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Abstract—Brain-computer interface (BCI) is a system to trans-
late humans thoughts into commands. For electroencephalog-
raphy (EEG) based BCI, motor imagery is considered as one
of the most effective ways. This paper presents a method
for classifying EEG during motor-imagery by the combination
of well-known common spatial pattern (CSP) with so-called
multivariate empirical mode decomposition (MEMD), which is
effectively suitable for processing of multichannel signals of EEG.
In the proposed method, the EEG signal is decomposed into
intrinsic mode functions (IMF) using the MEMD. Different from
EMD, the number of IMF is the same in each channel. Then by
removing some of the IMFs, the reconstructed signal can carry
more useful information than the original signal. Based on the
MEMD, weights of CSP are found. By off-line simulation, the use
of MEMD in CSP has shown to perform well in the application
to the classification of EEG signals.

I. Introduction

Brain-computer interface (BCI) can translate humans
thoughts directly to the outside world. It is a new technology
as a radically new communication option for those with
neuromuscular impairments that prevent them from using
conventional augmentative communication methods. It enables
us to connect to the real world without peripheral nerves and
muscles.

The brain normally produces tiny electrical signals that
come from the brain cells and nerves which send messages
to each other. These electrical signals can be detected and
recorded by the electroencephalography (EEG) measurements.
It has been chosen to capture brainwaves for BCI applications
because of its simplicity, inexpensiveness and high temporal
resolution.

Because of the volume conduction, EEG signals give a
unclear image of brain activity [2]. Therefore, a spatial filtering
preprocessing stage which performs source separation before
feature extraction is often used to improve BCI’s performance,
so that it can give a clear response to the brain acticity.
Recently, common spatial pattern (CSP) has been widely used
in spatial filtering because of its efficiency [3] [4]. However,
it can only reflect the separative ability of the mean power
of two classes. Artifacts such as eye and muscle activities
may dominate over the EEG signal, and thus they may give
excessive power in some channels. Because of CSP simply
pooling the covariance matrices of trials together, if an artifact

happens to be unevenly distributed in different experiment
conditions, CSP will capture it with a high eigenvalue. This
will distort the following CSP spatial filter. Therefore, it must
be removed as much as possible.

To remove such a non-linear artifact, the empirical mode
decomposition (EMD) has been used [1] [2]. The EMD is a
signal processing decomposition technique that decomposes
the signal into waveforms modulated in both amplitude and
frequency by extracting all of the oscillatory modes embedded
in the signal. The key issue in EMD processing is the com-
putation of the local mean of the original singal, a step which
depends critically on finding the local extrema. In real-valued
EMD, the local mean is computed by taking an average of
upper and lower envelopes, which in turn are obtained by inter-
polating between the local maxima and minima. In the actual
signal processing, multivariate signals are necessary to be dealt
with. In general, for multivariate signals, the local maxima
and minima may not be defined directly [5]. So it is only
suitable for univariate (real valued) signals. Although artifacts
will commonly appear over several channels, univariate EMD
cannot consider inter-channel relationship in decomposition.

Recently, an n-variate EMD processing for signal processing
decomposition, so-called multivariate empirical mode decom-
position (MEMD) has been proposed [10], which is an exten-
sion of the basic EMD suitable for dealing with multivariate
signals. MEMD generates multiple n-dimensional envelopes
by taking signal projections along different directions in n-
dimensional spaces, and then averaged to obtain the local
mean.

In this paper, we propose to combine CSP with MEMD, to
extract necessary components from multi-channel signals. By
the application of MEMD processing, an n-variate signal is
decomposed into a finite set of amplitude-and/or frequency-
modulate components, where some artifact-related compo-
nents are discarded and the reconstructed signal is obtained.
This signal is used for designing CSP.

