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Abstract—The “sum and difference covering set” (SDCS) is
a steganographic technique which provides high embedding
efficiency. In this paper, we implement SDCS in image steganog-
raphy by searching an appropriate SDCS for high embedding
efficiency and low complexity. Thus the contamination in smooth
areas of image is evident for steganalyzer, we propose a novel
content-adaptive steganographic scheme based on SDCS, in
which the hidden data are embedded in noisy areas of cover
image evaluated by a ”noise level” sorting. The experimental
results show that our scheme enhance the steganographic security
compared with some state-of-the-art works, and the high visual
quality of stego image is preserved with considerable embedding
rate.

I. INTRODUCTION

Steganography is a technique of covert communication,
whose goal is to embed secret message into cover data (e.g.,
digital images) in such a way that the stego data cannot be
discerned except for the intended recipients. As the contrary
technique of steganography, steganalysis aims to detect the
existence of secret message. The image steganalysis schemes
are generally classified into the targeted ones and the blind
ones: the former aim to determine whether the stego image
is embedded by a specific steganographic scheme, while the
latter attempt to detect the presence of data hiding regardless
of the embedding method. Due to the development of ste-
ganalysis, the steganographic schemes continue improving to
preserve the security against detection.

Several approaches are concerned to improve the security
in steganography. Many schemes attempt to reduce the mod-
ification of the cover in embedding procedure, therefore the
visual quality of stego image is similar to that of the cover.
Least significant bit (LSB) replacement is a scheme of this
case in the early stage [1]. In LSB replacement, the LSB
of pixel is modified to match the hidden data bit, so that
the modification of each pixel is at most 1. However, the
steganalysis based on histogram statistics shows that LSB
replacement is insecure owing to its histogram equalization.
As a generalization of LSB replacement, matrix embedding
pay more attention to reducing the embedding changes [2]–[5].
In matrix embedding, the embedding efficiency is concerned
as an important performance evaluation, which is defined as
the expected number of embedded secret data bits per pixel
modification in the cover. The high visual quality is preserved
in matrix embedding with considerable embedding rate.

To defend the detection of statistics, a further approach
puts emphasis on keeping the statistic invariant. LSB matching
(also known as ±1 embedding), for example, is an improve-
ment of LSB replacement in which the pixel value is randomly
increased or decreased by 1 if its LSB is different from the
hidden data bit [6]. The extracting procedure of LSB matching
reads hidden data from LSBs of pixels, with low complexity
in common with LSB replacement. It is investigated that
LSB matching is equivalent to a convolution of the cover,
which is more secure than LSB replacement in statistical
property. Many novel steganalysis schemes attempt to attack
LSB matching based on histogram local extrema [7]–[9], com-
pression technique [10]–[12], statistical moments [13], [14],
center of mass of the histogram characteristic function (HCF-
COM) [15]–[19], etc. In addition, some blind steganalyzers
are also effective against LSB matching [20]–[23].

Recently, the steganography technique based on the sum
and difference covering set (SDCS) proposed in [24], [25]
popularizes LSB matching and matrix embedding to achieve
both high embedding efficiency and security. In SDCS, matrix
embedding is extended into finite cyclic Abel group. The em-
bedding efficiency of SDCS is higher than matrix embedding,
and the upper bound of embedding rate is also larger. Based
on SDCS, Li et al. proposed a generalized LSB matching
(G-LSB-M) scheme [25], which further improved embedding
efficiency while keeping statistics resemblant. Nevertheless,
G-LSB-M is simply more secure than LSB matching, and the
scheme with more security is required in application.

