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Abstract— Motion description and analysis is important for 
automatically generating new realistic motions in computer 
animation and virtual environments. In this paper, we propose a 
new motion analysis method in low-dimensional latent spaces by 
using Gaussian Process Dynamical Model (GPDM) and 3D curve 
moment invariants. GPDM is used to mapping the high-
dimensional motion data into low-dimensional latent space. 3D 
curve moment invariants are used to describe the features of 
motion curves learned by GPDM. This method can be used to 
describe the characteristic of different motion. We verify our 
method using CMU motion capture database.   

I. INTRODUCTION 

3D human animations are now wildly used in movies, 
sports analysis, virtual reality et al. The animation motion 
data is easier to get than before using motion capture 
techniques. But the captured motion is fixed and it is still hard 
to generate high credibility new motion data from existed 
motion data at present. This is partly because human are 
greatly lack of motion understanding while they are very 
familiar with their own motions. Even a tiny flaw will make 
the motion looks unnatural. Related research has shown that 
people are very sensitive to the detail of human motions 
(Kozlowski and Cutting, 1977). 

The degree-of-freedom (DOF) number of a natural human 
is exceeded 250 (Watt and Policarpo, 2005), which makes 
human motion state space very huge. At present, a new 
motion data is often produced by manual or through 
constraints optimizing in high-dimensional state space on 
motion capture data. The effectiveness and efficiency of these 
methods cannot meet people’s requirement. For improving the 
quality of automatically motion generation, people need to get 
a more precision understanding of motion rules and motion 
characteristics.  

The movement of human beings contains many rigid bodies 
and many DOFs. It is difficult to be analyzed directly. It can 
be noticed that human motions have certain cooperative 
relationships. For example, in the process of walking, the 
movement relation between upper limbs and lower limbs 

follows certain cooperation rules. These kinds of cooperation 
are not only in spatial but also in temporal. These cooperative 
constraints are also true for complex motions. It might be 
more local in time. By now, the coordination relationship is 
not well described both in biomechanics and computer 
animation. The study of such regularity can set up the analysis 
model and statistics model of human beings. These models 
can be used to reduce motion states and improve motion 
generating efficiency of computer animation. 

Motion capture has now become the mainstream 
technology to get the real human motion data. With about ten 
year’s development, researchers have accumulated a large 
amount of captured data, which provides the basis for human 
motion analysis. 

This paper is mainly about our works of human motion 
analysis in low-dimensional latent spaces using GPDM and 
3D curve movement invariants.  

II. R  W

Though there is not a systemic report about human motion 
analysis in low-dimensional spaces, many research works 
have used the cooperative characteristic in human motions. In 
SIGGRPAH2004, Safonova et al. (Safonova et al., 2004) 
proposed a method of synthesizing human motions in low-
dimensional spaces. They observed there are two basic 
characteristics of human motions: 1. Many human motions 
can be represented using five to ten DOFs. 2. Closely related 
motions could be used to construct low-dimensional spaces to 
express other motions of same behavior.   

Using the cooperative relationship of joints, Pullen and 
Bregler (Pullen and Bregler, 2002) suggested that the 
incomplete motion data could be predicted by using previous 
motion data. They proposed a method of generating 
completed human motion using sketch map containing a little 
key frames. The correlation of human motion in space could 
also be used to add physical constraints during motion 
synthesization (Kovar et al., 2002). Chai and Hodgins (Chai 
and Hodgins, 2005) proposed their work on using low-
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dimensional control signals to build human animation in 
SIGGRAPH2005. In their work, they build the animation 
using few retro-markers. The missing data can be makeup 
using the captured database. 

The motion model learned in low-dimensional spaces can 
be used to help motion generation and makeup missing 
motion data.  Taylor et. al. (Taylor et al., 2007) proposed the 
method of using two latent invariants to express human 
motion model, he demonstrated the effective of the method 
for using existed data to makeup the missing motion capture 
data. Wang et al. (Wang et al., 2006) proved that the Gaussian 
Process Dynamical Model (GPDM) could be used to describe 
the spatial characteristic of motion data.  

The main methods used for high-dimensional reduction 
include LLE (Roweis and Saul, 2000), ISOMAP (Tenenbaum 
et al., 2000), GPLVM (Lawrence, 2006) and GPDM (Wang et 
al., 2006) et al. But LLE cannot confirm the dimension after 
dimension reducing. ISOMAP is difficult to select the 
neighborhood points. GPLVM cannot reflect the spatial 
continuity of motion data. We use GPDM to reduce the 
dimension of human motion data in our work. 

III. MOTION ANALYSIS IN LOW-DIMENSIONAL LATENT 

SPACES 

A. Gaussian Process Dynamical Model (GPDM) 

The Gaussian Process Dynamical Model (GPDM) reflects 
the spatial continuity of motion data and the low-dimensional 
dynamic characteristic of motion data (Wang et al., 2006). 
GPDM comprises a mapping from a latent space to the data 
space, and a dynamical model in the latent space (Fig.1). 
These mappings are typically nonlinear. GPDM is obtained 
by marginalizing out the parameters of the two mappings, and 
optimizing the latent coordinates of training data. 