II. Common Spatial Pattern (CSP) – Review

CSP is an effective method for feature extraction and
classification in two class motor imagery–BCI. This section
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reviews basic CSP processing [3] [4].
Let X ∈RM×N be an observed signal, where M is the number

of channels and N is the number of samples. CSP finds a
spatial weight vector, w ∈ RM , in such a way that a variance
of a signal extracted by linear combination of X is minimized
in a class. Actually, we do not directly use X, but use the
filtered signal described as X̂ = H(X) in CSP, where H is
a bandpass filter which passes the frequency band related to
brain activity of motor-imagery. Denote the components of X̂
by X̂ = [x̂1, . . . , x̂N], where x̂n ∈RM , and the time mean of the
observed signal is given by µ = 1

N
∑N

n=1 x̂n. Then, the variance
of the extracted signal of X̂ is given by

σ2(X,w) =
1
N

N∑
n=1

|wT (x̂n−µ)|2. (1)

We assume that sets of the learning data, C1 and C2, where Cd
contains the signals belonging to class d, d ∈ {1,2} is a class
label, and C1∩C2 = ∅. CSP finds the weight vector that mini-
mizes the intra-class variance in Cc, under the normalization of
samples, where c ∈ {1,2}. More specifically, for c fixed, CSP
finds wc by solving the following optimization problem [3]
[4];

min
w

EX∈Cc [σ2(X,w)]

subject to
∑

d=1,2

EX∈Cd [σ2(X,w)] = 1, (2)

where EX∈Cd [·] denotes the expectation over Cd. Then, (2) can
be rewritten as

min
w

wTΣcw, subject to wT (Σ1+Σ2)w = 1, (3)

where Σd, d = 1,2, are defined as

Σd = EX∈Cd

 1
N

N∑
n=1

(x̂n−µ)(x̂n−µ)T

 . (4)

The solution of (3) is given by the generalized eigenvector
corresponding to the minimum generalized eigenvalue of the
generalized eigenvalue problem described as

Σcw = λ(Σ1+Σ2)wc. (5)

For classification, the following method is applicable to CSP.
Given an unlabeled data, X, we classify X by the following
rule:

u = argmin
c
σ2(X,w) =⇒ X ∈ Cu. (6)

III. EmpiricalMode Decomposition

The EMD processing is a fully data-driven method designed
for multi-scale decomposition and time-frequency analysis of
real-world signals, whereby the original signal is modeled
as a linear combination of intrinsic oscillatory modes, called
intrinsic mode functions (IMFs), which are defined so as to
exhibit locality in time and to represent a single oscillatory
mode.

A. Univariate EMD

EMD decomposes the original signal into a finite set of
amplitude-and/or frequency-modulated components, termed
IMFs, which represent its inherent oscillatory modes. More
specifically, for a real-valued signal x(k), the standard EMD
finds a set of N IMFs {ci(k)}Ni=1 , and a monotonic residue
signal r(k), so that

x(k) =
N∑

i=1

ci(k)+ r(k) (7)

IMFs ci(k) are defined so as to have symmetric upper and
lower envelopes, with the number of zero crossings and the
number of extrema differing at most by one. The process to
obtain the IMFs is called sifting.

The first complex extension of EMD was proposed in [6].
An extension of EMD to analyze complex/bivariate data which
operates fully in the complex domain was first proposed in
[7], termed rotation invariant EMD (RI-EMD). An processing
which gives more accurate values of the local mean is the
bivariate EMD (BEMD) [8], where the envelopes correspond-
ing to multiple directions in the complex plane are generated,
and then averaged to obtain the local mean. An extension
of EMD to trivariate signals has been recently proposed in
[9]; the estimation of the local mean and envelopes of a
trivariate signal is performed by taking projections along
multiple directions in three-dimensional spaces.

B. Multi-Variate EMD

For multivariate signals, the local maxima and minima may
not be defined directly because the fields of complex numbers
and quaternions are not ordered [9]. Moreover, the notion of
‘oscillatory’ modes defining an IMF is rather confusing for
multivariate signals. To deal with these problems, the multiple
real-valued projections of the signal was proposed [10]. The
extrema of such projected signals are then interpolated com-
ponentwise to yield the desired multidimensional envelopes of
the signal. In multivariate EMD, we choose a suitable set of
direction vectors in n-dimensional spaces by using: (i) uniform
angular coordinates and (ii) low-discrepancy pointsets.

