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Abstract— Compressive sensing is an emerging technology 

which can recover a sparse signal vector of dimension N via a 

much smaller number of non-adaptive, linear measurements 

than N. It is stated that the K-sparse signal   can be recovered 

exactly from ( log( / ))M K N K measurements provided the 

measurement matrix   satisfies the so-called restricted isometry 

property (RIP). However, for the compressible signal, such as the 

image, which is not K-sparse, how many measurements it 

requires to achieve an acceptable visual quality? In this paper, 

we study the relationship between the image complexity and the 

required measurements in compressive sensing. We propose a 

mathematical model based on image texture and edge density to 

estimate the number of needed measurements. The experimental 

results with a large number of natural images shows that, quite 

most reconstructed images using our pre-calculated number of 

measurements have good enough quality (PSNR > 32dB), which 

confirms our proposed complexity-based model well.  

I. INTRODUCTION 

The conventional approach of reconstructing signals from 

measured data follows the well-known Shannon sampling 

theorem, which states that the sampling rate must be twice the 

highest frequency. Similarly, the fundamental theorem of 

linear algebra suggests that the number of collected 

measurements of a discrete finite-dimensional signal should 

be at least as large as its dimension in order to ensure 

reconstruction. However, the novel theory of compressive 

sensing (CS) provides an alternative to Shannon/Nyquist 

sampling when the signal under acquisition is known to be 
sparse or compressible [1], [2], [3]. It states that if a signal is 

sparse, then under certain conditions it can be reconstructed 

exactly from a small set of non-adaptive, linear measurements 

using tractable optimization algorithms. 

In CS, we measure not periodic signal samples but rather 

inner products with M N  measurement vectors. In matrix 

notation, the measurements y x , where the rows of the 

M N matrix  contain the measurement vectors. While the 

matrix is rank deficient, it loses information in general. In 
their works [4], Candès, Romberg and Tao prove that if the 

matrix satisfies the restricted isometry property (RIP), which 

is initially called the uniform uncertainty principle by them; it 

can preserve the information in sparse and compressible 

signals. A large class of random matrices has the RIP with 

overwhelming probability, such as Gaussian, Bernoulli, 

Rademacher ( 1) , partial random Fourier matrices, etc. To 

recover the signal from the compressive measurements y, we 

search for the sparsest coefficient vector   that agrees with the 
measurements. To date, researches in CS have focused 

primarily both on reducing the number of measurements M 

(as a function of N and K) and on increasing the robustness 

and reducing the computational complexity of the recovery 

algorithm. Today’s state-of-the-art CS systems can robustly 

recover K-sparse and compressible signals from just noisy 

measurements using polynomial-time optimization solvers or 
greedy algorithms. Several introductory texts about 

compressive sensing, as well as a lot of reference materials 

can be found on [5]. 

In recent years, there have been growing amounts of 

interest in applying the results from the field of CS to imaging 

applications, an area known as compressive imaging. It is 

proved that CS is very effective in imaging [6], [7]. However, 

for compressible signals or images, the sparsity K is unknown, 

so the value of M is also undetermined. How many 

compressive measurements it requires to achieve an 

acceptable visual quality for a compressible image? To the 
best of our knowledge, this problem is substantially 

unexplored. 

The sparsity is obviously relevant to the complexity of the 

image content. There are a wide variety of definitions for 

image complexity depending on its application. For example, 

in [8], image complexity is related to the number of objects 

and segments in image. Some works have related image 

complexity to entropy of image intensity [9]. In [10], 

complexity has been considered as a subjective characteristic 

that is represented by a fuzzy interpretation of edges in an 

image. These definitions clarify that there are different 

approaches for calculating image complexity depending on 
the application. Since each definition, based on either 

subjective or objective characteristics of the input image, uses 

a distinct measurement or calculation algorithm, therefore, 

there is not any agreement on image complexity definition. 

There are several image complexity measure approaches, such 

as Quad Tree method [11] and Image Compositional 

Complexity (ICC) [9].  

  In this paper, we firstly study the image complexity 

measure approaches, and propose using the texture and the 

edge density as the metrics of image complexity. We 

propound a mathematic model based on image complexity to 
estimate the number of required compressive measurements 

for the agreed reconstructed quality. With the training image 

set, we fit the function of the number of compressive 

measurements and the image complexity. And then we verify 

the effectiveness of the model with a large number of natural 

images from the test image set. The experimental results show 

that the PSNR of about 90% reconstructed images using our 

pre-calculated number of measurements is more than 32dB, 

which confirms our proposed complexity-based model well. 

The rest of paper is organized as follows. In Section II we 

introduce the background of compressive sensing. In Section 

III we firstly describe our image complexity measure 
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approach by the texture and the edginess and then present our 

proposed mathematical model based on the complexity. 

