
High-speed String and Regular Expression
Matching on FPGA

Yusaku Kaneta∗, Shingo Yoshizawa∗, Shin-ichi Minato∗†, and Hiroki Arimura∗
∗ Graduate School of Information Science and Technology, Hokkaido University,

N14 W9, Sapporo 060-0814, Japan
E-mail: {y-kaneta, minato, arim}@ist.hokudai.ac.jp, yosizawa@csm.ist.hokudai.ac.jp

Tel/Fax: +81-11-706-7680/+81-11-706-7680
† ERATO MINATO Discrete Structure Manipulation System Project, Japan Science and Technology Agency,

N14 W9, Sapporo 060-0814, Japan

Abstract—In recent FPGA researches, there has been much
attention to dynamically reconfigurable algorithms that can
modify their configuration on-the-fly. In this paper, we report
recent progress on dynamically reconfigurable hardwares on
FPGA for high-speed string and regular expression matching,
which have been developed by our group since 2008. In particular,
we describe the architecture, algorithms, and implementations of
our pattern matching hardwares. We propose a pattern match-
ing architecture, called dynamically reconfigurable bit-parallel
NFA architecture which is the first dynamically reconfigurable
hardware based on bit-parallel simulation of non-deterministic
finite automata (NFA). This architecture enables fast dynamic
reconfiguration of the patterns as well as high-throughput pattern
matching for complex subclasses of regular expressions such as
extended patterns, network expressions, and extended network
expressions. In this approach, the information of an input NFA is
compactly encoded in bit-masks stored in a collection of registers
and block RAMs. Then, the NFA is efficiently simulated by
a fixed circuitry using a combination of bit- and arithmetic-
operations on these bit-masks consuming one input letter per
clock. Experimental results show that our architecture has
advantages over the previously proposed architectures in the
terms of reconfiguration and running times.

I. INTRODUCTION

A. Backgrounds

By rapid growth of network and sensor technologies, mas-
sive data of new types, called data streams, and related
applications have emerged in various fields including networks
and data engineering. ESP (event stream processing) [1] and
NIDS (network intrusion detection system) [3] are example
applications of data stream processing. Consequently, efficient
data stream processing technologies have been extensively
studied in theory and practice.
The large-scale pattern matching problem is one of the

most important problems in data stream processing, where a
pattern matching system has to work with a large number (e.g.,
thousands) of complex patterns (e.g., regular expressions)
against high-speed data streams (e.g., of several Gbps). These
problems are, however, quite CPU-intensive tasks and it is
difficult for software on a CPU to efficiently process massive
data streams real time in wire-speed. Therefore, researches on
large-scale pattern matching on reconfigurable hardwares such

as FPGA have attracted much attention recently ([3], [4], [5],
[7], [10], [11], [13], [14]).

B. Our research goal
A recent research trend to large-scale regular expression

matching hardwares is to simulate finite state automata for
a given class of regular expressions on a specially designed
hardware ([3], [4], [5], [10], [11], [13], [14]). Then, this ap-
proach is further classified into the static compilation approach
and the dynamic reconfiguration approach.
In the static compilation approach ([10], [11], [13], [14]),

a set of input regular expressions is transformed into either
deterministic finite automata (DFA) or non-deterministic finite
automata (NFA) [9], and then statically compiled into wired
logic on FPGA. However, the static compilation approach has
a drawback that modification of regular expressions is too
expensive to be done frequently.
In the dynamic reconfiguration approach ([3], [4], [5]), a

universal control logic is statically compiled into FPGA be-
forehand, a description of regular expressions is loaded to the
FPGA as data in the preprocessing phase, and then simulated
in the run-time phase. This approach is attractive in real world
applications such as EPS and NIDS where reconfiguration of
input patterns frequently occurs. However, since classes of
patterns that can be dealt with in this approach are still limited,
our goal is to design dynamically reconfigurable hardwares
that efficiently run for wider classes of regular expressions.

