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Abstract— Background subtraction is the basis of object de-
tection and tracking for machine vision systems. Traditional
background modeling methods often require complicated com-
putations and are sensitive to illumination changes and shadow
interference. In this paper, we propose a multiscale background
modeling method, which fully utilizes the color characteristics of
each incoming frame. The proposed method is quite efficient and
is capable of resisting illumination changes and shadow disturb-
ance. Experimental results show that our method is suitable for
real-world scenarios and real-time applications.

l. INTRODUCTION

Obiject detection is imperative for video surveillance. Typi-
cally, a background model is harnessed to distinguish between
foreground and background. With a robust background model,
the objects can then be successfully extracted from the back-
ground.

In literature, a number of methods for detecting moving ob-
jects, in which many different features are employed for
background modeling, have been proposed. The most fre-
quently used features are based on color information. For ex-
ample, a color statistical approach [10] accomplishes back-
ground subtraction without being affected by shadow; fur-
thermore, the algorithm is implemented by a DM270 iMX and
DSP subsystem [7] for DV applications. In addition to the
running statistics (e.g. average) of neighboring frames, a one-
Gaussian adaptive modeling method is a popular approach
that can be found in [11].

However, one-Gaussian modeling cannot cope with dynam-
ic background changes. Therefore, the Gaussian mixture
modeling (GMM) approach [8, 9] was developed by means of
using more than one Gaussian model for each pixel. Pixel
values that do not fit the model are recognized as foreground
areas. One of the examples using GMM was developed (three
Gaussians) for traffic monitoring [2]. Other discussions on
implementation using GMM can be found [5], which pro-
posed an adaptive learning rate control scheme for GMM.

Motion-based and edge-based methods are other approach-
es for background modeling. The motion-based method [10]
utilizes optical flow to detect salient motion over frames. This

approach usually suffers from complicated computations. The
edge-based method [6] considers only edge information in
frames and constructs edge histograms as a feature description
for background modeling. The histogram-matching process
determines the performance of this method.

Recently, Heikkild and Pietikdinen [3] proposed a texture-
based background construction method using local binary
patterns (LBPs). LBPs have the property of tolerance for il-
lumination changes. However, LBPs are not robust; when the
central pixel value used in LBP is affected by noise or sway-
ing trees, the corresponding LBP histogram would not be sta-
ble. This increases the possibilities of false positive and false
negative cases, respectively. Furthermore, the overlapping
block strategy and histogram-matching process proposed in
[3] make their method inefficient.

In this paper, we propose a multiscale structure for back-
ground modeling based on color statistics derived from each
frame. Instead of applying a single scale in the traditional
GMM, we propose a new multiscale color descriptor to en-
hance the tolerance of illumination changes and shadow inter-
ference. Another benefit of our background model is that it
can effectively resist noise disturbance. Due to the simplified
computations of the proposed method, our background model-
ing is highly efficient and is suitable for real-time applications.

The remainder of this paper is organized as follows. First,
we briefly review Heikkild and Pietikdinen’s method in Sec-
tion 2. Then, in Section 3, we present our new background-
modeling scheme based on the multiscale color descriptor as
well as its extension. Then, empirical results and discussions
are given in Section 4, and the conclusions are presented in
Section 5.

Il.  HEIKKILA AND PIETIKAINEN’S METHOD

The texture-based method proposed by Heikkila and Pie-
tikdinen [3] first partitions each image frame into overlapping
blocks so that the extracted shape of the moving object can be
more accurately described. Then, the pixels in each block
produce a histogram according to their LBP values. An exam-
ple of an LBP value for a pixel is illustrated in Fig. 1. Assume



that the pixel value is 6 and its surrounding pixels are 5, 9, 3,
and 1 in counterclockwise order. If the central pixel is greater
than its neighbor, a bit 0 can be generated; otherwise, bit 1 is
produced. Fig. 1(b) shows the result of the binary pattern,
which indicates that the value of LBP is 2.
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(a) Neighbors of the central pixel (b) Binary pattern
Fig. 1. An example of generating LBP.

The histograms of each block support the background mod-
eling. The history of each block histogram is modeled by K
weighted histograms for the purpose of multi-model back-
grounds. When a new block histogram comes in, the histo-
gram compares with the K weighted histograms and performs
background updating. The update process is similar to Stauf-
fer and Grimson’s method [9]. In the updating process, only B
(<K) histograms are selected as the background model. If the
incoming histogram is similar to a model histogram, the new
block is regarded as a background block; otherwise, it is rec-
ognized as a foreground block.

