MENUET
(Frequency domain aDaptive filtering based Multiple sENsor
degenerate Unmixing Estimation Technique) approach, in
which we get full use of those reference information to help to
separate the target sources. Even if no reference is available, the
approach would only degenerate to the traditional approaches.
The experimental results show that the proposed approach is
more general and could achieves better separation performance
than the traditional one.

I. INTRODUCTION

Underdetermined Sparse Source Separation is more interest-
ing in recent years for its capability of handling the problem
that the number of sources N could be bigger than the
number of sensors M (N > M ). For the advantage of being
implemented in real time, the binary mask approaches such as
Degenerate Unmixing Estimation Technique (DUET) [1] and
Multiple Sensor DUET (MENUET) [2] are more attractive
in all approaches. It assumes that the sources are efficiently
sparse, and assigns the mask with 1 if the energy at a time-
frequency (T-F) unit is considered as being from the target,
and 0 otherwise. While the ideal binary mask (IBM) approach
sets the mask 1 if the target source’s energy exceeds other
sources and 0 otherwise [3]. However, in practice, there are
often interferences that may be non-sparse or locate closely
to the target source, and the references are usually available
when these interferences come from loudspeakers. In such
situation, we could no longer assume that at most one source
is dominant at each T-F unit. Then, the traditional approach
without using these references would be difficult or even
impossible to separate the target sources. So for the problems,
our motivation is that using adaptive filtering technique to
cancel these interferences’ components from the T-F units in
frequency domain before features extraction.

Adaptive filtering techniques have been developed from
time domain to frequency domain and single channel to multi-
channel. Most adaptive algorithms in time domain could be
classified into Least Mean Square (LMS) family, Recursive

Least Square (RLS) family and Affine Affine Projection
(AP) family. In recent years frequency domain adaptive filter
(FDAF) become more and more attractive [4–6], because
comparing with algorithms in time-domain it converges faster,
could be effectively applied in multi-channel (MC) case (MC-
FDAF) while requiring poor cross correlation conditions a-
mong channels, and update step size of the filter coefficients
could be independent to each other at different frequencies
[7]. For advantages mentioned above, we apply MC-FDAF
into our system.

This paper is organized as follows. In Section II, we intro-
duce the proposed flow model, definitions and problems de-
scription. Section III describes the procedures of the proposed
approach. Experiments setup and discussions are presented in
Section IV. The last section concludes this paper.

II. BACKGROUND DESCRIPTION

In the paper, lowercase and uppercase bold font represent
vector and matrix quantities, respectively; all vectors are col-
umn vector; and [·]T stands for matrix or vector transposition.
Underlined quantities denote DFT-domain variables and k is
a discrete time index.

A. Model and Definition

We consider the integration of all sources and sensors as a
MIMO system with M input channels and Q output channels.
The received signal from the qth sensor at time k is given by

xq(k) =
M∑

m=1

uT
m(k)hmq(k) = uT (k)hq(k) (1)

where M = N + P and

um(k) = [um(k), um(k − 1), · · · , um(k − L+ 1)]
T (2)

hmq(k) = [hmq,0(k), hmq,1(k), · · · , hmq,L−1(k)]
T (3)

are a vector containing the latest L samples captured from the
mth input channel and the current adaptive filter for the path
from source m to sensor q, respectively. There are N non-
referenced sources and P referenced sources. For convenient,
we integrate each of them for all m in one vector

hq(k) = [hT
1q(k),h

T
2q(k), ...,h

T
Mq(k)]

T
(4)
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Fig. 1. The proposed model and flow procedures.

u(k) = [uT
1 (k),u

T
2 (k), · · · ,uT

M (k)]
T

= [sT1 (k), · · · , sTN (k), rT1 (k), · · · , rTP (k)]
T

(5)

where sTn (k) and rTp (k) are the nth non-referenced source
and the pth referenced source, respectively. We mainly concern
about the situation that non-referenced sources number N is
greater than sensors number Q (N > Q), namely underde-
termined situation. There is no restriction to the number of
reference sources (P ≥ 0), but we focus on the situation
that the number of reference sources P ≥ 2. The proposed
approach aims to separate out each source ynq(k) from every
mixed signal xq(k), and make good use of all valuable
information to obtain more pure ynq(k).