C. Main results
In this paper, we report recent progress on dynamically

reconfigurable hardwares on FPGA for high-speed string and
regular expression matching. We propose a novel pattern
matching architecture, called dynamically reconfigurable bit-
parallel NFA architecture. We show the top-level of our
architecture in Fig. 1.
A pattern matching module (PMM, for short) is a core of

our architecture, which is responsible for NFA-simulation of
an input pattern. The key to the construction of a PMM is
the use of bit-parallel NFA-simulation method developed in
string matching communities since 1990 ([2], [9], [12]). In
this method, the information of an NFA is compactly encoded

APSIPA ASC 2011 Xi’an

����

������	
���

����

����

	
���
����

����

�����	
������
�������� ���	
��� ������������

� �� �� � � � �� � � ���

	
���������
������������
�����
��
������������

!" 	
���
#�����

�

!" � ������
$
�����

!"

��
�	��
�����

%�
���&
'��
�&�

����
#���

����
#���

�()
'����

�()�'�������������

�����
�
�����

����������
�����

	
���
*�����

$��������

��
���������������������
������ �+�����
�������������

Fig. 1. The top-level of our pattern matching architecture.

in bit-masks. Then, the NFA is efficiently simulated by a
fixed control logic using a combination of bit- and arithmetic-
operations on these bit-masks consuming one input letter per
clock [9].
An advantage of our architecture is the worst-case per-

formance guaranteed by the design unlike the DFA-based
architecture with micro controller [3]. Another advantage is
the potential extensibility to more general pattern classes. For
example, Kaneta et al. [6] recently extended the Extended
SHIFT-AND method [9], used in this paper, to more general
classes of network and regular expressions allowing union and
the Kleene-star. Such method can be incorporated into our
architecture by extending the construction of bit-masks and a
circuitry described in this paper.
This paper is organized as follows. In Section II, we give

basic definitions. In Section III, we propose our architecture,
and in Section IV, we give the detailed description of a pattern
matching module for extended patterns. In Section V, we give
experimental results. In Section VI, we show an extension
to more complex subclasses of regular expressions, and in
Section VII, we conclude.

II. PRELIMINARY
A. Regular expression matching
LetN = {0, 1, 2, . . .} be the set of all non-negative integers,

and Σ = {a, b, . . .} be a finite alphabet of letters. A string on
Σ is a sequence S = s1 · · · sn of letters, where S[i] = si ∈ Σ
for every 1 ≤ i ≤ n. We denote by S[i..j] the substring
si · · · sj for every i ≤ j, and by ε the empty string. If i > j,
we define S[i..j] = ε. For a set S ⊆ Σ∗ of strings, we denote
by |S| the cardinality and ||S|| = Σs∈S |s| the total size of S.
We denote by Σ∗ the set of all strings on Σ. For a letter a ∈ Σ
and an integer i ∈ N, we define by ai the string consisting of
i consecutive a.
Let REG be the class of regular expressions on Σ. More

precisely, a regular expression R is either a letter a ∈ Σ,
concatenation R = R1 · R2, union R = (R1|R2), and
the Kleene-star R = (R1)

∗, where R1 and R2 are regular
expressions [9]. For a regular expression R ∈ REG, we denote
by L(R) ⊆ Σ∗ its language. Let T = t1 · · · tn ∈ Σ∗ be an
input text of length n ≥ 0, where ti ∈ Σ (1 ≤ i ≤ n).
A pattern is a regular expression on Σ. We say a regular

expression R = r1 · · · rm ∈ REG occurs at the end position j
in T , if T [i..j] = ti · · · tj ∈ L(R). Our problem is stated as
follows.

Definition 1. The multiple pattern matching problem for
a subclass C ⊆ REG of regular expressions is defined as
follows. An input is an input pattern set P = { (i, Ri) | i =
1, . . . , N } ⊆ C (N ≥ 1), where for every i = 1, . . . , N , Ri

is a pattern and i is an integer, called an index. Then, the task
is, given a stream T = t1t2 · · · tp · · · (p ≥ 1) of input letters,
to output the pairs (i, p) such that i = 1, . . . , N is the index
and p is an end position of the Ri in T for all p = 1, 2,