1.  NEW BACKGROUND MODELING METHOD

In this section, we describe the proposed multiscale color
descriptor and corresponding background modeling.

A. Multiscale Color Description

When a camera captures an image, the frame is first divid-
ed into non-overlapping blocks with a size of nxn pixels. For
each block, the mean value m is calculated and defined as
follows:
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where x;; indicates the pixel value in the position (i, j) of the
block.

Unlike GMM, which processes each pixel independently,
the proposed method uses the mean value of each block to
determine whether the corresponding block is a background
or foreground block. When a new block comes in, it is
checked against existing model components for matching
purposes, where a match means that the block mean value lies
within 2.5 standard deviations of a distribution in the GMM.
If any of the distributions is matched, the matched distribution
will be updated. Otherwise (i.e., none of the K Gaussian dis-
tributions can be matched to the current block mean value),
the distribution of the GMM, which has the minimum proba-
bility, is replaced with the distribution associated with the
current block mean value, an initially high variance, and low
prior weight.

The update and unmatched processes are derived from
Stauffer and Grimson’s [9]. When an incoming block matches
the background model and is considered to be a background
block, the weights of the background model are updated by:

m=
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where « is the learning rate and My is 1 for the best-matched
model and 0 for the others.

The learning rate determines the speed of adaptation. That
is, larger learning rates result in faster adaptations.

If the incoming block is a foreground block, the unmatched
process replaces the model that has the lowest weight in the
background model with the incoming block. Then, the weight
of the new block is set to a low initial weight of 0.01 in our
experiments. Finally, the weights of the background model
are renormalized in order to have a sum of one.

In the above description, the incoming block may match the
model with a low weight and is regarded as a background
block. However, the low weight means that the corresponding
model has a low probability of being a background block. To
solve this problem, the weights of the background model are
sorted in decreasing order, and only the first B distributions
are selected as the background model, such that:

B
> w, >TH, , where THg is a predefined threshold. (3)
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B. Extension Of the Proposed Method

In this section, we depict the extension of the proposed
method in order to reduce block effect and enhance the object
shape more seamlessly. For simplicity, the extension method
is described in a single channel without loss of generality. For
each incoming block, it is represented as a multiscale struc-
ture, exhibiting the multiscale resolution for dominant colors.
The multiscale tree structure for feature representation built in
a recursive manner is described as follows:

{x| X € R/, where x = M[i/zj}:
_ ifiisoddandi # 1, (4)
{xl X € R|; /5, where x < M[i/ZJ}'
ifiisevenandi # 1,
where x denotes the pixel value, M; is the mean of R;, and |R;|
is the size of R;.

Fig. 2 is an example of separating an image into two sub-
sets in the first level of our multiscale structure. Fig. 2(a) is
the original image with a size of 7 x 7 pixels. Based on Eq. (4),
we can obtain M;=3.8 for Ry, and then partition the image R;
into R, and R3, as shown in Fig. 2(b) and Fig. 2(c), respective-
ly, where M,=2.17 and M5=6.84.

Furthermore, Figs. 3 and 4 present how the second level is
derived. From the figures we can observe that, the regions for
evaluating the mean values are dynamically determined in-
stead of statically pre-determined. This signifies that these
mean values can characterize the block feature more accurate-
ly. The corresponding tree structure is shown in Fig. 5.

Unlike in the original proposed method, which represents
each block by using only one value, the extended version
generates more means as well as background models for each
block. In the first level, we classify means into 2 types, name-
ly low mean Im and high mean hm presented by R, and R3
respectively. Therefore, in Level-1, Im and hm have their own
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models, respectively. Similarly, there are four background
models for each block in Level-2. The more mean values
there are in a block, the more accurate the detection result will
be, but more computations are required.
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Fig. 3. An example of the second layer in our multiscale structure, where (b)
is Region Ry and (c) is Region Rs.
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Fig. 4. An example of the second layer in our multiscale structure, where (b)
is Region Rs and (c) is Region R;.
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Fig. 5. Result of tree structure of Fig. 2(a).

IV. EXPERIMENTAL RESULTS

The performance of the proposed method is compared with
two state-of-the-art approaches, Stauffer and Grimson’s
method [9] and Heikkil& and Pietikdinen’s method [3], using
several video sequences. The video sequences were acquired
from real indoor and outdoor environments. The simulated
environment for the experiments was equipped with a 2.93
GHz Core 2 Duo Intel processor and 2 GB of memory. The
image resolution was set to 320x240 pixels. All algorithms
were implemented in C++.

