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Abstract—In this paper we describe a method for multiple
speech sources separation using an equilateral triangular micro-
phone array. Firstly, the azimuths of horizontal plane are divided
into many units and the spatial features of some directions ob-
served by the microphone array are modeled precisely. Secondly,
the input mixing signals are segmented into blocks, and then
the number of active speakers and their directions are estimated
in each block. Thirdly, the pre-trained model with the nearest
azimuth to each speaker is adapted to obtain a precise model,
which is then used for time-frequency binary mask estimation.
Finally, we separate every source appeared in each block and
concatenate those sounds from same unit to reproduce the whole
stream. The experiments are set up in a real meeting room.
The results show that our method can separate multiple speech
sources correctly with low distortion, and are competitive with
the total un-blind separation results.

Index Terms: blind source separation, directions of arrival esti-
mation, time-frequency mask, equilateral triangular microphone
array

I. INTRODUCTION

It is known that human has the magical capability of
focusing his auditory attention on one talker without being
influenced by other interferences. The so-called cocktail party
effect remains a challenging problem to machine. The most
promising technique to solve this problem might be Blind
Source Separation (BSS).

There are enormous works have been reported in the lit-
eratures. Generally the BSS approaches can be classed into
two types. One is based on Independent Component Analysis,
which assumes the underlying sources are independent to each
other. It works very well only when the supposed mixture
model is correct and generally deals with the over-determined
case [1]. However, this is seldom happened in real applica-
tions. The other is sparseness-based approach [2,3], which
requires that all sources are sparse in Time-Frequency (T-F)
domain, and the target is to find a binary T-F mask for each
source. We know that speech signal is sparse in T-F domain. It
has been reported that once the ideal binary mask is obtained,
the speech intelligence can be improved greatly [4].

Multiple speech source separation is important for appli-
cations like far-field speech recognition, automatic meeting
diarization, etc. The major challenge is that the number of
active speakers is unknown and may change with time, but
most of previous researches assume that the source number
is known [2] or un-changed [3]. In this paperwe propose
a new approach to consider this situation. To cope with

omnidirectional sound sources, we utilize three microphones
to construct an equilateral triangular array.

Firstly, we separate the azimuth of horizontal plane into
many units and build Gaussian Mixture Models (GMMs)
for some directions. Secondly, the mixing signals are seg-
mented into blocks. Within each block the inter-microphone
time difference vectors are transformed into incidence angles.
Then the number of active speakers and their locations are
estimated using incidence angle histogram. Thirdly, the pre-
trained GMM nearest to each active speaker is adapted to
obtain each speaker’s precise model. Finally, a time-frequency
binary mask is used to separate each active speech and the
signals from same unit are concatenated to reconstruct the
whole stream. We examine this approach in a real meeting
room, and the experimental results verify that the mixed
speech signals can be separated correctly with low distortion
and the performance is competitive with the total un-blind
method.

The rest of the paper is organized as follows. Section 2
describes the problem. Section 3 presents our approach. The
experiments and the results are shown in Section 4. Section 5
is conclusion.

II. PROBLEM DESCRIPTION

The triangular array is shown in fig. 1, where the three
microphones are located at the verdices of equilateral-triangle.
Suppose that sources s1,. . . ,sN are convolutively mixed and
observed by the three sensors as

xi(t) =

N∑
k=1

∑
l

hik(l)sk(t− l), i = 1, 2, 3 (1)

Fig. 1. Triangular microphone array.
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Where hik(l) represents the impulse response from source
k to sensor i.

The mixtures xi, i=1, 2, 3 are segmented into P blocks
xpi ,p=1,. . . ,P . By using short-time Fourier transform (STFT),
the mixing model of each block can be represented in T-F
domain as

Xp
i (f, t) =

N−1∑
k=0

Hik(f) · Sp
k(f, t), i = 1, 2, 3 (2)

Suppose that, the T-F representations of all source signals are
sparse. Then, T-F masking for source separation of each block
is performed by

S̃p
k(f, t) =Mp

k (f, t) ·X
p
i (f, t), i = 1 or 2 or 3 (3)

Mp
k (f, t) =

{
1, Sp

k(f, t) is dominant
0, otherwise (4)

We separate every source appeared in each block and
concatenate those sounds from same direction to reproduce the
whole stream. Accordingly, the tasks are to correctly estimate
the number of active speakers and find the binary T-F mask
for each speaker within every block.