B. Target pattern classes
The target subclasses of regular expressions that our archi-

tecture deals with are the classes of extended patterns (EXT),
network expressions (NET), and extended network expressions
(EXNET) defined as follows [9]. In what follows, ≡ means
the notational equivalence.
An extended pattern (over Σ) in EXT is a regular expression

in linear form, that is, R = r1 · · · rm (m ≥ 0), where for every
1 ≤ i ≤ m, ri is one of the following forms: (i) letters a ∈ Σ,
(ii) wildcards . ≡ Σ, (iii) classes of letters α = [ab · · ·], (iv)
optional letters α? ≡ (α|ε), (v) bounded repeats α{x, y} ≡
(α?)y−xαx, and (vi) unbounded repeats α∗ and α+ ≡ (αα∗),
where α ⊆ Σ. Note that a letter a ∈ Σ and a wildcard ’.’ are
classes of letters. If a component ri is one of the forms α?,
α{x, y}, α∗, and α+, then α is called the matrix of ri. We say
that R is an exact string pattern (also called a string pattern),
denoted by STR, if every component ri of extended pattern
R = r1 · · · rm is a letter in Σ.
A network expression (over strings) in NET is a regular

expression without the Kleene-star, that is, a regular expression
obtained from strings, concatenation, and union. An extended
network expression in EXNET is a network expression over
extended patterns.

Example 1. We show examples of string patterns (STR),
extended patterns (EXT), network expressions (NET), and
extended network expressions (EXNET):

• R1 = ABABC ∈ STR.
• R2 = ([AB]+)(B.{1, 3})([BC]?)(.∗)C ∈ EXT.
• R3 = A(AB|B)(B|AB)C ∈ NET.

���������	�
�����
������ ��������	�
�����
������

(������������',),$���������

-$
%*.

��
����
$�

��

 �� �� ��

����-# �#
-$

%*.

%*.

'����
	
��

�����-# �#
-$

��
�

�
�

/

�
�
�

�
�

�
�
�

	

�

�
� ����

��

��
��

��

��
��

��
��

��
��

��
��

��
�� �

�
�

��

�
�

��

��

�!"�
��&�����)�

-#

�#
-$

)
	
���
*�����

%*.

�
�
�0 ��

��

�#���$-#

%*.

�#
-$

������-# �#
-$

%*.
%���!�

��&�����)�
-#

�#
-$

)

%*.
0 ��

�#���&-#

%*.

�#��'(-#

%*.

�#
-$

�#
-$

��
��

���������
)���� $���

-# �#-#

�������� ����������������
-# �# �����

Fig. 2. The circuit of a pattern matching module for extended patterns.

• R4 = A(AB|B?)(B?. ∗ |AB)C ∈ EXNET.

III. PROPOSED ARCHITECTURE
In this section, we present our dynamically reconfigurable

bit-parallel NFA architecture based on bit-parallel NFA-
simulation method ([2], [9], [12]). For the details, please
consult our papers ([6], [7]).
In Fig. 1, we show the top-level of our pattern matching

architecture on FPGA. Our architecture consists of an input
decoder, a collection of pattern matching modules, and an
output encoder. It receives and sends a sequence of I/O packets
from and to a host PC through a fast bus such as PCI Express.
In the present implementation, I/O packets have 64-bit length.
Our architecture runs with two different modes: the pre-

processing mode and the run-time mode. In the preprocessing
mode, our architecture loads the description of input patterns
with packets and in the run-time mode, receives an input letter,
makes a state transition for the target NFA by a fixed circuitry
of a pattern matching module, detects matches, and emits a
match information by receiving and sending packets.

IV. PATTERN MATCHING MODULE
A pattern matching module (PMM, for short) is a core of

our architecture and efficiently simulates the NFA of an input
pattern. The construction of a PMM depends on the class of
an input pattern. In what follows, we give the construction
of a PMM for the class EXT of extended patterns with fixed
length L according to a bit-parallel method for EXT, called
the Extended SHIFT-AND method [9]. In Fig. 2, we show the
circuit of a pattern matching module for EXT.
Expanded form and bit-assignment. Let R be an extended

pattern. Then, recall that every component ri of R has one of
the following types: (i) ri = α, (ii) ri = α?, (iii) ri = α∗, (iv)
ri = α+, and (v) ri = α{x, y}, where α ⊆ Σ. Note that a
letter a ∈ Σ and a wildcard ’.’ are classes of letters of type (i).
First, we expand all occurrences of bounded repeats α{x, y} of
type (v) in R by using the equivalence α{x, y} ≡ (α?)y−xαx,
where x ≤ y. Let EXPAND(R) = r1 · · · rm be the resulting
expanded form of R consisting ofm components, where |R| ≤
m ≤ L. By the construction, the expanded form EXPAND(R)

10 2 3 4 5 6 7

[AB] B Σ Σ Σ [BC] Σ

[AB] Σ

ε ε εε

Σ

8

C

Fig. 3. The extended pattern NFA N(R2) of R2 = [AB]+B.{1, 3}[BC]?.∗C.