B. Problems Description

1) Problem of traditional approach: According to the s-
parse theory [1, 2], we know each source sparsely distributes
in the time-frequency domain, and it is a small probability
event that multiple sources appear in the same T-F unit of the
mixture. Accordingly, it can be approximated that the T-F unit
likely belongs to the source whose energy is major here

xL,q(f, i) ≈ uT
L,m(f, i)hL,mq(f, i) (6)

where i is a block time index, L is DFT length. However,
in practice, some sources are not sparse enough or even non-
sparse, not only the prominent-energy source but also other
considerable-energy sources exist in the same T-F unit. Due
to the greatly increased probability of multiple sources’ energy
overlap in one T-F unit, we can not approximate it as (6).

2) Problem of sensor pair: Interaural Level Difference
(ILD) and Interaural Time Difference (ITD) [8] are two
important and popular features to estimate the binary mask.
When the locations of source and sensor pair follow

|SF1| − |SF2| = ±2a (0 ≤ |2a| ≤ |F1F2| ) (7)

where a is a constant scalar, and |SF1|, |SF2|, |F1F2| and |2a|
represent the length from source S to sensor F1 and sensor
F2, the length between F1 and F2, the distance difference
between S to F1 and F2, respectively. The ITD features will
be exactly the same, then for omnidirectional sensor pair, it
would be difficult to separate the sources. Particularly, when
a = 0, even directional sensor pair could not separate them.

3) Problem of multiple sources nearby: In practice, there
are often some sources located closely to each other, noticed
that the positions of these sources and sensor pair would not
satisfy (7). No matter for omnidirectional or directional sensor
pair, the ILDs and ITDs of these sources are extremely similar,
especially in reverberate environment. It is difficult to separate
these sources efficiently. In Fig.2, there are 5 sparse sources in
(a) and (c), in which 2 sources are close to each other. Results
shows that there are only 4 peaks, the 2 sources are mixed
into one peak. For detail discussion, see IV-B.
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Fig. 2. Example contours and histograms of traditional and proposed ap-
proaches in the condition two sources are close to each other with T60 =
60ms. We chose one level ratio and the phase difference of each features to
plot. (a) and (c) are traditional results; (b) and (d) are proposed results.

III. PROPOSED METHOD

In order to improve the separation performance, especially
in the challenging situations mentioned above, we propose to
make full use of the possible references. The main procedures
of our proposed approach are present in Fig.1.

A. Adaptive filtering Procedures

Before feature extraction, we process adaptive filtering first
whenever only referenced sources are present. Here we can
use double talk detector (DTD) [9, 10] as a controller to
determine when the adaptive filter should work. And we must
take different DFT transforms before and after every adaptive



filtering iteration. In adaptive filtering procedure, 2Lth DFT is
employed, for referenced source rp

R2L×2LP (i) =
[
R2L,1(i),R2L,2(i), ...,R2L,P (i)

]
(8)

R2L,p(i) = diag

F2L×2L

 rp(iL− L)
...

rp(iL+ L− 1)


 (9)

where F2L×2L is a 2L × 2L DFT matrix with elements
e−j2πvl/2L, where v, l = 0, ..., 2L−1; for qth sensor received
signal xq

X2L×Q(i) = F2L×2L

[
0L×Q

x1(i), ...,xq(i), ...,xQ(i)

]
(10)

xq(i) = [xq(iL), xq(iL+ 1), ..., xq(iL+ L− 1)] (11)

and for frequency domain adaptive filter

H2LP×Q(i) =
[
h2LP,1(i), ...,h2LP,q(i), ...h2LP,Q(i)

]
(12)

h2LP,q(i) = F2L×2L

[
h1q(i), ...,hpq(i), ...hPq(i)

0L×P

]
(13)

The MC-FDAF is used [5, 7] to update the adaptive filter
until non-referenced sources are present.

E2L×Q(i) =X2L×Q(i)

−G01
2L×2LR2L×2LP (i)H2LP×Q(i− 1)

(14)

H2LP×Q(i) =H2LP×Q(i− 1)

+G10
2LP×2LPK(i)E2L×Q(i)

(15)

where G01
2L×2L, G10

2LP×2LP and the kalman gain K(i) are
derived in [5, 11]. We can also calculate the kalman gain
by using [12]. Then all sources are present and it is only
needed to process Lth DFT with FL×L similar to F2L×2L,
adding a frame window is optional here. The interferences
with references can be eliminated from the mixture by

X
′

L×Q(i) = XL×Q(i)−
P∑

p=1

rL,p(i) ·HL,p(i) (16)

where

XL×Q(i) =
[
xL,1(i), ...,xL,q(i), ...,xL,Q(i)

]
(17)

HL,p(i) =
[
hL,p1(i), ...,hL,pq(i), ...,hL,pQ(i)

]
(18)

and hL,pq(i) is Lth DFT transform of the current filter for the
path from source p to sensor q. After the adaptive elimination,
then we could make separation on X

′

L×Q(i).