Section IV presents the experiments and results. Finally 

conclusions are provided in Section V. 

II. BACKGROUND OF COMPRESSIVE SENSING 

Consider a signal M Nx  , which is K-sparse in an 

orthonormal basis  with size N N ; that is, N  defined 

as x   , has at most K nonzero components. Compressive 

sensing [1-4] deal with the recovery of x from undersampled 

linear measurements of the form: 

,y x A                            (1)  

where   is a 1M  vector, M N is the measurement 
matrix that is incoherent with  , and A . More 

specifically, the M measurements in y are random linear 

combinations of the entries of  , which can be viewed as the 

compressed and encrypted version of x. For M N , 

estimating x from the measurements   is an ill-conditioned 

problem. Exploiting the sparsity of  , CS states that the signal 

  can be recovered exactly from  

( log( / ))M K N K
                  

(2)  

measurements provided the matrix   satisfies the so-called 

restricted isometry property (RIP). It has been shown that we 

can recover    (or equivalently, x) exactly by solving the 

following 
0l -norm minimization problem: 

0
min . . .s t y x A  

                
(3)  

Unfortunately, it is a combinatorial, NP-hard problem; 

furthermore, the recovery is not stable in the presence of noise 

[3]. Stable recovery algorithms actually rely on the RIP. They 

can be grouped into two camps. The first approach 

convexifies the 
0l -norm minimization (3) to the 

1l -norm 

minimization 

1
min . . .s t y x A  

                 
(4)  

It corresponds to a linear program that can be solved in 
polynomial time. Many algorithms have been proposed to 

solve the convex optimization problem, including interior-

point methods, projected gradient methods, and iterative 

thresholding.  

The second approach finds the sparsest x agreeing with the 

measurements y through an iterative, greedy search. 

Algorithms such as matching pursuit, orthogonal matching 

pursuit, StOMP [12], CoSaMP [13], and Subspace Pursuit all 

build up an approximation one step at a time by making 

locally optimal choices at each step. 

III. COMPRESSIVE SENSING BASED IMAGE COMPLEXITY 

In CS we do not acquire   directly but rather acquire 

M N linear measurements y x using a M N

measurement matrix . Then we recover   by exploiting its 

sparsity or compressibility. Candès demonstrate that if the 

measurement matrix  satisfies the RIP [1], the good 

estimate of x can be recovered. For K-sparse signals, random 

matrices whose entries are independent and identically 

distributed (i.i.d.) Gaussian, Bernoulli, Rademacher ( 1) , or 

more generally subgaussian work with high probability 

provided ( log( / ))M K N K . For compressible signal, 

however, it is difficult to determine the precise number of 

required measurements to recover the original image with an 

acceptable quality. Moreover, adaptivity is crucial to capture 

the regularity of complex natural images. 
In this paper, we propose a framework to estimate the 

required number M of compressive measurements based on 

the image complexity. Here we concern the overall 

description of image complexity so as to have a global grasp 

of image data, but not other detail messages, such as the 

number of objects and segments in image. Although there is 

not a unique method for image complexity calculation, there 

is a global agreement in classifying images by complexity. 

Among all image features, the texture and the edginess are the 

two most important ones for image visual complexity. Fig. 1 

is the flow chart of our proposed method. In the next section, 

we firstly introduce our complexity measure approach, 
including texture metric and edginess metric, and then 

propose our model to estimate the number of measurements 

of compressive sensing for a good enough reconstruction. 

A. Texture metric 

To date, many texture measures have been developed. Gray 

level co-occurrence matrix (GLCM) [14] is one of the most 

known texture analysis methods. It estimates image properties 

related to second-order statistics. Each entry ( , )i j  in GLCM 

corresponds to the number of occurrences of the pair of gray 

levels i and j which are a distance d apart in original image. 

The probability of gray level i to j is defined as ( , )dp i j . In 

general, there are 4 different directions for d, shown in Fig. 2. 

        

        

Fig. 2 Four different direction (d=5)  
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Fig. 1 The flow chart of proposed method 



In order to estimate the similarity between different gray level 

co-occurrence matrices, Haralick [14] proposed 14 statistical 

features extracted from them. Among these features, the 

entropy measures the disorder of the image. Its mathematical 

equation is shown as: 

( , )log ( , )d d

i j

Entropy p i j p i j 
  

(5)  

It achieves the largest value when all elements in GLCM 

matrix are equal, which implies it is a completely random 

image. When the image is texturally uniform, only few 

GLCM elements are large values, others are zero, which 

implies that entropy is very small. The entropy gives us the 

average information or uncertainty of a random variable, 

which corresponds to the image complexity.  

