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Abstract— A novel metric for full-reference image quality 
assessment (IQA) is proposed in this paper. Based on the sparse 
representation in independent component analysis (ICA) domain, 
the image basis is generated from natural images adaptively, 
which coincides with the characteristics of human vision system 
(HVS). In order to extract the feature vector, a hybrid norm 
optimization strategy is introduced for achieving more stable 
computational performances. The proposed IQA metric is 
calculated as a correlation coefficient between the two feature 
vectors from reference and distorted images, respectively. 
Experimental results on the LIVE Database Release 2 
demonstrate that the proposed metric can achieve competitive 
performances as compared to the well-known structural 
similarity (SSIM) metric. 

I. INTRODUCTION 

Image quality assessment (IQA) has attracted much attention 
in the last decades and is becoming an important issue in 
many applications such as image acquisition, compression, 
transmission, and restoration [1]. There are generally two 
kinds of IQA methods: subjective assessment by humans and 
objective assessment by algorithms. The first one, such as the 
differential mean opinion score (DMOS), is time-consuming 
and can’t be applied in real-time systems. Conversely, the 
objective assessment aims to provide computational models to 
measure the perceptual quality of an image which corresponds 
to the subjective assessment well. According to the 
availability of a reference image, the objective assessment is 
classified into three categories: full-reference (FR), no-
reference (NR), and reduced-reference (RR) methods. In this 
work, we focus our study on FR IQA only.  

Conventional FR IQA metrics, e.g., mean square error 
(MSE) and peak signal-to-noise ratio (PSNR), have been 
widely used due to their mathematical simplicity, but they are 
not in agreement with the perceived quality which reflects the 
mechanism of human visual system (HVS). Recent advances 
have resulted in the emergence of several powerful perceptual 
distortion measures that outperform the MSE and its variants. 
The structural similarity (SSIM) [2] metric is applied to 
measure image quality by capturing the similarity of images, 
which is assumed that natural images are highly structured 
and HVS can adaptively extract such structural information 
easily. In SSIM, a product of three factors of similarity, 

including luminance, contrast and structure, is considered to 
formulate the SSIM metric. Its variant, multi-scale structural 
similarity (MS-SSIM) index [3], which involves structural 
similarity information from different scales, provides a much 
finer model to mimic the human perception of image quality. 
Visual information fidelity (VIF) [4], another IQA metric 
based on the natural image statistics in wavelet domain, has 
been demonstrated to be equivalent to SSIM [5].  

In the last decade, independent component analysis (ICA), 
as a statistical model for natural images, has been used to 
formulate an image as the mixture of image basis [6]. The 
features extracted from ICA are sparse in nature, and suitable 
for IQA because they resemble the simple cells in mammalian 
primary visual cortex. Therefore, a novel IQA metric with 
sparse representation in ICA domain is proposed in this work. 
Experimental results show that the IQA metric proposed here 
can achieve competitive performances compared with SSIM. 

II. PRELIMINARY 

A. SSIM 
As mentioned above, SSIM utilizes the structural 

information to evaluate the image quality. Three factors, such 
as luminance, contrast and structure comparison are integrated 
into the SSIM metric which is defined as 
 

SSIM(x,y)= 
(2μxμy+C1)(2σxy+C2)

(μx
2+μy

2+C1)(σx
2+σy

2+C2)
 . 

 
where x and y represent the reference and distorted images, 
respectively; μx and σx (μy and σy) denote the mean and 
standard deviation of the reference (distorted) image, 
respectively; and σxy is the covariance between x and y. The 
constants C1 and C2 are included in (1) to avoid instability. 

Local SSIM metric is estimated using a symmetric 
Gaussian weighting filter. By pooling the spatial SSIM values, 
the overall image quality is obtained as 
 

SSIM(x,y)=
1
M   ∑

j=1

M
SSIM(xj,yj) . 

(1)

(2)
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where M is the number of local windows over the image; xj 
and yj represent the image patches covered by the jth window 
from the reference and distorted images. 