B. Separation Procedures

Setp 1. Clustering: Because an individual cluster in the
histogram corresponds to an individual source [1], we can
separate each source by selecting the observation signal at
T-F units in each cluster with a binary mask [2]. Suppose we
know the number of non-referenced sparse sources is N , then
by using the popular clustering methods such as K-means or
GMM to cluster the features Θ(f, i) extracted from X

′

L×Q(i),
and we can obtain N current clustered centers Cn(i), where
1 ≤ n ≤ N . Kinds of features are discussed in [2].

Step 2. Pattern recognization: By extracting new feature
Θq1q2(f, i) from x

′

L,q1
(i) and x

′

L,q2
(i), we can use distance

or probability as the criterion to determine which clustered
center, generated in step 1, the new feature belongs to. Then
we could obtain the binary mask accordingly by

Mn,q1q2(f, i) =

{
1 Θq1q2(f, i) ∈ Cn,q1q2(i)
0 otherwise (19)

By applying the binary mask to x
′

L,q1
and x

′

L,q2
, we can

obtain the nth source’s components from sensor q1 and q2,
respectively

y
′

n,q1
(f, i) = Mn,q1q2(f, i) · x

′

L,q1
(f, i)

y
′

n,q2
(f, i) = Mn,q1q2(f, i) · x

′

L,q2
(f, i)

(20)

We can finally obtain the separated signal yn,q(i) from the
qth sensor’s mixed-signal xq(k) by using overlap-add method
[2, 13],

yn,q(i) =
1

λ

λ−1∑
β=0

y
′β
n,q(i− β) (21)

where λ = L/S is overlap factor, S is frame shift length,
yn,q(i) is a vector with length S,

y
′β
n,q(j) =[y

′

n,q((j + β)S + 1), y
′

n,q((j + β)S + 2),

..., y
′

n,q((j + β + 1)S)]
T

(22)

where y
′

n,q(v) is the vth element of y
′

n,q(j), and y
′

n,q(j) is
the inverse DFT transform of y

′

n,q
(j).

A common problem in using binary mask is that there are
inevitable errors in estimating the masks, this would lead to
musical noise. The problem can be prevented by using spectral
smoothing technique [14].

IV. EXPERIMENTS

In this section, we show the performance of the proposed
approach and compare it with the traditional [2] and the IBM
approaches.

A. Experiment Environment

The experiments are carried out in a typical-sized room with
T60 = 200ms and there are one sensor pair. We obtain the
sensor received signals by convolving the source signals and
the related measured impulse responses. The inter-distance of
the sensor pair is 4cm and sampling frequency is 8KHz. The
sources include chinese speech and white noise. Instead of



DTD, we update the adaptive filter first until non-referenced
sources are present.

The frame size of STFT is L = 512, the frame shift length
is S = 128 and the chosen feature [2] is

Θq1q2(f, i) =

[ ∣∣xq1(f, i)
∣∣

Aq1q2(f, i)
,

∣∣xq2(f, i)
∣∣

Aq1q2(f, i)
,

1

αq1q2f
arg

[
xq2(f, i)

xq1
(f, i)

]]

where Aq1q2(f, i) =
√∣∣xq1

(f, i)
∣∣2 + ∣∣xq2

(f, i)
∣∣2, αq1q2 =

4c−1dq1q2 is the normalization factor, c = 343 m/s is the
speed of sound propagating in the air and dq1q2 is the distance
between the q1th sensor and the q2th sensor. We cluster the
extracted features by using k-means method. The adaptive filter
length is L, the update rate is ω = (1− 1/(3L))

L and the
frame overlap factor is λ = L/S.

We performed 4 group experiments, see Fig.3. There are 5
sources with 3 non-referenced ones and 2 referenced ones in
every group. In the first group, two sparse sources are both
satisfied (7) with a = 0; in the second group, two sparse
sources are located closely; in the third group, there is a non-
sparse source with reference; the last group is the situation that
all sparse sources can be separated by traditional approach. We
compared the separation performances of the approaches using
Signal to Interference Ratio (SIR) and Signal to Distortion
Ratio (SDR) as the evaluation measures.

