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Abstract—This paper introduces a novel method, called en-
hanced advection, for smoke simulation. The method delays dissi-
pation introduced by interpolation of semi-Lagrangian advection.
Enhanced advection can be implemented easily by two steps.
First, advect the fluid field by semi-Lagrangian advection. Then
convolve it with modified Laplace kernel for enhancement. This
enhancement could compensate for the blurring effect of semi-
Lagrangian advection, so as to reduce blurring and at last delay
dissipation. We discuss how to choose a modified Laplace kernel
for a certain kind of fluid field. Enhanced advection preserves
details significantly, when it is used to enhance the velocity field
of smoke’s self-advection. Besides, we demonstrate the benefits
of this approach by advecting smoke density and image.

I. INTRODUCTION

In the recent past, researchers use incompressible Navier-
Stokes equations to describe various fluid phenomena in
computer graphics[13]. Incompressible Euler equations, the in-
viscid and incompressible form of Navier-Stokes equations[1],
are more commonly used to describe an ideal fluid with no
viscosity. Under initial conditions, solutions for that equations
generate physically based fluid motions. This is done by a
splitting strategy[11] which separates out advection part, body
forces part, and projection part from the fluid equations. In
each time interval, first advect quantity through velocity field,
then add body forces into it, at last project the velocity field
to a divergence-free component so as to conserve volume.
In the advection part, Stam[11] introduced semi-Lagrangian
advection to ensure stability. However, its interpolation step
tends to do an averaging operation, which leads to numerical
dissipation, and at last loses high frequency features of the
fluid, such as vortices and turbulences.

So how to deal with losing of high frequency details?
Considerable techniques have been developed to fix this
problem. One strategy is to increase computing accuracy, i.e.
using higher order interpolations such as monotonic cubic
interpolation[3] and BFECC[6], or using higher resolution
grids like octree [8]. These methods increase the fidelity of
animation. But they either consume more CPU and memo-
ry resources or increase the complexity of data structures.
Another strategy is to compensate for the error of interpo-
lation by adding noise. It comes into two steps: looking
for where to add noise, and choosing a kind of noise to
fill in. Stam[12], Lamorlette[7], Rasmussen[10] and Kim[5]
choose Kolmologorov noise, and Bridson[2] uses curl noise.
Meanwhile, Kim[5] and Narain[9] described how to find
places where details are missed. This strategy brings details
of fluid simulations visually but nonphysically, because the
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details added are noises that bring high frequency signals
together with artifical effects.

These two strategies are both based on generating new
details, while our method focuses on delaying dissipation. We
try to preserve existing details, and let them dissipate slower,
rather than replace them by artificial details. The advantages of
doing this are that the details would behave more naturally and
computing resources could be saved by using existing details
rather than creating new ones. So, how to delay dissipation?
As mentioned above, interpolation step of semi-Lagrangian
advection leads to dissipation such as high frequency features
missing. This dissipation smooths out details visually. Thus
to delay dissipation is to let blurring happen, but to find an
inverse process to compensate for the lost. According to image
processing theory[4], details of image could be emphasized
by enhancing, and be smoothed out by blurring. So enhancing
could be taken as the inverse process of dissipation.

Our advection iterates like this: input a field, semi-
Lagrangian advect it, enhance the field, and re-input the field
into next iteration. This process could preserve details that still
exist after semi-Lagrangian step. Because after enhancement,
details are strengthened, and extra energy would be decreased
by semi-Lagrangian step in the next iteration, and at last
maintains a constant energy. The total energy change behaves
like decrease, increase, decrease, increase and so on, while
the standard semi-Lagrangian advection behaves like decrease,
decrease, decrease and so on. So the latter ultimately smooths
out most details, while the former delays dissipation.

In particular, this paper claims the following novel contri-
butions over previous work:

• A practical implementation of enhancing fluid field in
advection step for delaying dissipation.

• A feasible example of treating fluid field as image and
dealing with it by image processing.

II. ENHANCED ADVECTION

In order to delay dissipation, we compensate for the blurring
effect by enhancing fluid field, see Figure 1. In the n-th time
interval, there is an input field Fn

I , we advect it using standard
semi-Lagrangian method and get Fn

sL:

Fn
sL = L(Fn

I ) (1)

Then enhance Fn
sL and get Fn

E :

Fn
E = E(Fn

sL) = E[L(Fn
I )] (2)

At last, output Fn
E as Fn

O , then input Fn
O to the next time

interval:
Fn+1
I = Fn

O = Fn
E (3)
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Fig. 1. Process of enhanced advection. First semi-Lagrangian advect the field,
then enhance it with kernel K, at last input the result to the next iteration.