contains no occurrences of components of type (v). Then, we
assign the unique numbers I = {1, · · · ,m}, called the bit-
positions, to all components of EXPAND(R) = r1, . . . , rm.
For example, let R2 = [AB]+B.{1, 3}[BC]?.∗C be

the target extended pattern consisting of six compo-
nents. Then, by replacing the bounded gap .{1, 3} with
(.?)(.?)(.), we obtain its expanded form EXPAND(R2) =
([AB]+)(B)(.?)(.?)(.)([BC]?)(.∗)(C) consisting of eight compo-
nents with assigned bit-positions from 1 to 8.
Construction of NFA. Then, we obtain the extended pattern

NFA NR = N(R) for R from the expanded form EXPAND(R)
as follows. Let EXPAND(R) = r1 · · · rm for some m ≥ 1 and
L be an positive integer larger than or equal to than m. L is
actually the bit-length of registers in an underlying hardware.
By construction, we can assume that EXPAND(R) contains
components of only type (i)–(iv). For every i = 1, . . . ,m, we
add to the NFA NR edges related to state i according to the
type of the i-th component ri with matrix α as follows:

• For all types (i)–(iv) of ri, we add the backbone edge
ei = (i − 1, α, i) directed from the previous state i − 1
to the current state i labeled with matrix α.

• Furthermore, if ri is either (ii) α? or (iii) α∗, then we
add an ε-edge directed from the previous state i − 1 to
the current state i.

• Furthermore, if ri is either (iii) α∗ or (iv) α+, then we
add a self-loop labeled with matrix α from the current
state i to itself.

For the expanded form EXPAND(R) = r1 · · · rm, an ε-block
in EXPAND(R) is the set B = {i, i + 1, . . . , j} ⊆ I of the
component indexes for a maximal consecutive subsequence
ri+1 · · · rj (1 ≤ i ≤ j ≤ m) connected with ε-edges, where
rk is either rk = αk? or rk = α∗

k for some i ≤ k ≤ j.
Let B1, . . . , Bh (h ≥ 0) be the ε-blocks of EXPAND(R). For

Bit-positions 1 2 3 4 5 6 7 8
R [AB]+ B .{1, 3} [BC]? .∗ C

EXPAND(R) [AB]+ B .? .? . [BC]? .∗ C

Fig. 4. The bit-position assignment for R2 = [AB]+B.{1, 3}[BC]?.∗C and
its expanded form EXPAND(R2).

Bit-position i 1 2 3 4 5 6 7 8
INIT 1 0 0 0 0 0 0 0

ACCEPT 0 0 0 0 0 0 0 1
MOVE[A] 1 0 1 1 1 0 1 0
MOVE[B] 1 1 1 1 1 1 1 0
MOVE[C] 0 0 1 1 1 1 1 1
MOVE[%] 0 0 1 1 1 0 1 0
REPPOS[A] 1 0 0 0 0 0 1 0
REPPOS[B] 1 0 0 0 0 0 1 0
REPPOS[C] 0 0 0 0 0 0 1 0
REPPOS[%] 0 0 0 0 0 0 1 0
EpsBEG 0 1 0 0 1 0 0 0
EpsEND 0 0 0 1 0 0 1 0
EpsBLK 0 1 1 1 1 1 1 0

Fig. 5. The set of bit-masks for R2 = [AB]+B.{1, 3}[BC]?.∗C on alphabet
Σ = {A, B, C}, where the symbol ’%’ denotes any letter not in Σ.

example, we show in Fig. 3 the extended pattern NFA N(R2)
corresponding to EXPAND(R2). Then, EXPAND(R2) has two
ε-blocks B1 = {2, 3, 4} and B2 = {5, 6, 7} corresponding to
r3r4 = (.?)(.?) and r6r7 = ([BC]?)(.∗), respectively.
Construction of bit-masks. To simulate an extended pat-

tern NFA NR, we encode its information in the following
five L-bit masks and two arrays of L-bit masks stored in a
collection of registers and block RAMs, respectively:

• INIT is the L-bit mask that sets 1 at the bit-position for
state 1. That is, INIT[i] = 1 if and only if i = 1.

• ACCEPT is the L-bit mask that sets 1 at the bit-position
for the final state m. That is, ACCEPT[i] = 1 if and only
if i = m.