B. ICA 
ICA is a statistical and computational technique for 

revealing hidden factors that underlie sets of random 
variables, measurements, or signals, which arises from the 
study of blind source separation [6]. The standard linear ICA 
model can be formulated as 
 

 x=As. 
 
where x=(x1, x2,…, xn)T is an observed vector, s=(s1, s2,…, 
sm)T is a vector of the independent latent variables, and A is an 
unknown mixing matrix. Using the observations of x alone, 
the task of ICA is to estimate both s and A simultaneously 
based on the assumption of independence of s. In this work, 
FastICA [7], which is an efficient algorithm based on 
maximum negentropy, is employed to extract meaningful 
components to construct the proposed IQA metric. 

III. PROPOSED IQA METRIC BASED ON ICA 

A. ICA for image basis 
ICA is a suitable computational technique for modeling 

the statistical structure of natural images. There is no unifying 
definition of natural images in literature. Simply they can be 
defined as photographs of typical environment where we live, 
which only form a tiny subset or manifold with low 
dimension in the space of all possible signals. 

For simplicity, only monochrome image I(x,y) is studied 
here, where I(x,y) means the intensity value at the location 
(x,y). From the viewpoint of ICA, an image can be modeled as 
a linear weighted sum of features, which are assumed to be 
fixed and denoted by Ai(x,y), i=1,… ,n. For any incoming 
image, the coefficient of each feature is denoted by si. 
Algebraically, we can write the decomposition as 

I(x,y)= ∑
i=1

n
Ai(x,y)si . 

where we assume for simplicity that the number of features n 
equals the number of pixels. And thus the system in (4) can be 
inverted, indicating that for a given image I, the coefficients si 
can be computed as 

si= ∑
x,y

Wi(x,y)I(x,y) . 

for certain weights Wi. The terminology is not quite strict here, 
either Ai or si can be called feature. They will not bring any 
confusion because Ai is an image vector and si is a number 
associates with Ai. The weights vector Wi is called a feature 
detector. 

In [6], the relationship among the concepts of independence, 
non-gaussianity and sparseness is well studied. It is claimed 
that under quite loose assumptions, these three concepts are 
equivalent. In ICA, the weights Wi can be obtained by finding 

a local maximum of sparseness for si, then the image basis Ai, 
i=1,…,n, can be computed as the inversion of the feature 
detectors  Wi, i=1,…,n. After applying ICA on 29 benchmark 
distortion-free images from the LIVE Database Release 2 
with different size of image patches, two groups of features 
are obtained and shown in Fig. 1. There are 256 features on 
the left of Fig. 1, which constitute a basis in the 16×16 image 
patch space. In addition, only 256 representative features from 
the 32×32 image patch space are shown on the right of Fig. 1. 
By comparison, it turns out that the features obtained by 
maximization of sparseness look like the Gabor filters which 
have been widely used to model the simple cell receptive 
fields in physiology and anatomy. It is clear that the features 
in Fig. 1 have three basic localization properties, that is they 
are localized in (x,y)-space, frequency space and orientation 
space. It is interesting that the image basis is quite stable with 
different patch sizes, which may indicate that the sparse 
features in natural image form a manifold with low dimension 
in the overall patch space. 

It deserves to be mentioned that the Gabor-like features in 
Fig. 1 are extracted by maximization of sparseness with the 
feature coefficients si, which corresponds to the firing rate of 
cells in primary visual cortex [6]. The point is that firing of 
cells consumes energy which is one of the major constraints 
on biological design of organism. The sparse regularization 
means that most cells do not fire more than their spontaneous 
firing rate. Thus, sparse representation is energy efficient, and 
the proposed ICA based model is more natural than the Gabor 
representation in natural image analysis. 

B. Feature Extraction with l1 Norm Regularization 
Under the assumption that natural images can be 

formulated as the weighted mixture of image basis Ai, the 
feature coefficient si obtained by ICA contains the local 
structure information of the natural image, which is a proper 
index for the construction of IQA metric. 