Besides improving embedding efficiency, adaptively select-
ing the embedding location based on image content is an
alternate approach to make the hidden data more undetectable.
The main idea of content-adaptive steganography is that it is
more secure to modify pixel in “noisy” regions rather than
“smooth” regions by the same amount. Pixel-value differenc-
ing (PVD) [26] is an early content-adaptive steganography,
which attempts to embed more data in noise regions. Some
other content-adaptive noise region embedding schemes are
also proposed recently [27], [28], in which the modified pixels
are selected where the modification is difficult to detect. The
edge-adaptive steganography [29] proposed by Luo et al. is a
improvement of LSB matching revisited (LSB-MR) [30], in
which the data are embedded into the edges in image content.
This scheme can enhance security against staganalysis while
keeping high visual quality of the stego image.

In noise region embedding procedure, locating noisy pixel
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area and embedding hidden data are relatively independent.
Inspired by the high embedding efficiency of SDCS and the
high security of noise region embedding, we propose a novel
content-adaptive steganography in this paper, which integrates
the minimization of modification, statistics resemblance and
adaptive pixel selection. A novel content-adaptive noise region
locating scheme is applied, in which the embedding pixels
of image are sorted by their “noise level” calculated from
extrema of neighbor reference pixels according to a shared
key. Afterwards, an optimal SDCS is applied to embed data
into the pixels with highest noise level with low complexity
in application. The intended recipient is able to sort pixels by
noise level from the key, and extract hidden data by SDCS. The
embedding efficiency is high in our scheme with considerable
embedding rate. Furthermore, the modification in noise regions
of images preserves high visual quality of the stego and is
difficult to detect. The experimental results show that our
method is more secure than some state-of-the-art works against
blind steganalysis, such as LSB matching and G-LSB-M.

The rest of the paper is organized as follows. In Section
II, we introduce SDCS briefly and propose a low-complexity
(6,64)-SDCS embedding scheme. The novel content-adaptive
noise region embedding technique is proposed in Section
III. In Section IV, we compare our steganographic scheme
with other state-of-the-art schemes against blind steganalyzer.
Finally, our conclusion is drawn in Section V.

II. INTRODUCTION OF SDCS
The SDCS-based steganography proposed by Li et al. in

[24] is briefly introduced in this section. For the application of
±1 embedding, the notations denoted here are a little different
from those in [24].

We denote GM as a finite cyclic group with order M . It
is proved that any M -ordered finite cyclic group is an Abel
group and is isomorphic from the group Z/MZ, and we simply
consider the group ZM = Z/MZ = {0, 1, ...,M − 1}. In this
case, the set

A = {a1, a2, ..., aN}, ai ∈ ZM , i = 1, 2, ..., N

is defined as a (N,M)-SDCS, if for each m ∈ ZM , there exists

S = {s1, s2, ..., sN}, si ∈ {0,±1}, i = 1, 2, ..., N

such that
∑N

i=1 siai = m.
Based on the definition of SDCS, we denote some notations

in (N,M)-SDCS-based steganography with the set A. Let

Cm(A) = {(s1, s2, ..., sN ) : si ∈ {0,±1},
N∑
i=1

siai = m},

|Cm(A)| = inf{
N∑
i=1

|si| : (s1, s2, ..., sN ) ∈ Cm(A)},

Dm(A) = {(s1, s2, ..., sN ) ∈ Cm(A) :
N∑
i=1

|si| = |Cm(A)|}.

As A is a SDCS, Cm(A) and Dm(A) are non-empty sets for
each m ∈ GM . Therefore, we define SDCS embedding func-
tion femb and extracting function fext for any embedding data

Fig. 1. An example of (4,16)-SDCS embedding and extracting.

w ∈ ZM : to the cover sequence X = {x1, x2, ..., xN}, xi ∈ Z
and the stego sequence Y = {y1, y2, ..., yN}, yi ∈ Z,

femb(X, w) = {X+ S : S = (s1, s2, ..., sN ) ∈ Dw−
∑N

i=1 xiai
(A)},

fext(Y) =
N∑
i=1

yiai.