III. PROPOSED METHOD

Our approach includes two major steps. In the first step, we
estimate the number and the directions of arrival (DOA) of
active sources. We suppose the speech signals with the same
DOA belong to the same source.

In the second step, the spatial model for each active source
is adapted accordingly and then the separation is performed
using the Bayes rule. Finally, the separated source components
from all the blocks are concatenated to reconstruct the whole
stream.

A. The spatial feature

Generally, the sparseness-based BSS uses spatial feature to
represent the location differences of all underlying sources.
The common spatial features contain the inter-microphone
amplitude difference (IAD) and the inter-microphone phase
differences (IPD). In order to avoid phase confusing, the
distance between the microphones has a limit [5]. We choose
4 cm as the distance in all experiments in this paper. The
small distance makes the IAD neglectable. So we only use the
IPD feature. In order to avoid the permutation problem among
frequencies, we transfer the IPD feature into time delay. For
each T-F point, the IPD can be obtained as

IPD(f, t) = arg

[
Xp

j (f, t)

Xp
i (f, t)

]
, i, j = 1, 2, 3 and i ̸= j (5)

The relation between the time delay δ and the phase
difference is

IPD(f, t) = 2πfδ (6)

So, we can obtain the time delay between microphone i and
j

δij =
1

2πf
arg[

Xp
i (f, t)

Xp
j (f, t)

] (7)

With three microphones, we compose the three delays to
a spatial feature vector as [δ13 δ21 δ32]. For every T-F point,
we can obtain a feature vector denoted as ψ(θ), where the
θ means this point belongs to a source with azimuth θ. The
relationship between ψ(θ) and θ is used to estimate the source
direction.

B. To estimate the number and DOAs of active speakers

There are a lot of approaches for source localization [6].
Since our aim is to separate the speech mixtures, we must
identify the number of active sources and their directions. We
divide the azimuths of horizontal plane into many equivalent
units and estimate the histogram.

For the triangular array shown in fig.1, there are three pairs
of microphones and each of them has an azimuth difference of
120. They receive the speech signal s(n) propagating from the
direction θ with elevation angle φ. We ignore the φ firstly. The
relationship between the azimuth of a single speech source θ
and the three delays are described by the following equations.

δ13 =
d

c
cos(θ − 2

3
π) (8)

δ21 =
d

c
cos(θ +

2

3
π) (9)

δ32 =
d

c
cos(θ) (10)

Where d is the distance of two microphones, c is the sound
velocity. We define a transformation matrix T . to make the x
axis of the new coordinate corresponds to the ψ(0), and make
y axis corresponds to the ψ(π) [7].

T = [ e1 e2 ]T (11)

e1 = ψ(0) = [ d
c cos(−

2
3π)

d
c cos(

2
3π)

d
c

]T (12)

e2 = ψ(
π

2
) = [ d

c cos(−
1
6π)

d
c cos(

7
6π) 0 ]T (13)

Then we transform ψ(θ) as follows

T · ψ(θ) = x

y
=

3d2

2c2

[
cos(θ)
sin(θ)

]
(14)

Then the direction θ can obtained by

θ(f, t) =

{
arc cot(xy ), if(y > 0)

arc cot(xy ) + π, else
(15)

The elevation angle will not affect the result because the
each component of the delay vector is multiplied by the same
factor cos(φ). We divide the horizontal plane 360◦ into K
equivalent units, so every unit is 360◦/K. Then the total
energy of every unit is accumulated to build the histogram
as

w(k) = sum(A(f, t)|360(k − 1)

K
< θ(f, t) 6 360 · k

K
) (16)

A(f, t) =

√√√√ 2∑
i=1

|Xp
i (f, t)|

2
, k = 1, ....,K (17)



The value of K is determined according to the requirement
of the application. The larger K value means the higher
accuracy of DOA estimation. But, if K is too large, the error of
the source number estimation will increase. In our experiments
the K is 36.