• EpsBEG is the L-bit mask that sets 1 at the lowest bit-
position of every ε-block. That is, EpsBEG[i] = 1 if and
only if i = min(Bk) for some ε-block Bk.

• EpsEND is the L-bit mask that sets 1 at the highest bit-
position of every ε-block. That is, EpsEND[i] = 1 if and
only if i = max(Bk) for some ε-block Bk.

• EpsBLK is the L-bit mask that sets 1s at all bit-positions
in every ε-block. That is, EpsBLK[i] = 1 if and only if i
is contained by some ε-block Bk.

• MOVE[a] is the L-bit mask that indicates all bit-positions
of backbones labeled with a letter a ∈ Σ in EXPAND(R).
That is, MOVE[a][i] = 1 if and only if the state i has a
backbone labeled with a ∈ α, where α is the matrix of
component ri.

• REPPOS[a] is the L-bit mask that indicates all bit-
positions of self-loops labeled with a letter a ∈ Σ in
EXPAND(R). That is, REPPOS[a][i] = 1 if and only if the

Cycle Input STATE after update in cycle i Emit

i letter ti 1 2 3 4 5 6 7 8 Match

1 A 1 0 0 0 0 0 0 0 0
2 B 1 1 1 1 0 0 0 0 0
3 C 0 0 1 1 1 1 1 0 0
4 B 1 0 0 1 1 1 1 0 0
5 B 1 1 1 1 1 1 1 0 0
6 C 0 0 1 1 1 1 1 1 1

Fig. 6. An example of extended pattern matching, given an extended pattern
R2 = [AB]+B.{1, 3}[BC]?.∗C and an input text T = ABCBBC.

state i has a self-loop labeled with aα, or equivalently,
either ri = α∗ or ri = α+ with a ∈ α.

In Fig. 4 and Fig. 5, we show examples of the bit-position
assignment and the bit-masks for R2 = [AB]+B.{1, 3}[BC]?.∗C,
respectively. We store the bit-masks INIT, ACCEPT, EpsBEG,
EpsEND, and EpsBLK in L-bit registers, and the arrays
(MOVE[a])a∈Σ and (REPPOS[a])a∈Σ in block RAMs.
Control logic for NFA-simulation.We finally give the

control logic for simulation of an extended pattern NFA NR.
Fig. 2 shows the whole circuit of NFA-simulation for EXT.
This circuit is based on the codes of the Extended SHIFT-AND
method [9].
First, the following code initializes the bit-mask STATE that

represents a set of active states at line (1) and applies the
letter transitions by backbones and self-loops labeled with t
at lines (2) and (3), respectively, where t ∈ Σ is the current
input letter in an input text.

STATE ←(((STATE 	 1) | INIT) (1)
& MOVE[t]) (2)

| (STATE & REPPOS[t]); (3)

Then, we simulate ε-transitions by the next codes. At
line (4), we turn on the highest bit of each ε-block in STATE,
and set it to HIGH. At line (5), for each ε-block in HIGH, we
invert all bits lower than or equal to the lowest 1 bit of each
ε-block in HIGH and set it to LOW. At line (6), the resulting
bit-mask has 1s at all bit-positions properly higher than the
lowest 1 of each ε-block in STATE. Finally, we add the change
to STATE at line (7).

HIGH ←STATE | EpsEND; (4)
LOW ←HIGH− EpsBEG; (5)

STATE ←(EpsBLK & ((∼ LOW)⊕ HIGH)) (6)
| STATE; (7)

The acceptance test is given by the following code.

if (STATE & ACCEPT) then EmitMatch ← 1;

In Fig. 6, we show an example of NFA-simulation by the
set of bit-masks for R2 = [AB]+B.{1, 3}[BC]?.∗C on an input
text T = ABCBBC. In the figure, we show the status of the bit-
mask STATE after the update in each cycle i (1 ≤ i ≤ 6). The
output EmitMatch of a PMM is the value at the bit-position
8 of STATE.

TABLE I
Summary of parameters of the proposed pattern matching hardwares. See the text for the meanings of the parameter names.