The correctness of SDCS embedding is guaranteed as follow:

fext(Y) =

N∑
i=1

yiai =

N∑
i=1

(xi + si)ai = (

N∑
i=1

xiai) + (

N∑
i=1

siai)

= (

N∑
i=1

xiai) + (w −
N∑
i=1

xiai) = w.

In addition, since S ∈ Cm(A),

∥Y −X∥l∞ = ∥S∥l∞ ≤ 1

which shows that the modification of pixel in SDCS is at most
1, thus the visual similarity between the cover and the stego
is guaranteed.

Fig. 1 shows an example of embedding payload “7 ∈ Z16”
into cover sequence (100,101,102,103) and extracting it from
stego sequence (101,101,102,102), with a SDCS of (1,2,3,9)
in Z16.

The embedding efficiency of (N,M)-SDCS is determined
by the expected average modification per pixel under all
possible embedded data, measured by the average of |Cm(A)|
for all m ∈ ZM . Obviously, the selection of A exerts a
profound influence on the improvement of embedding effi-
ciency. In [24], Li et al. prove that larger M brings higher
embedding efficiency. As the embedding rate is log2 M

N , N
will increase accompanied by M for fixed embedding rate.
However, the expansion of SDCS leading to a fast increase
in time complexity of SDCS construction, hence a trade-
off should be made to get high embedding efficiency with
acceptable complexity. In practical, we are able to traversal



the SDCS with N = 6 in a few minutes, while several hours
are required when N = 7. Therefore, we choose SDCS with
N = 6 and M = 64 for embedding rate of 1.0 bpp, which is
suitable for common application. After the traversal of (6,64)-
SDCS, we select the optimal SDCS A = {1, 2, 4, 12, 21, 28}
which provides minimal average modification of pixel: for any
m ∈ Z64 ,|Cm(A)| ≤ 2 except |C18(A)| = |C46(A)| = 3.
The expected average modification per pixel of this SDCS is
(12 + 49 × 2 + 2 × 3)/6/64 = 0.302, which is lower than
0.375 in edge-adaptive steganography [29]. This implies that
our SDCS provides higher embedding efficiency than [29], i.e.
our scheme embeds more data with the same modification of
cover image.

The sequence in (6,64)-SDCS will be applied in our
steganography scheme with at most 1.0 bpp embedding rate.
It is worth notice that not all pixels will be selected for
modification when appointed embedding rate is less than 1.0
bpp in practical. In this light, embedding pixels should be
adaptively chosen based on the image content to make the
modification difficult to observe.

III. CONTENT-ADAPTIVE IMAGE STEGANOGRAPHY

Many related works mention that the human vision is more
sensitive to the modification in smooth regions rather than
in noisy regions, in spite that the Peak Signal to Noise
Ratio (PSNR) of the modifications in different regions are
identical. In general, the characteristics of noise regions are
more complicated, and they can tolerate more modification
with small alteration of visual or statistical features. This
concept is called “noise region embedding” and many works
have attempted to investigate algorithms to locate noise region
accurately for higher security. Recently, random key technique
has developed in steganography to increase randomness. We
propose a novel noise region embedding based on random key
technique, which achieves high accuracy and low complexity
in locating pixels in noise regions.

As there exists inner correlation among adjacent pixels, it
is reasonable to determine the “noise level” of a pixel from
its neighborhood. A pixel is predicted in noise region when
the values of its neighbor pixels are significantly different.
On this basis, we propose a scheme of the pixel noise level
calculation based on local extrema of its neighborhood. For
convenience, we regard image I with n pixels as a sequence
I = {I1, I2, ..., In}. A random key K is used in this scheme
and is shared by both sender and recipient.

Noise level calculation procedure:
• Input: cover image I = {I1, I2, ..., In}, random key K.
• Algorithm:

1) Select Ir = {Ir1 , Ir2 , ..., Irm} ⊂ I as reference
pixel set according to K. Let m = ⌊n

4 ⌋ for both
sufficient embedding rate and reference accuracy.
Denote Ie = I− Ir as embedding pixel set.