In our experiments, we firstly divide the whole image into 

several regions with size      , and calculate each one’s 

entropy of GLCM. At last, the average entropy is defined as 

the image texture complexity, as in: 

1

1

1
( , , )log ( , , ) .

RN

ktex
kR

d d

k i jR

Entropy
N

p i j k p i j k
N

E




 




  

(6) 

where 
RN is the number of regions of the image, 

( , , )dp i j k is the probability of gray level i to j in region k. In 

our work, the distance 5d  in Fig. 2 (a). 

B. Edginess metric 

Excepted for the texture, the edginess is also a very 

important component for image visual complexity. An image 

which contains more prominent edges looks clearly more 

complex. In this paper we use the edge ratio as edginess 

metric, defined as in:   

_
e

_

R .edge pixel
dge

total pixel

N
N


          

(7)  

where 
_total pixelN is the total number of pixels in the image 

and
 _edge pixelN is the total number of edge pixels. We make 

use of Prewitt edge detection method with threshold 0.04. The 

Prewitt operator calculates the gradient of the image intensity 

at each point, giving the direction of the largest possible 

increase from light to dark and the rate of change in that 
direction. Its result therefore shows how “abruptly” or 

“smoothly” the image changes at that point. It is exactly 

corresponding to the image complexity or sparsity. 

C. Compressive sensing based image complexity 

Next, we introduce our proposed mathematical model, 

which describes the relationship between the image 
complexity and the number of needed measurements in 

compressive sensing for a certain extent quality. From the 

above, we measure the image complexity 
cI with the sum of 

the texture and the edginess of the image, as in 

eR ,c tex dgeI E 
                         

(8)  

where 
texE is calculated with (6), 

eR dge
is carried out with (7), 

and they are normalized in the range (0,1) , respectively. 

Furthermore, we do experiments to recovery the image with 

different M compressive measurements using Romberg’s 

recovery algorithm in [6]. The reconstruction performance is 

measured by PSNR (dB). From the experiment results, we 

estimate the required M value for PSNR=32 dB of the 

reconstructed image. Our training image set includes 100 
images downloaded from USC SIPI Image database. Fig. 3 

presents the image sparsity vs the complexity for training 

images. And then we fit the experimented data with least-

squares approximation to a linear function, as the line in Fig.3.  

The fitted result is formulated as: 

( ) ,c cM f I I                       
(9)  

where M is the estimated number of compressive 

measurements, 
cI  is the image complexity using (8),  and

are fitting coefficients. In our experiments, 0.70  ,

0.16   . In Section IV we verify the model with a large 

number of test images. 

IV. EXPERIMENTS AND RESULTS 

The experiments are conducted as follows. Firstly, the test 

image set contains 5000 images in good quality. 3000 of them 

are downloaded from the USDA NRCS Photo Gallery 1 . 

Another 2000 images are collected from several types of 

digital cameras. All images are resampled to make all the 

images in the size 256256 and converted into gray-scale. We 
use 800 different images, which chosen randomly from the 

above set, some of them listed in Fig. 4, and calculate the 

                                                        
1 http://photogallery.nrcs.usda.gov 

 

 

Fig. 4   Several images from Test Image Set. 

 

Fig. 3   The sparsity vs the complexity for training images. The line 
is the fitted result with least-squares approximation. 



required number of compressive measurements for PSNR=32 

dB reconstructed quality using (9). Then the images are 

reconstructed with the estimated number of measurements 

using Romberg’s recovery algorithm [6].  

Fig. 5 presents the result of compressive sensing recovery 

for 800 images in Test Image Set by taking an estimated 

number of measurements of the images by (9). It is measured 

by PSNR (dB). It is shown that most of images achieve good 

enough visual quality. Fig. 6 shows the cumulative 

distribution function (CDF) of the reconstructed quality. It is 

clearly seen that about 90% images have more than 32 dB 
visual quality. The result demonstrates that our proposed 

mathematical model is the workable and suitable for 

compressive sensing.  

V. CONCLUSIONS 

Compressive sensing (CS) is a new research topic in signal 

processing that has promoted the interest of a wide range of 

researchers in different fields recently. In this paper, we 

propose a complexity-based mathematic model to estimate the 
number of required measurements for compressive imaging. 

Among lots of image features, we use the texture and the 

edginess, which are the most two important ones to its visual 

complexity as our complexity measure. The experimental 

results with a large number of real-world images shows that, 

more than 90% reconstructed images have good enough 

quality (PSNR > 32dB) when taken our pre-calculated 

number of measurements. Thus, it is confirmed that our 

proposed complexity-based model performs well. 
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Fig. 6   CDF of 800 images recovery PSNR using proposed 

estimated M. 
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Fig. 5   PSNR of the reconstructed image. 
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