Class of Patterns #Op #Add #Reg #BL #Slice Freq Throughput Load Time Total #Patterns #Chars Total
Exact string patterns 5 0 3 256 54 363 MHz 2.9 Gbps 0.182 msec 256 8,192 letters
Extended patterns 12 1 6 512 123 202 MHz 1.6 Gbps 0.328 msec 128 4,096 letters

TABLE II
Results comparisons of regular expression matching hardwares based on various dynamically reconfigurable architectures, where Class indicates the target

class, bRAM/char the number of bytes used in block RAMs per letter, and LC/char the number of logic cells used per letter.

Design Class Device Throughput bRAM/char LC/char #Chars Total
Dynamic BP-NFA for STR [7] STR Virtex-5 LX330 2.9 Gbps 4 bytes/char 10.8 LC/char 8192
Dynamic BP-NFA for EXT [7] EXT Virtex-5 LX330 1.6 Gbps 8 bytes/char 24.6 LC/char 4096
KMP-based hardware [4] STR Virtex-II Pro 1.8 Gbps 4 bytes/char 3.2 LC/char 3200
Bitsplit-based hardware [5] STR Virtex-4 FX100 1.6 Gbps 46 bytes/char 1.4 LC/char 16715
RegExp Controller hardware [3] REG Virtex-4 FX100 1.4 Gbps 46 bytes/char 2.56 LC/char 16715

V. EXPERIMENTAL RESULTS

To evaluate the time and area complexities, we implemented
our pattern matching hardwares Dynamic BP-NFA in Verilog
HDL for both classes STR and EXT of strings and extended
patterns, where we set L = 32 and the arrays MOVE and
REPPOS are implemented in block RAMs. Note that a PMM
for STR has INIT, ACCEPT, and (MOVE[a])a∈Σ. For the details
of a PMM for STR, see [7]. We targeted the Virtex-5 LX330
with -1 speed grade, which has 51,840 slices and 288 block
RAMs with 36 Kbits. We used the Xilinx ISE Design Suite
10.1 and Synopsys VCS development tools. For comparison,
we also implemented a hardware in the static compilation
approach, called Static BP-NFA [8], based on the SHIFT-
AND method [2] for STR on Xilinx Virtex-5 LX50 with 7,200
slices. For the details, see [8].

A. Results on our dynamically reconfigurable hardwares

In Table. I, we show the summary of the experimental
results of a single pattern matching module, PMM, in our dy-
namically reconfigurable hardwares Dynamic BP-NFA, where
#Op, #Add, #Reg, #BL, and #Slice are the numbers of 32-
bit operations, 32-bit integer additions, registers, block RAM
lines per PMM, respectively. The number of block RAM lines
(#BL) is given by the number of block RAMs times |Σ| = 256.
#Patterns and #Chars Total are the number and the total size
of input patterns, respectively. Below, we give results on our
Dynamic BP-NFA and its comparisons against our previous
static compilation hardware Static BP-NFA [8].
Performance evaluation. The maximum frequencies of our

hardwares were 363 MHz and 202 MHz, respectively, for STR
and EXT. For the time complexity in the run-time, we esti-
mated the throughput of matching by Throughput = Freq×8
(bit/sec). Thus, the throughputs were 2.9 Gbps and 1.6 Gbps
since our hardwares consume one letter (8 bits) per clock.
On the other hand, the Static BP-NFA hardware achieved
frequency of 216 MHz and throughput of 1.7 Gbps for 300
patterns in STR using 2,925 slices. Therefore, the dynamic
version is faster than the static version.

Resource usage. For the Dynamic BP-NFA, we could
implement up to 256 PMMs (8, 192 total letters) and up to 128
PMMs (4, 096 total letters), for STR and EXT, respectively. In
this setting, the place-and-route took around one hour in both
classes. For EXT, one PMM used 123 slices (total 15,744
slices) and two block RAMs (512 = 2×256 lines were used).
Consequently, the usage of block RAMs was 89%, while the
usage of slices was only 24%. This means that the size of
a hardware in our architecture is constrained mainly by the
amount of block RAMs and not by one of the slices. On
the other hand, the Static BP-NFA used much less resources
than the Dynamic BP-NFA. We could implement up to 1,500
PMMs (around 20K total letters) for STR using 7, 200 slices
(100%) and no block RAMs, where the slice usage seems
linear in the number N of PMMs for N = 1 to 500 and
seems almost constant for N = 500 to 1, 500 ([8]).
Reconfiguration time comparison.We estimated the total

loading time of a dynamically reconfigurable architecture by
Load Time Total = #Patterns×(#Reg+#BL)/Freq (sec). From
the result of Table I, the Dynamic BP-NFA took 0.71 μsec and
2.56 μsec per PMM to load an input pattern, and consequently,
took the total loading times 0.182 msec and 0.328 msec to load
all 256 and 128 patterns for STR and EXT, respectively. On
the other hand, we estimated the loading time of the Static
BP-NFA by the compilation time including place-and-route.
By experiments, it required 4.27×105 msec for 300 PMMs,
approximately seven minutes. Hence, the Dynamic BP-NFA
is 106 times faster than the Static BP-NFA in load time.