GPDM is to model the probability density of a sequence of 

vector-valued states 1..., ,...,t Ny y y with discrete-time index 

t and D
ty R . Consider a latent-variable mapping with first-

order Markov dynamics. 

1 ,( ; )t t x tx f x A n               (1) 

,( ; )t t y ty g x B n                        (2)      

Here, d
tx R denotes the d dimensional latent coordinates 

at time t . ,x tn  and ,y tn are zero-mean white Gaussian noise 

processes, f and g are (nonlinear) mappings parameterized by 
A and B  respectively. Fig.1 depicts the graphical model. 

f and g  are linear combinations of basis functions i  and 

i . 

        ( ; ) ( )i i
i

f x A a x                 (3) 

( ; ) ( )j j
j

g x B b x                    (4) 

Here
1 2[ , ,...]A a a , 1 2[ , ,...]B b b  

                  
 (a)                                           (b) 

 (a)Nonlinear latent-variable model for time series    (b) GPDM model 

Fig.1. Time-series graphics models 

B. 3D Curve Moment Invariants  

3D curve moment invariant could be used to describe the 
shape characteristics of 3D curves. Xu et al. (Xu and Li, 2008) 
proposed an intuitionistic method to deduce the 3D movement 
invariants. And the invariants could be used as shape 
descriptors for the representation of parametric curves. They 
are independent with rotation, scaling and translation.  

The curve moment in the 3D space can be defined as 
follow: suppose ( ) ( ( ), ( ), ( ))P t x t y t z t is a parametric curve 

in 3R , T  is definition domain of parameter t , and 

( , , )x y z is the density distribution function of the curve. 

3D curve movements of order l m n   are defined by the 
path integrals defined in the path L of P(t): 

2 2 2

( , , )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ( ), ( ), ( ))

l m n
lmn

L

l m n

T

M x y z x y z ds

dx t dy t dz t
x t y t z t x t y t z t dt

dt dt dt







  





(5)              

Here L is the integral path. 
The centroid of the 3D curve can be determined from the 

zero-order and the first-order moments: 
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Then the central moments are defined, they are invariants 
under translation: 

      
( ) ( ) ( ) ( , , )l m n

lmn

L

x x y y z z x y z ds    
              (7) 

Based on the central moments, the moments which are 
independent of the scaling can be getting as follow: 

1
000
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3D curve could be rotated in the 3D space, to get the 
moments invariants independent of rotation. Here we 
defined 4 basic geometric elements. 

1. The distance of every point in the curve to the coordinate 
origin. 

2. The area of the triangle which is constructed by the two 
points in the curve and the coordinate origin. 

3. The dot product of the two vectors which were 
constructed by the two points in the curve and the 
coordinate origin. 



 
 

4. The orientation volume of the tetrahedron which was 
constructed by three points in the curve and the 
coordinate origin. 

Through multiple the four basic geometric elements, we 

could get the integral kernel 1 2( , ... )ncore p p p , the integral 

kernel contains n  points. After the multi-integral, we could 
get the central moments independent of rotation. 

1 2 1 2 1 1 1 2 2 2

1 2

( ( , ... )) ( , ... ) ( , , ) ( , , )

( , , )

n n

n n n n

MI core p p p core p p p x y z x y z

x y z ds ds ds
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C. Motion Description  

The method of constructing moments is based on the basic 
geometry elements such as distance, area and volume etc. The 
moment invariants have clear geometry meaning. 

We use the zero-order moment (the curve length) and three 
second-order moment invariant to describe the motion curves 
in 3D latent spaces. The process of computing curve moment 
invariants is described as follow:  

1. For a motion data, mapping the data into 3D latent 
spaces using GPDM. 

2. Compute the distances ( )D i  of all the sample points in 

the curve ( , , )Data x y z  according to the time. 

3. Construct the zero-order moment
0 000M ( )m D i   . 

4. Compute
100M ( )ixD i ,

010M ( )iy D i  ,
001M ( )iz D i  . 

5. Translate the curve according to the centroid of the 3D 
curve: 
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The coordinate of the points after translation 
are ( ', ' ')Data x y z . 

6. Each moment is computed by its discrete form 
( ') ( ') ( ') ( ) 3i j k

ijk l
x y z D l i j k      

Computing ijk  

7. Construct the three second-order invariants as follow: 

   1 200 020 002m       

   
2 2 2

2 200 020 200 002 002 020 101 110 011m                

       
2 2 2

3 200 020 002 110 101 011 200 011 020 101 002 1102m                

IV. EXPERIMENT  

We select the “Linear+RBF” kernel to learn the motion 
models of different motions by using GPDM. Because the 
learned motion trajectory often intersected in two dimensional 
latent spaces, this made existing large jump in the learned 
models. And the models will appear false. We use three 
dimensional latent spaces while learning motions. In the 
experiment, we use the data from CMU motion capture 

database. The joints of hand and toe are slightly related to the 
poses. Therefore we neglect the DOFs of these joints. The 
DOFs of the full body is 50, and the sample frequency is 
40Hz. 