The problem of finding a suitable set of direction vectors
that the calculation of the local mean in an n-dimensional
space depends on can be treated as that of finding a uniform
sampling scheme on an n sphere. For the generation of a
pointset on an (n−1) sphere, consider the n sphere with centre
point C and radius R, given by R =

∑n+1
j=1 (x j −C j)2 where a

coordinate system in an n-dimensional Euclidean space can
then be defined to serve as a pointset on an (n− 1) sphere.
Let {θ1, θ2, . . . , θn−1} be a set of the (n−1) angular coordinates,
then an n-dimensional coordinate system having {xi}ni=1as the
n coordinates on a unit (n−1) sphere is given by

xn = sin(θ1)× · · ·× sin(θn−2)× sin(θn−1) (8)

Discrepancy can be regarded as a quantitative measure for the
irregularity (non-uniformity) of a distribution, and may be used
for the generation of the so-called ‘low discrepancy pointset’,



leading to a more uniform distribution on the n sphere. A
convenient method for generating multidimensional‘ low-
discrepancy ’ sequences involves the family of Halton and
Hammersley sequences. Let x1, x2, . . . , xn be a set of the first
n prime numbers, then the ith sample of a one-dimensional
Halton sequence, denoted by rx

i is given by

rx
i =

a0

x
+

a2
1

x
+

a3
3

x
+ · · ·+ as+1

s

x
(9)

where base−x representation of i is given by

i = a0+a1× x+a2× x2+ · · ·+as× xs (10)

Starting from i= 0, the ith sample of the Halton sequence then
becomes

(rx1
i ,r

x2
i ,r

x3
i , . . . ,r

xn
i ) (11)

Consider a sequence of n-dimensional vectors {V(t)}Tt=1 =

{v1(t),v2(t), . . . ,vn(t)} which represents a multivariate signal
with n-components, and Xθk = {xk

1, x
k
2, . . . , x

k
n} denoting a set

of direction vectors along the directions givenby angles θk =
{θk1, θ

k
2, . . . , θ

k
n−1} on an (n − 1) sphere. Then, the proposed

multivariate extension of EMD suitable for operating on
general nonlinear and non-stationary n-variate time series is
summarized in the following.

1) Choose a suitable pointset for sampling on an (n− 1)
sphere.

2) Calculate a projection, denoted by {pθk (t)}Tt=1 , of the
input signal {v(t)}Tt=1 along the direction vector xθk ,
for all k (the whole set of direction vectors),giving
{pθk (t)}Kk=1 as the set of projections.

3) Find the time instants {tθki } corresponding to the maxima
of the set of projected signals {pθk (t)}Kk=1.

4) Interpolate {tθki ,v(tθki )} to obtain multivariate envelope
curves {eθk (t)}Kk=1.

5) For a set of K direction vectors, the mean m(t) of the
envelope curves is calculated as

m(t) =
1
K

K∑
k=1

eθk (t) (12)

6) Extract the ‘detail’ d(t) using d(t)= x(t)−m(t). If the ‘de-
tail’ d(t) fulfills the stoppage criterion for a multivariate
IMF, apply the above procedure to x(t)−d(t), otherwise
apply it to d(t).

The stoppage criterion for multivariate IMFs is similar to the
standard one in EMD, which requires IMFs to be designed in
such a way that the number of extrema and the zero crossings
differ at most by one for S consecutive iterations of the
shifting processing. The optimal empirical value of S has been
observed to be in the range of 2–3 [11]. In the multivariate
EMD, we apply this criterion to all projections of the input
signal and stop the shifting process once the stopping condition
is met for all projections.