SIRn =10log10

∑
k

∣∣ynnq(k)∣∣2∑
k

∣∣∣∑j ̸=n y
j
nq(k)

∣∣∣2
− 10log10

∑
k

∣∣xn
q (k)

∣∣2∑
k

∣∣∣∑j ̸=n x
j
q(k)

∣∣∣2
SDRn =10log10

∑
k

∣∣xn
q (k)

∣∣2∑
k

∣∣xn
q (k)− βynnq(k −D)

∣∣2
where yvnq(k) and xv

q(k), (1 ≤ v ≤ N), are the components
that belonged to sv(k), mixed in ynq(k) and xq(k) respective-
ly; β and D are used to compensate the amplitude attenuation
and the time delay between yvnq(k) and xv

q(k). β = 1 and
D = 0 in our statistics.

B. Results And Discussion

Note that we only concern the 3 non-referenced sources and
the results are shown in Fig.4 and Fig.5 in which (A)-(D) are
relative to (A)-(D) in Fig.3.

Fig.4 is generated in the situation (D) of Fig.3. We can see
that the proposed results are more pure than the traditional’s.
The intuitive comparison in the situation (B) is shown in Fig.2,
in which (a) and (c) are results of traditional approach, there
are 5 sources are present but only 4 peaks are distinct; (b) and
(d) are generated by the proposed approach, in the 5 sources,
the 3 sources are respect to the 3 distinct peaks respectively.

In situation (A), the features of the two sources are exactly
the same, the traditional approach can not separate these
two sources. The proposed approach cancel the confused
referenced source and separate other sources well, see Fig.5.
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Fig. 3. Experiment environments setup.

Fig. 4. Spectrum of non-referenced sources resulted from traditional and
proposed approach in the condition Fig.3 (D). (a): the sensor received signal’s
spectrum of each non-referenced sources; (b): the spectrum of the 5 sources’
mixtures; (c): traditional approach results; (d): proposed approach results.

Results in (B) is similar to (A) and the features of the two
nearby sources are similar. In traditional results, these two
separated sources interfere each other, in worst case, this
situation even cause to large deviation of the other 3 cluster’s
regular center. In (C), there is a non-sparse source, white noise
with -2dB, in the mixture. The traditional approach could
still work with small energy of the non-sparse source, but
the separation results are poor. While heavy energy will lead
to impossible separation. The proposed approach eliminates
the components of the non-sparse source and obtains a good
separation result. (D) is a normal situation that the traditional
approach generally deal with. All sources are sparse and
spatial features are different from each other. The result shows



Fig. 5. Average SIR improvement and SDR of non-referenced sources in using
traditional, proposed and IBM approaches in each conditions (A)-(D) relative
to (A)-(D) in Fig.3.

that the performance of the proposed approach is also better
than the traditional one in this situation.

The results of the IBM approach are present as well. Note
that the IBM results are implemented without adaptive filtering
and all 5 sources are separated. However, in the proposed
approach, only the 3 non-referenced sources are needed to
be separated. Hence the proposed results are sometimes better
than those of the IBM.

The comparison differences of average SIR and average
SDR in situation (A)-(D) among traditional, proposed and IBM
approaches are listed in Table I. It also shows the proposed
approach is better than the traditional one.

TABLE I
DIFFERENCE OF AVERAGE SIR AND SDR AMONG THE THREE

APPROACHES

SIR[dB] SDR[dB]

Speech IBM-Pa IBM-Tb P-T IBM-P IBM-T P-T

sp1 3.95 10.23 6.28 0.40 1.52 1.12
sp2 -0.28 2.68 2.96 -0.08 0.34 0.43
sp3 2.63 12.46 9.83 0.26 1.47 1.22

a Proposed approach
b Traditional approach

V. CONCLUSIONS

We proposed a novel FD-MENUET (Frequency domain
aDaptive filtering based MENUET) approach. It extends the
applicable situations of the traditional approach as follows: 1)
sparse sources are lived with referenced non-sparse sources;
2) some referenced interferes are close to target sources or
follow the relation (7) with the sensor pair; 3) the situation
that traditional approach could achieve and some sources have
reference signals. We derived a general MIMO solution, and
when there is none referenced sources, the proposed approach
will degenerate to the traditional one. Due to the finite length
of the adaptive filters, the separation performance is still
subject to the condition of reverberation.

There are many issues remain such as source number
estimation, precise DTD and reverberation problem, which
will be further studied in our future work.
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