B. Comparison against other pattern matching hardwares
In Table. II, we compared our hardwares against the previ-

ous dynamically reconfigurable hardwares [3], [4], [5].
Performance evaluation. For the class STR, our hardware

achieved higher throughput of 2.9 Gbps than Baker et al.’s
KMP-based hardware [4] and Jung et al.’s Bitsplit-based
hardware [5]. For more general classes of regular expressions,
Baker et al.’s RegExp Controller hardware [3], which is a
hybrid of DFA-simulation and microcontroller, has been the
only dynamically reconfigurable architecture for a non-trivial

) 2
3

)
� � " 0 4 /

2 55

5

%
3 3 3

3 3

3
3

)
/ 6

6 ! � �

 7 "
) 2

%

3 3 3
2

Fig. 7. The Thompson NFA N(R4) of an extended network expression
R4 = A(AB|B?)(B?. ∗ |AB)C.

8 8 8
999
*'2 �'2

%��:

999

8

8

8

3

3

999

(a) Scatter

;; ;
999
*'2 �'2

��

999

;

;

3

3

999 ;

(b) Gather

%��:

8 ; ;
999
*'2 �'2

999

%��:

9993
8 ;
;

<�8�

3 3

(c) Propagate

Fig. 8. The bit-operations and the corresponding parts of TNFAs.

subclass of REG so far. Compared with the hardware by [3],
our hardware achieved comparable throughput of 1.6 Gbps
for EXT to 1.4 Gbps of [3]. From the above results, our
hardware and the hardware by [3] were comparable in the
term of running time. An advantage of our hardware is that
it has the worst-case guarantee of its throughput regardless of
an input stream, while the hardware by [3] can overflow when
many matches of short segments occur.
We also implemented our PMMs for STR and EXT on the

same device, Virtex-4 FX100 with −12 speed grade, as [5]
and [3]. Then, our hardwares for STR and EXT also achieved
higher throughput of 3.6 Gbps than the hardware by [5] and
comparable throughput of 1.6 Gbps to the hardware by [3],
respectively.
Resource usage. Our hardwares load only a set of bit-masks

that represents the information of regular expressions into
registers and block RAMs, while both of Jung et al.’s Bitsplit-
based hardware [5] and Baker et al.’s RegExp Controller
hardware load a state transition table and a sequence of
instructions into block RAMs, respectively. Therefore, our
hardwares required less block RAM lines than the hardwares
by [5] and [3]. On the other hand, our hardwares required ten
times more logic cells (slices) than [3] since our hardwares
required many ALUs to implement the circuitry for NFA-
simulation as shown in Fig. 2.

VI. EXTENSION TO NETWORK AND EXTENDED NETWORK
EXPRESSIONS

In Section IV, we gave the construction of a pattern match-
ing module (PMM) for the class EXT of extended patterns
based on the Extended SHIFT-AND method [9]. To extend the
PMM for EXT to more complex classes, we developed a fast
bit-parallel method, called the Extended2 SHIFT-AND method,

for the classes NET and EXNET of network and extended
network expressions [6].
For this method, we devise new bit-parallel operations,

called Scatter, Gather, and Propagate, for efficient simulation
of a Thompson NFA (TNFA, for short) [9] for NET and
EXNET, which can have the long succession and the branching
of ε-edges caused by concatenation and union as shown
in Fig. 7. In Fig. 8, we show each bit-operation and the
corresponding part of a TNFA that the operation simulates.
Furthermore, we also devise a transformation technique of a
TNFA, called bypassing, into a special form of NFA that
satisfies a property, called bimonotonicity, of an ε-path by
attaching new ε-edges to all subexpressions whose initial and
final states are ε-reachable in the original expression.
We implemented a PMM for EXNET based on our

Extended2 SHIFT-AND method. The experimental results
showed that our hardware for EXNET achieved the throughput
of 0.5 Gbps.