IV. Application ofMEMD to CSP

We propose a new method by the combination of CSP with
MEMD processing. In the first step MEMD application to the
original signal x(k), each channel has the same number of
IMF index ci(k). Through some experiment, we remove some
of IMFs, in this way a new signal x̂(k) is reconstructed by

x̂(k) =
∑
i∈Ω

ci(k)+ r(k) (13)

where Ω is IMF index, r(k) is the residue, ci(k) reperents the
IMFs corresponding to the original signal, and k is time. The
reconstructed signal can carry more useful information than
the original signal, and are used to design CSP.

V. Experimental Results

We experimented classification of EEG during imagined
movement using the method we proposed. In the experiment,
the proposed method (MEMD–CSP) is used to the classifi-
cation of the EEG data. We also compare the performance
of the proposed method to that of other methods (CSP and
EMD–CSP).
A. Dataset

The EEG dataset which we test with is from BCI competi-
tionIII 2005. This dataset comprises of 118 electrode channels
out of an EEG amplifier sampled at 100Hz. These data are
collected from five subjects aa, al, av, aw, ay. The EEG data
used in this experiment consisted of two classes: right hand
(R) and right foot (F) motor imageries. The visual cues at each
trial last for 3.5 seconds and there are 280 trials each subject,
and 140 trials in each class. [12].

In this experiment, we applied bandpass filter at first, which
the passbands for each subject was 7–30 Hz. Because the
selection of a suitable EEG reference can greatly influence the
classification accuracy and sensitivity to artifacts [13] [14].
In this paper, we also performed another experiment as a
comparison, using a small Laplacian reference [4] which is
obtained by rereferencing an electrode to the mean of its four
nearest neighboring electrodes. Before we apply MEMD or
EMD, 100 of 140 trials in each class were randomly divided
into 10 groups, all trials were completely disrupted the order,
9 of which were used for processing and learning, leaving 1
group as test data (leave-one-out).

B. Experiment Method

1) Channel selection: It is well-known that during the
motor imageries, the parts of brain center are most active [15].
We selected 7 channels from the whole EEG: C1, C2, C3, C4,
C5, C6, Cz, which obtained the biggest contrast between the
weight spatial weights given by CSP. Here we call channel
51–57 for short.

In Fig. 1 the color level represents the coefficients of the
spatial weights given by CSP. The figure shows that when the
motor imagery occurred, the spatial weights of the active part
of the brain was significantly different from the other parts.



(a) w1 (b) w2 (c) colormap

Fig. 1: The CSP weights of subject aa when the CSP was obtained with channel 51-47: (a) weights for right hand movement,
and (b) weights for right foot movement. (c) The colormap represents the value of spatial weights.

2) MEMD1–CSP: In eq. (14), we need to determine Ω for
reconstruction. To obtain the highest classification accuracy,
we need to find a way to choose the proper IMFs ci(k)
that obtained from MEMD processing, then add the ci(k) to
reconstruct the new signal: x̂(k). We make 10 data groups from
100 trials each class, which mentioned in Dataset, because we
used 9 of them for learning, we can obtain 90 ctr

i (k) each
class (i ∈ Ω), where tr is the number of trial. We make all
combinations of IMF index Ω, reconstruct new signal x̂(k),
and make test by CSP. The best result is showed in Table I.

3) MEMD2–CSP: We use the rule of IMF selection based
on the combination of EEG with fractional Gaussian noise
(f Gn) in MEMD in the same way as [2]. It is well known that
the EMD of f Gn acts as a dyadic filter bank [16], hence the
f Gn could be considered as a reference signal to determine the
IMFs representing the actual EEG signals. In each trial of data,
we used the selected 7 channels of EEG and a channel of f Gn,
as the signal x(k) being processed. After MEMD processing,
we obtained IMF index ci(k) of each channel. To select the
proper ci(k), we compare the average power of the IMF index
of each channel