Regarding the calculation of feature coefficients with the 
image basis, after computing the determinant of the image 
basis, we find that the image basis used to analyze the natural 
image is extremely unstable, because its determinant is as tiny 
as zero. This indication could partly verify our guess that the 
intrinsic dimension of natural image may be much lower than 
that of the original signal space. 

(4)

(5)
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Fig. 1   Image basis obtained from ICA (Left: with patch size of 
16×16; Right: with patch size of 32×32). 



To address this problem, a hybrid optimization strategy is 
introduced in this work. Generally speaking, a feature vector s 
is said to be sparse when most of its components are zero or 
very small in magnitude. Mathematically, l0 norm is the 
proper index for measuring sparseness of a vector. But for its 
difficulty in manipulation, it is replaced by l1 norm 
minimization, which is easy to be done with linear 
programming or second-order cone programming. The l1 
norm minimization can be found in many literatures on 
compressed sensing and sparse signal recovery in recent years. 
It has been proved that with overwhelming probability, the 
solution to l1 norm minimization is equivalent to the one to l0 
norm minimization [8].  

Therefore, in order to extract the feature vector s from 
natural images, we formulate this problem as follows 
 

s*=argmins ||s||1+λ||I-As||2. 
 
where the l1 norm term depicts the sparseness of the feature 
vector s; the l2 norm term indicates the reconstruction error; 
A=(A1, … ,An) with Ai as its columns; λ is the weight 
controlling the importance of the error term.  

In general, the hybrid norm optimization is always used to 
solve underdetermined systems. As we have seen that the 
intrinsic dimension of natural images is not as large as the one 
in patch space, so the hybrid optimization strategy is suitable 
despite the system is well-defined in (6). Moreover, such 
optimization processing can provide more stable performance 
than inverting the feature matrix directly. In section IV, the 
MATLAB toolbox l1-MAGIC is chosen to solve this hybrid 
optimization problem in (6). 

C. IQA with Sparse Representation 
As discussed above, the decomposition coefficients s by the 

feature matrix in natural images with no distortion is sparse in 
its components. When the feature matrix A is used to 
decompose any type of distortion images, the sparseness of 
the extracted coefficients is changed to a certain extent. Hence, 
the feature vector s is a good index to construct the IQA 
metric. 

To provide a quantitative description of the change in 
sparseness with distorted images in LIVE Database Release 2, 
we model s with the generalized Gaussian distribution (GGD), 
which has been widely used in image modeling and RF IQA 
[9]. Mathematically, GGD is a double-parameter distribution 
with the form as 
 

p(s)=
β

2αΓ(1/β) exp(-(|s|/α)β). 

 
where α and β are two parameters which control the scale and 
shape of the distribution, respectively. In (7), when β=2, p(s) 
corresponds to the Gaussian distribution. While β=1, we call 
it Laplacian, which is a typical sparse distribution. In general, 
the smaller the parameter β is, the sparser the data taken from 
this distribution are. To test the degree of the change in 
sparseness, we estimate the shape parameter β with the 

coefficient s extracted from both the distortion free and 
degraded image with the same image basis. It turns out that 
the average of the shape parameter β estimated from 29 
distortion free images is round 0.5, and the one estimated 
from 982 degraded images from 5 different distortion types, 
including JPEG2000 compression (JP2K), JPEG compression 
(JPEG), white Gaussian noise (WN), Gaussian blur (GBLUR) 
and transmission errors in the JPEG2000 bit stream using a 
fast fading Rayleigh channel model (FF), in LIVE Database 
Release 2 is round 1.5. These two parameters are smaller than 
2, so both of the distributions are super-Gaussian in statistics. 
But the degree of their sparseness is quite different. 