2) for each pixel i ∈ Ie, denote its local reference pixel
value set Sr(i):
– Let Sr(i) = ∅.

Fig. 2. The example of noise level calculation in Lena.

– Add the values of pixels which are located in
3 × 3 area centered at i and belong to Ir into
Sr(i).

– If ♯Sr(i) < 2, add the values of pixels which are
located in 5× 5 area centered at i and belong to
Ir into Sr(i).

– If ♯Sr(i) < 2, add the values of pixels which are
located in 7× 7 area centered at i and belong to
Ir into Sr(i).

The symbol ♯ denotes the number of different ele-
ments in the set.

3) Calculate the noise level D(i) of pixel i:

D(i) =

{
max

j∈Sr(i)
j − min

j∈Sr(i)
j, if |Sr(i)| ≥ 2;

− 1, if |Sr(i)| < 2.

It implies that the noise level of pixel is not able to
be predicted when D(i) = −1, and this pixel will
not be used for embedding.

• Output:
The noise level of pixels in embedding pixel set D(Ie).

For each pixel in embedding pixel set Ie, higher noise
level signifies higher possibility to be located in noise region.
Meanwhile, the pixel values of reference pixel set Ir are
unchanged, which indicates that the sender and the recipient
are able to calculate same noise level of the pixels in Ie based
on the shared random key, thus the correctness of the scheme
is assured.

Fig. 2 gives an example of calculating noise level of pixels
A and B which are centers of the two selected areas. The pixels
in reference pixel set Ir are marked in red. We observe that A
is on the edge of texture while B is on smooth area, thus the
neighborhood of A is more ”complex” than the neighborhood
of B. Calculation result shows that the noise level of A is
higher than that of B. In embedding procedure, pixel A will
be selected to embed hidden data earlier than pixel B.

Fig. 3 shows the image Lena and the pixels selected by
our scheme with 10% highest noise level in Ie, which are
marked in white. It is shown that the pixels in noise region
are accurately searched out by our scheme.

Based on our noise level calculation procedure above and
the optimal (6,64)-SDCS proposed in Section II, we propose
a content-adaptive image steganography scheme based on



Fig. 3. The 10% pixels selected by noise level scheme in Lena.

noise region embedding and SDCS. The side information in
embedding application is that the sender should inform the
recipient of the ending position of embedding scheme. As the
embedding rate of (6,64)-SDCS is 1.0 bpp for each embedding
pixel sequence, we calculate the practically embedded data
length with side information of ending position

len = log2 n+ |W| (1)

where |W| is the length of data in binary and n is the size of
image, which are both decided before embedding. Therefore,
we can embed len with log2 n bits first as the side information,

and then embed W. The recipient will recognize that the first
log2 n bits of extracted binary data are side information, and
execute extracting according to the ending position.

Embedding Procedure:
• Input: cover image I = {I1, I2, ..., In}, random key K,

binary embedding data W.
• Algorithm:

1) calculate embedding length len by Eq. (1) and use
log2 n bits to record len before W, getting new
payload W′.

2) Select reference pixel set Ir = {Ir1 , Ir2 , ..., Ir⌊n
4 ⌋}

according to K. Get embedding pixel set Ie = I−
Ir.

3) For each pixel i ∈ Ie, calculate its noise level D(i)
as described in Noise level calculation procedure.

4) Sort the pixels in Ie into Ie1 , I
e
2 , ..., I

e
⌈ 3n

4 ⌉ with
descending order of their noise level.

5) According to the sorting, segment sorted Ie into
cover sequences with 6 pixels in each sequence.

6) Embed W′ into cover sequences using (6,64)-SDCS
until all data are embedded. Each sequence embeds
6 bits of binary payload which is regarded as an
element of Z64.

• Output: stego image J.
The extracting procedure for recipient is convenient. The

recipient will extract len from first log2 n of binary payload
bits and then carry out extracting according to this side
information.