(
Pch
)
, to the average power of f Gn

(
Pf
)
. The

part of the IMF index will be removed, when Pch close to Pf,
retain the ci(k) which Pch is different to Pf apparently. To
facilitate the observation, we demonstrate the most obvious
and effective subject aa in Fig 2. Figure 2 illustrates that we
determine the selection of the IMF index of EEG from the
power of the signal. In this simulation, the number of IMF
index we obtained is 8. The power of 5th, 6th and 7th IMF
index of EEG (ci(k), i ∈ {5,6,7}) close to the power of f Gn.
So we removed these 3 IMF indices of the signal x(k), add
the remaining IMF index together, to get a more clean EEG
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Fig. 2: The relationship of the average power between f Gn
and channel 51–57. The subject is aa. The horizontal axis
represents IMF index, and vertical axis represents the power.

signal x̂(k), the new signal is in the following:

x̂(k) =
∑
i∈Ω

ci(k)+ r(k), Ω = {1,2,3,4,8}. (14)

4) Laplacian derivative: As a contrast, the Laplacian
derivative is applied before the process. The Laplacian ref-
erence is obtained by rereferencing an electrode to the mean
of its four nearest neighboring electrodes. And then we do
the experiment of CSP, EMD–CSP and MEMD–CSP again.
Results are shown in Table II.



TABLE I: Classification accuracy

Method subject
aa al av aw ay

CSP1 71.3 88.4 48.6 89.9 79.9
CSP2 65.3 90.2 63.7 80.3 87.3

EMD–CSP 68.4 89.6 64.1 82.5 86.9
MEMD1–CSP 68.8 90.0 68.8 76.3 87.5
MEMD2–CSP 60.3 82.9 55.3 60.7 74.0

TABLE II: Classification accuracy (using
Laplacian derivative)

Method subject
aa al av aw ay

CSP1 70.7 78.3 48.7 88.5 72.6
CSP2 63.7 87.7 64.0 79.1 86.3

EMD–CSP 62.8 89.5 64.4 79.6 85.9
MEMD1–CSP 63.8 95.0 63.8 71.2 88.1
MEMD2–CSP 55.3 79.7 54.7 70.0 75.6

C. Results

Table I shows classification accuracy obtained by each
methods. Each method is applied to EEG signals as follows.
In the application of the proposed method MEMD–CSP and
the comparative method EMD–CSP, we used data of original
signal as test data. Accuracy rate is given by 10× 10 cross
validation.

Table II shows classification accuracy obtained by each
methods, using Laplacian derivative.
• CSP1 All of 118 EEG channels were classified by CSP.
• CSP2 For comparison, channel 51–57 of the EEG

signals were selected for the classification by CSP.
• EMD–CSP We also classified the EEG signals using

EMD processing. The channels we selected are 51–57.
Because by definition EMD is suitable for univariate sig-
nals, we can obtain different number of IMFs one channel
to another. However we removed the same number of IMF
ci(k) from each channel carrying fewer feature value, then
reconstruct the new signal x̂(k) and classified by CSP.

• MEMD1–CSP As the procedure shown in section V. B.
2), we classified the EEG signals by using the proposed
method in the way of making test for each situation of
IMF selection given by MEMD.

• MEMD2–CSP As the the procedure shown in section
V. B. 3), to find a more effective method about IMF
selection, we also used the method which on the basis
of power comparison.

Table I shows that we obtained the best classification accuracy
using the proposed method MEMD1–CSP in subjects av and
ay.

In the method MEMD1–CSP for subject aa, by making
test for IMF selection we obtained the highest classification
accuracy is 68.8%, when Ω= {2,5,6}. However, in the method
MEMD2–CSP, according to Fig. 2, we removed 5th, 6th
and 7th IMF index, recontructed the signal x̂(k) with Ω =
{1,2,3,4,8}, then obtained classification accuracy is 60.3%,

it illustrates that the results are not satisfied.

VI. Conclusions
We have proposed a novel method where the EEG signal

is decomposed into IMF using the MEMD, and are classified
by CSP. By experiment, the use of MEMD–CSP has shown
to perform well in the application to classification of EEG
signals. However the current study are all based on No.51–
57 channels. The experimental results may not be satisfactory.
We also try other methods, such as seclecting channels by
comparing the spatial weights or in different frequency.
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