To eliminate the interferences caused by room reflections,
we need a threshold to select the distinct peaks in the his-
togram. The tiny peaks might be caused by the fake sound
image or the insufficient data of one source available in the
current block. This threshold depends on the value of K and
block size, the larger K or block size the larger threshold. In
our experiment the threshold is set empirically. The number of
peaks that are larger than the threshold can be considered as
the number of active speakers N in this block. Accordingly,
the azimuth corresponding to each peak is taken as the DOA
of that source.

C. The Directional GMMs
After the estimation of the number and DOAs of active

speakers, the directional model for each active source must be
built before separation. To avoid the data insufficient problem,
we use model adaption technique. Specifically, we firstly train
some directional GMMs off-line. Note that the number of
GMMs does not have to match that of active speakers. But
if sufficient data are available beforehand, more directional
GMMs will lead to more precise target directional models.

Now for each active speaker with known azimuth in
current block, the pre-trained GMM with the nearest az-
imuth is selected. Suppose the number of active speaker
in current block is N , the selected GMMs are denoted as
{λbase−1, . . . , λbase−N}. Note that these basic models do not
have to be different.

The adaption data is an important issue. Since the signals
observed by the triangular microphones usually contain not
only the direct-path signals that are attenuated and delayed
replicas of the sources, but also the multi-path reflected
signals. Additionally, speech signal is not ideal sparse. Hence,
sometimes different sources may contribute to the same T-F
point. To eliminate these disturbances, it is necessary to find
the reliable T-F points that only one source is dominant and we
can use the corresponding features to adaptive the basic source
models. Generally, for each usable peak in the DOA histogram,
the T-F point of which the direction is closer is more reliable
[8]. Specifically, the T-F point of which the direction θ satisfies
the following option is selected for the k-th source

{(f, t)|(k − 1)× 360

K
< θ(f, t) 6 k × 360

K
} (18)

If K is too large or the block size is too small, the option
can be relaxes as follows

{(f, t)|(k − 2)× 360

K
< θ(f, t) 6 (k + 1)× 360

K
} (19)

With these reliable T-F points, the corresponding feature
vectors are used for adaption. The adaption is implemented
by only 2 ∼ 4 expectation maximum (EM) operations. Then
we obtain the precise target directional model for each active
speaker, denoted as {λtar−1, . . . , λtar−N}.

D. The Separation and the Reconstruction

After we obtain every speaker’s model, we can merge the
other models together to make a background model λbk for
every source.

λbk−i =
N∪

j=1,j ̸=i

λtar−j (20)

When both the background model and the target model are
available, the binary mask for each source can be estimated
using Bayes rule. The binary mask is simply estimated based
on the likelihood comparison. For each T-F point, the spatial
feature of the mixed signal is denoted as O(f, t). The binary
mask of the source i can be obtained using

Mp
i (f, t) =

{
1, p(λbk−i|O(f, t)) < p(λtar−i|O(f, t))

0, otherwise
(21)

Then the separation is performed use (2). The speech signal
of the source i can be reconstructed using Inverse short time
Fourier transform (ISTFT) and overlap-adding method.

The stream concatenation is simple here. We suppose the
speech signals with the same unit belong to the same source.
Hence the whole speech stream sj , j = 1, . . . , N are recon-
structed by concatenating together all the segments of that
source spj , p = 1, . . . , P .

IV. EXPERIMENTS AND DISCUSSIONS

A. Experiments setup

The experiments are performed in a real meeting room and
the deployment of the microphones and loudspeakers is shown
in Fig.2. A high-fidelity loudspeaker is placed respectively at
sixteen points 1.8m around of the triangular microphone array.
The audio signals played through the loudspeaker are some
clean speech. These audio signals are played with the same
average sound level and then mixed in computer.

Loudspeaker (120cm height, high-fidelity)
Microphone (120cm height, omni-directional)

• Room Size: 6.5m(W)*4.6m(L)*3.3m(H)
• Reverberation time: 160ms
• Ground Noise: 25dB

Fig. 2. Experiment setup.

We use the interference reduction ratio (IRR) and log-
likelihood ratio (LLR)[9] to measure the interference reduction



and the speech distortion respectively.