The learning process is divided into three steps. 
1. Mean every DOFs of the motion dataY , and get the mean 
motion dataY  . 
2. Using principal component analysis (PCA) method to 
initialize the latent coordinate; According to the selected 
dimension of latent space, using the eigenvalue v and the first 
three eigenvectors u of PCA to map the motion data into 3D 
space.   

X = Y'*u(:, 1:3)*diag(1/sqrt(v(1:3)))  
3. Initialize the hyperparameters of GPDM, and the iteration 
number of GPDM learning is set to 100 in our experiments. 

Fig.2, Fig.3 and Fig.4 are the learned motion models of two 
walking motions, two kicking ball motions and two playing 
golf motions respectively. The frame numbers of the motions 
are shown in table I. The images are the poses in the sample 
points. 

 
TABLE I.  SELECTED MOTION LENGTHS 

 

Motion Walk1 Walk2
Kick 
ball1 

Kick 
ball2 

Golf 
1 

Golf 
2 

Length 135 156 369 302 313 292 

 

 

Fig.2. Two walking motion models learned using GPDM 

 

 

Fig.3. Two kicking ball motion models learned using GPDM 

 

 

Fig.4. Two playing golf motion models learned using GPDM 



 
 

 

Before the learning process, we preprocessed the motion 
data. The walking motion data selected is about one period. 
We notice that different motions have different curve shapes 
in the 3D latent spaces. And similar motions have similar 
shapes. For example, the walking motion in the latent space is 
like saddle. 3D curve moment invariants are used to describe 
the motion model in latent space. 

We computed the four invariants of three walking motions 
(the lengths are 135, 133 and 139 respectively, two kicking 
ball motions (the lengths are 369 and 302 respectively) and 
three playing golf motions (the lengths are 313, 314 and 292 
respectively). 

 
 TABLE II .  THE FOUR 3D CURVE MOMENT INVARIANTS OF EIGHT MOTIONS 

 

Motion 0m  1m  2m  3m  

Walk1 10.317 19.832 109.500 136.198 
Walk2 10.728 22.619 135.738 137.800 
Walk3 9.693 21.052 120.148 108.560 
Kick_ball1 19.507 60.025 1138.477 6738.425 
Kick_ball2 19.527 56.614 1023.861 5954.281 
Golf1 15.262 47.914 741.376 3705.910 
Golf2 16.295 51.833 854.212 4486.878 
Golf3 16.718 43.669 603.590 2650.057 

After normalization the four invariants, we got a four order 
eigenvector. The Euclidean distances of the eight motions are 
computed as table III. 
 

TABLE III.  DISTANCE MATRIX OF THE MOTION CURVES EIGENVECTORS 
 

 
Walk
1 

Walk
2 

Walk
3 

Kick 
ball1 

Kick 
ball2 

Golf
1 

Golf
2 

Golf
3 

Walk1 0 0.06 0.04 1.56 1.41 0.93 1.11 0.77 
Walk2 0.06 0 0.06 1.53 1.37 0.89 1.06 0.73 
Walk3 0.04 0.06 0 1.56 1.41 0.93 1.1 0.77 
Kick 
ball1 

1.56 1.53 1.56 0 0.16 0.64 0.47 0.83 

Kick 
ball2 

1.41 1.37 1.41 0.16 0 0.49 0.32 0.67 

Golf1 0.93 0.89 0.93 0.64 0.49 0 0.17 0.22 
Golf2 1.11 1.06 1.1 0.47 0.32 0.17 0 0.38 
Golf3 0.77 0.73 0.77 0.83 0.67 0.22 0.38 0 

The experiment results indicate that the distance of same 
kind of motion is clearly smaller than other kind of motions. 
The zero-order moments and the three second-order curve 
moment invariants can be regarded as the shape descriptors of 
the motion curves in the 3D latent spaces. The curve moment 
invariants can be used to describe and distinguish the motion 
curves learned using GPDM in 3D latent spaces. 

V. CONCLUSION 

GPDM has the good character for describing human motion 
data in latent space. The motion curve in latent space learned 
by GPDM is continuity. The 3D curve moment invariants can 
be used as the shape descriptors of 3D curves in latent space. 
Experiment certificates the validity of the 3D curve moment 
invariants in describing the shape of motion curves. The 3D 
curve movement invariants can describe the character of 
motion model in latent space well, which help to implement 

the motion analysis in low-dimensional space. And it could 
also be used to implement motion identification and 
classification for motion data.  
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