For the sake of labeling and segmenting the foreground
pixels, the connected components algorithm [1] was applied
to each background modeling method. The parameters used in
the experiments are listed in Table 1, where « is the learning

rate, THg is used in (3), K denotes the number of Gaussians,
and BS is the block size. An ‘X’ signifies that the parameter is
not required for that method. LBPp is only used in Heikkila
and Pietikdinen’s method [3, 4] and represents using radius R
to find P neighbors such as the example shown in Fig. 1(a).

TABLE |
The parameter values used in the experiments
Parameters a THg K BS THsmooth THp LBPp g
Stauffer and
Grimson’s 0.005 0.9 3 X X X X
method
Heikkila and
Pietikdinen’s 0.005 0.9 3 4x4 8 0.65 LBP,,
method
Proposed
method 0.005 0.9 3 4x4 8 0.75 X

The performance comparisons of these three methods are
presented in Table 2, where the last row denotes the connect-
ed components labeling (CCL) method that is also involved in
the background construction. From this table we can observe
that the proposed method is much faster than other methods
because the proposed multiscale approach requires only mean
block operations. Heikkild and Pietikdinen’s method is slow-
est since they divide each frame into overlapping blocks, and
the size of the LBP histogram significantly affects the per-
formance. Furthermore, Table 3 shows the comparison be-
tween the proposed method and its extension, where it com-
pares the frame rate when a different number of levels is ap-
plied.

TABLE Il
Frame rates using different methods
Stauffer and Heikkila and Proposed
Methods Grimson’s Pietikdinen’s mei:hod
method method
Frame rate 20.94 3.54 50.75
Frame rate
with CCL 20.01 3.38 50.41
TABLE Il
Frame rate comparison of the proposed methods
Proposed
Methods Level-0 Level-1 Level-2
FPS 50.41 44.21 37.15

Fig. 6 demonstrates the results from an outdoor scene and
the effect of a swaying tree. It shows that Stauffer and Grim-
son’s method is very sensitive to a swaying tree and Heikkila
and Pietikdinen’s method is still distracted as well. Since the
proposed method uses the mean of each block instead using
each pixel strategy to do background modeling, Fig.6.d shows
how the proposed method is not susceptible to swaying tree
effect.

Fig. 7 shows the indoor scene with some illumination
changes, where people were walking towards the camera. In
the detection result, it can be observed that Stauffer and
Grimson’s method is very sensitive to illumination changes,
and Heikkil& and Pietikdinen’s method also suffers from noise
interference. On the contrary, the proposed method is much



better able to resist illumination changes. Since the non-
overlapping block approach is adopted, the contour of the
proposed method is coarser than that of the compared meth-
ods.
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Fig. 6. Detection results of the first sequence: (a) original image, (b) Stauf-
fer and Grimson’s method, (c) Heikkild and Pietikdinen’s method, and (d)
proposed method level-0.
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Fig. 7. Detection results of the second sequence: (a) original image, (b)
Stauffer and Grimson’s method, (c) Heikkila and Pietikdinen’s method, and
(d) proposed method level-0.
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Fig.8. Detection results of the fourth sequence: (a) original image, (b)
proposed method level-0 model, (c) proposed method level-1 model, and
(d) proposed method level-2 model.
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Fig.9. Other detection results of the fourth sequence: (a) original image,
(b) proposed method level-0 model, (c) proposed method level-1 model,

and (d) proposed method level-2 model.

With regards to the extension of the proposed method, the
comparison and detection results of Level-0, Level-1 and
Level-2 modes are shown in Figs.8. In the result, the accura-
cies of Level-1 and Level-2 modes are greater than that of
Level-0. Fig.8(d) shows Level-2 mode could enhance shape
of motion object and alleviate block effect.

Fig. 9 shows that the noise around foreground objects can
be alleviated by Level-1 and Level-2. In essence, the exten-
sion, which utilizes a multiscale color descriptor, can give
more a complete object shape without drastically affecting
time consumption.

V. CONCLUSIONS

In this paper, we proposed a multiscale color feature meth-
od for background modeling. The proposed method has the
following advantages: (1) alleviating the effect of swaying
tree, (2) low computations, and (3) easy implementation.

Since the proposed method possesses a very high frame rate,
it is quite suitable for real-time applications or low-power
computation systems such as cell phones and personal digital
assistants (PDAS).
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