IRR =

∑
f,t

|Yi(f, t) · (1−M(f, t))|2∑
f,t

|Yi(f, t)|2
· 100% (22)

LLR = E

{
log

(
αpRcα

T
p

αcRcαT
c

)}
(23)

Where Yi(f, t) is the pure interference; M(f, t) is the
binary mask obtained using (18); αp is the LPC vector of the
separated speech; αc is that of the original clean speech and
Rc is the autocorrelation matrix of the original clean speech
signal; E{} is the expectation function.

For comparison, the un-blind results and the ideal binary
mask results are also shown. Un-blind means the location of
every source is known, and its model, i.e. the GMM, is trained
well separately in advance. The ideal binary mask (IBM) is
the upper bound of the separation performance. It is created
using knowledge of the signals before they were mixed.

Mideal(i) = |Si(f, t)| > |Yi(f, t)| , i = 1, ..., N (24)

Where Si(f, t) is the STFT of the desired signal.
We mix six sources, and their angles are {30◦, 90◦, 150◦,

210◦, 270◦, 330◦}. We also select eight directional models
as the basic models. Their angles are {0◦, 45◦, 90◦, 135◦,
180◦, 225◦, 270◦, 315◦}. The block length is 5 seconds, and
within each block, 2∼6 speech sources as random selected
and mixed. Totally, we simulate 120 blocks with 10 minutes
of mixed data. The 360◦ of horizontal plane is divided to 36
units, so every unit is 10◦.

Fig.3 and Fig.4 show an example of one block. There are
four active sources and their angles are 30◦, 150◦, 210◦ and
330◦, respectively. Fig.3 shows the original sources and fig.4
shows the mixed observations.

Fig. 3. original signals.

Fig. 4. mixed signals.

The corresponding DOA histogram is show in fig.5. It is
very clear four peaks are distinct on the correct azimuth angles.

Fig. 5. result of DOA.

The separation results of our method are shown in fig.6.
The results of un-blind separation are show in fig.7 and the
IBM results are shown in fig.8.

Fig. 6. Separation results of our approach. IRR {0.8580, 0.9159, 0.9594,
0.9636}; LLR {0.5714,0.6255, 0.6230, 0.5303}

Fig. 7. Separation results of un-blind approach. NRR-U {0.9395, 0.9250,
0.9141, 0.9655}; LLR-U {0.5689, 0.5773, 0.5740, 0.5046}

Fig. 8. Separation results of IBM. IRR-I {0.9749, 0.9584, 0.9397, 0.9740};
LLR-I {0.3950, 0.3967, 0.4216, 0.4522}

The quantitative results are listed in Table I. Note that the
higher the IRR is, the more interference is eliminated, and the
lower the LLR is, the smaller distortion the speech has.



TABLE I
EXPERIMENT RESULTS

source 1 2 3 4 5 6
LLR 0.5901 0.7059 0.5734 0.5680 0.5298 0.6085
LLR-U 0.5659 0.7115 0.5605 0.5508 0.5352 0.6514
LLR-I 0.4483 0.4622 0.3813 0.4514 0.4449 0.4511
IRR 0.9044 0.9325 0.8975 0.9474 0.9351 0.9459
IRR-U 0.9045 0.9389 0.9072 0.8779 0.9355 0.9594
IRR-I 0.9666 0.9553 0.9684 0.9679 0.9581 0.9686
T-len.(min) 6.17 6.42 6.42 6.92 6.33 5.67

T-Len means the total length of speech. According to the
experimental results, the IBM achieves the best performance,
and our approach has the competitive performance with the
total un-blind separation approach, and both are close to the
IBM performance. Almost 90% interferences are eliminated.
The results show that our approach can separate the mixtures
correctly with low speech distortion without knowing the
number and DOAs of the active sources.

V. CONCLUSION

This paper introduces a block-based approach for the under-
determined blind source separation using binary T-F masks.
The main idea is to model each sound source. Firstly, we
estimated the source number and their directions. And select
reliable T-F points for each source. Secondly, we load model
for every source and use these reliable T-F points to adapt
the model. Than we calculate binary mask according these
models. The last step, the separated source components from
all the blocks are concatenated to reconstruct the whole signal.
The experimental results show the effectiveness.
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