So we can see that the feature vector s has taken much 
information which can be used to discriminate the difference 
between the distortion free and degraded images. Here, we 
use the correlation coefficient to measure the Difference of 
Feature Vectors as an IQA metric, which is expressed as 
 

DFV(sr
i,sd

i)= 
<sr

i sd
i>

||sr
i||2||sd

i||2
 . 

 
where sr

i and sd
i denote the feature vectors from the reference 

distortion free and degraded images, respectively. Both of 
them are extracted from the same image patch which is 
indexed by i. Essentially, DFV measures the cosine distance 
between the two feature vectors. To obtain an overall IQA 
metric, we can average the whole DFV indexes over all image 
patches. Accordingly, the overall image quality can be 
measured as 

∑
=

=
M

i

i
d

i
rdr ssDFV

M
IIDFV

1

),(1),(  . 

where the letter M means the number of image patches. 

IV. EXPERIMENTAL RESULTS 

The proposed IQA metric in (9) is tested on the LIVE 
Database Release 2, which contains 29 high resolution 
original images and 982 degraded images with different 
distortion levels from 5 types of distortion, including JP2K, 
JPEG, WN, GBLUR and FF. The goal of objective IQA is to 
design computational models that can predict perceived image 
quality accurately. Therefore, the most important criterion to 
evaluate the usefulness of the perceived IQA algorithm is 
whether its prediction correlates well with the human 
subjectivity. Two types of performance indexes are suggested 
in [10]. They are correlation coefficient (CC) which indicates 
prediction accuracy, and Spearman rank-order correlation 
coefficient (SROCC) which indicates prediction monotonicity. 
In addition, the MSE is also calculated. In this paper, the 
prediction between DFV (or SSIM) and DMOS is obtained by 
a cubic polynomial regression and the size of image patch is 
chosen to be 16×16. 

Figure 2 shows the scatter plots of DMOS versus model 
prediction by the IQA metrics of DFV and SSIM with those 5 
distortion types mentioned above. And Table I gives the 
performance comparison including MSE, CC and SROCC. As 
far as CC and MES are concerned, DFV is superior to SSIM 

(6)

(7)

(8)

(9)



except for the distortion type of JP2K. When SROCC is 
considered, SSIM is superior to DFV except for the distortion 
type of WN. 

V. DISCUSSIONS AND CONCLUSIONS 

In this paper, we have proposed a novel metric for FR-IQA, 
which is based on the sparse representation in ICA domain. 
Compared with the common method from harmonic analysis, 
the proposed decomposition method is induced from the 
natural image statistics, which coincides with the evidence 
from HVS. As demonstrated in the experimental results, the 
proposed metric DFV could achieve competitive performance 
with SSIM. As the image basis is fixed in the next 
experiments, the time consumption in our algorithm comes 
from the problem in (6). Compared to the simplicity of SSIM, 
the algorithms in l1-MAGIC are based on linear programming, 
whose complexity is bounded by O(n3), where n is the size of 
image blocks. Exciting result comes from the algorithm in 
[11], which claims that the complexity can be reduced to 
nlog(n/k), where k is the degree of sparseness. Though our 
algorithm is performed on gray images, by pooling scores 
from 3 channels in any color space, it’s generalization to color 
images is considered to be easy. It is believed that the 

research on FR IQA has already plateaued, while RR and NR 
IQA are premature [12]. Compared to the SSIM on pixel level, 
the proposed DFV metric is based on feature level. So it is 
more suitable to study DFV metric in the case of RR and NR 
IQA problems, which leads to our future work.  
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Fig. 2   Scatter plots of DMOS versus model prediction by DFV 
and SSIM with 5 distortion types. 

TABLE   I   PERFORMANCE COMPARISON WITH CC, MSE AND SROCC. 

Indexes IQA FF GBLUR JP2K JPEG WN 
CC DFV 0.9692 0.9559 0.9452 0.9480 0.9827

SSIM 0.9121 0.9379 0.9503 0.9374 0.9444
MSE DFV 5.4403 6.3848 7.9654 7.7191 4.0701

SSIM 9.0558 7.5434 7.5966 8.4498 7.2299
SROCC DFV 0.9371 0.9225 0.8372 0.8922 0.9475

SSIM 0.9474 0.9495 0.9356 0.9246 0.9401
 