Extracting Procedure:
• Input: stego image J = {J1, J2, ..., Jn}, random key K.
• Algorithm:

1) Select reference pixel set Jr = {Jr
1 , J

r
2 , ..., J

r
⌊n

4 ⌋}
according to K. Get embedding pixel set Je = J−
Jr.

2) For each pixel j ∈ Je, calculate its noise level D(j)
as described in Noise level calculation procedure.

3) Sort the pixels in Je into Je
1 , J

e
2 , ..., J

e
⌈ 3n

4 ⌉ with
descending order of their noise level.

4) According to the sorting, segment sorted Je into
stego sequences with 6 pixels in each sequence.

5) Extract W′ from stego sequences using (6,64)-
SDCS. An element of Z64 is extracted from each
sequence and transformed into 6 bits in binary.

6) When first log2 n bits are extracted, read len from
them and get ending position. Continue extracting
W′ until reaching the ending position.

7) Remove side information len from head of W′ to
get embedded data W.

• Output: Binary embedded data W.
As the reference pixel set Ir are same towards sender and

recipient due to the shared key, the recipient is able to sort
embedding pixel set Ie with the same order by the sender,
and the reversibility of SDCS guarantees the correctness of
our steganography scheme.
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Fig. 4. The ROC curve of WAM steganalyzer.

The time complexity of our steganography scheme is fairly
low. In preprocessing, the sender and recipient can calculate
Dm(A) for all m according to A. For each image, the noise
level of embedding pixel set Ie is calculated, and ±1 to pixels
of Ie is applied according to data and m. The steganography
scheme is applicable to large-scale image set for mass data
embedding.

IV. EXPERIMENTAL RESULTS

Our novel steganography scheme is compared with LSB
matching [6] and its improvement G-LSB-M [25]. We use
NRCS image set for our experiment, which contains 3,000
images in bitmap format. In pretreatment, the images are trans-
formed into gray-level images, cropped to square and down-
sampled to the size 512×512. Afterwards, the cover images
are respectively embedded by three embedding schemes with
embedding rate of 0.5 bpp.

Since no targeted steganalyzer is proposed against SDCS,
we apply wavelet absolute moment (WAM) steganalyzer [20],
which is a high-accuracy blind steganalyzer against various
of steganography schemes. The 4-folded cross-validation is
applied in our experiment, in which 25% of the WAM features
are used for training by Fisher linear discriminant (FLD)
classifier and the rest 75% are used for testing. We test 4
times in each validation circulation, and the cross-validation
is repeatedly applied for 100 times. The average receiver
operating characteristic curves (ROC) of all tests are shown in
Fig. 4.

The area under ROC curve (AUC) measures the general
probability of correct classification between cover and stego
image. The steganalyzer is effective in detection when AUC is
close to 1, while it fails when AUC is near 0.5 which indicates
random guessing. In Fig. 4, the AUC of our scheme is 0.550,
while the AUCs of LSB matching and G-LSB-M are 0.706 and
0.684 respectively. The experimental result implies that our

embedding scheme is generally more difficult to detect than
LSB matching and G-LSB-M. In application, the embedding
rate may be lower, and our scheme preserves more security in
this case.

V. CONCLUSION

In this paper, a novel content-adaptive embedding method
based on SDCS and noise region embedding is proposed. First,
we propose an optimal (6,64)-SDCS for high embedding effi-
ciency in steganography with suitable complexity. Afterwards,
a noise level calculation procedure is proposed to embed data
in noise region to improve security, and the steganographic
scheme based on SDCS and noise level calculation procedure
is proposed. The experimental results show that our scheme
achieves high embedding efficiency and security. In future, we
will investigate the construction of optimal SDCS for higher
embedding efficiency with acceptable complexity. In addition,
improving the performance of noise region embedding for
more security is another interesting work.
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