VII. CONCLUSION
In this paper, we report recent progress on dynamically

reconfigurable hardwares on FPGA for high-speed string and
regular expression matching. For complex subclasses of regu-
lar expressions such as extended strings, network expressions,
and extended network expressions, our architecture based on
bit-parallel NFA-simulation method provides fast dynamic
reconfiguration of the patterns as well as high-throughput
pattern matching.
In experiment, we showed that our dynamically recon-

figurable hardwares achieved throughputs of 2.9 Gbps and
1.6 Gbps for the classes of STR and EXT, respectively. In
the present DPI (deep packet inspection) technology, where
only the first several kilobytes of each packet is scanned,
our hardwares’ throughputs look enough. However, further
progress of DPI technology will require higher throughput.
Therefore, it is a future research to make further speed-up of
our hardwares.
In this paper, we considered end match information only. In

recent applications such as ESP, however, it is also important
to consider interval matches and non-overlapping matches.
Therefore, it is an interesting problem to extend our hardwares
to report matching information of both types.

ACKNOWLEDGMENT
The authors would like to thank Satoshi Kamiya in NEC

Corp., Yoshikazu Miyanaga in Hokkaido Univ., Shinobu Na-
gayama in Hiroshima City Univ., and Osamu Watanabe in
Tokyo Inst. Tech. for their discussions and valuable com-
ments. This research was partly supported by MEXT Grant-
in-Aid for Scientific Research (A), 20240014, FY2008–2011,
“High performance FPGA-based string matching hardwares”
project under MEXT/JSPS Global COE Program at IST,
Hokkaido University, FY2007–2011, and ERATO MINATO
Discrete Structure Manipulation System Project, JST.

REFERENCES
[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, “Efficient pattern

matching over event streams,” in Proc. SIGMOD’08, pp. 147–160, 2008.
[2] R. Baeza-Yates and G. H. Gonnet, “A new approach to text searching,”

CACM, 35(10), pp. 74–82, 1992.
[3] Z. K. Baker, H. Jung, and V. K. Prasanna, “Regular expression software

deceleration for intrusion detection systems,” in Proc. FPL’06, pp. 1–8,
2006.

[4] Z. K. Baker and V. K. Prasanna, “Time and area efficient pattern
matching on FPGAs,” in Proc. ACM FPGA’04, pp. 223–232, 2004.

[5] H. J. Jung, Z. K. Baker and V. K. Prasanna, “Performance of FPGA
implementation of bit-split architecture for intrusion detection systems,”
in Proc. RAW’06, 2006.

[6] Y. Kaneta, S. Minato, and H. Arimura, “Fast bit-parallel matching for
network and regular expressions,” in Proc. SPIRE’10, pp. 372–384,
2010.

[7] Y. Kaneta, S. Yoshizawa, S. Minato, H. Arimura, and Y. Miyanaga,
“Dynamic reconfigurable bit-parallel architecture for large-scale regular
expression matching,” in Proc. FPT’10, pp. 21–28, 2010.

[8] Y. Kaneta, S. Yoshizawa, S. Minato, H. Arimura, and Y. Miyanaga,
“Efficient multiple regular expression matching on FPGAs based on
extended SHIFT-AND method,” in Proc. SASIMI’10, pp. 401–406, 2010.

[9] G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings: Prac-
tical On-Line Search Algorithms for Texts and Biological Sequences,
Cambridge University Press, 2002.

[10] H. Roan, W. Hwang, and C. D. Lo, “Shift-or circuit for efficient network
intrusion detection pattern matching,” in Proc. FPL’06, pp. 1–6, 2006.

[11] R. Sidhu and V. K. Prasanna, “Fast regular expression matching using
FPGAs,” in Proc. IEEE FCCM’01, pp. 227–238, 2001.

[12] S. Wu and U. Manber, “Fast text searching: allowing errors,” CACM,
35(10), pp. 83–91, 1992.

[13] Y. E. Yang and V. K. Prasanna, “Memory-efficient pipelined architecture
for large-scale string matching, ” in Proc. IEEE FCCM’09, pp. 104–111,
2009.

[14] Y. E. Yang, W. Jiang, and V. K. Prasanna. “Compact architecture for
high-throughput regular expression matching, ” in Proc. ACM/IEEE
ANCS’09, pp. 30–39, 2009.