Fig. 2. Solver with an enhanced advection. Replace semi-Lagrangian advection
in standard solver with our enhanced advection for velocity field.

For semi-Lagrangian advection Fn
sL = L(Fn

I ), it back
traces each point in the field through velocity field over a
time interval, obtains an old location, calculates its value by
interpolating the field of previous iteration, then sets the result
as the new value.

For enhancement Fn
E = E(Fn

sL), we convolve the field with
a modified Laplace kernel K in space domain and then add
the result to Fn

sL, as the inverse process of blurring:

E(Fn
sL) = Fn

sL ∗K + Fn
sL (4)

According to image processing theory[4], Laplace kernel
represents a differential operation that finds out the sharply
changing regions of Fn

sL, and returns their variations. After
adding the variations to Fn

sL, the original field is enhanced.
How to choose a modified Laplace kernel will be discussed in
the next section. A lot of experiments[4] show that enhancing
an image with Laplace kernel emphasizes its details and
forms a ”clearer” result. In this paper, we treat fluid field as
image. Figure 5 shows the fluid details are enhanced using our
advection.

The enhanced advection could be applied to solvers that
solve Navier-Stokes equations, illustrated by Figure 2.

For each time interval, we firstly advect velocity field
using semi-Lagrangian method, then enhance its output with
a modified Laplace kernel, add force to the field, and ensure
incompressibility by projection. Then this incompressive ve-
locity field is finally evolved into next iteration.

III. MODIFIED LAPLACE KERNEL

The modified Laplace kernel K derives from standard
Laplace kernel with a slightly change, because it is inappropri-

ate to apply the standard kernel to fluid field whose distribution
of values varies a lot. Here is an example; we enhance a field
with modified Laplace kernel, a1 a2 a3

a4 a5 a6
a7 a8 a9

 ∗

 0 −l 0
−l 4l −l
0 −l 0

+

 a1 a2 a3
a4 a5 a6
a7 a8 a9


After enhancing, a5 would change to

a′5 = a5 + l ∗ [(a5 − a2) + (a5 − a4) + (a5 − a6) + (a5 − a8)]

= a5 + l ∗ ∇a5

For fluid field whose value a5 is commonly small such as
density field that varies from 0 to 1, and ∇a5 is also small,
then ∇a5 ≈ a5. If l = 1 which is standard Laplace kernel,
then a′5 ≈ 2 ∗ a5. Thus applying Laplace kernel once would
double or greatly change the values of the whole field, and
ultimately disorder it. In this case, it is wise to apply a small
value to l such as 0.05, so that l∗∇a5 < a5, then a′5 ≈ a5, the
field maintains its structure and enhances details at the same
time.

IV. RESULTS AND ANALYSIS

Enhanced advection can advect many kinds of fields. Here
we apply it to smoke density advection, image advection and
velocity self-advection.

Figure 3 shows the advection of a square density field along
an up-going velocity field on 64 × 128 grids. The left two
images show initial locations of density field. The upper four
are advected using standard semi-Lagrangian advection where
the blurring effect is significant on the top and bottom edge
of the density square and the mass dissipates away. The lower
four images are with enhanced advection, where the blurring
effect is largely decreased and the mass could stay close.

Figure 4 shows the advection of a 64× 64 image along the
same up-going velocity field on 128×256 grids. This example
illustrates that our enhanced advection can delay dissipation of
details. The left two images show initial locations of the image.
The upper four are advected using standard semi-Lagrangian
advection. After a few iterations, the image is smoothed out,
and details are blurred due to the averaging operation in
semi-Lagrangian advection. The lower four images are with
enhanced advection. Compared with the lower first image, the
lower fourth one does blur a little after several iterations. But
in the same column, the lower image is ”clearer” that the upper
one and features of the lower image can be identified. Details
do dissipate, but dissipate slower, so the enhanced advection
successfully delays dissipation.

Figure 5 and 6 are solutions of fluid solvers that animate
smoke on 64 × 128 grids. The left three images show initial
locations of density field. For the upper nine images, we use s-
tandard semi-Lagrangian method for velocity’s self-advection,
while the lower two rows are with enhanced advection, l =
0.03 for the middle nine, and l = 0.05 for the bottom nine.
Figure 6 places a solid sphere in the smoke’s up-going path,
and figure 5 does not. As these images illustrate, smoke with
standard semi-Lagrangian advection behaves smoother than



Fig. 3. Advection of a square density field along an up-going velocity field
on 64×128 grids. The left two images show initial locations. The upper four
are advected using standard semi-Lagrangian method, while the lower four
are with enhanced advection(l=0.05).

that with enhanced advection. In the starting iterations of the
upper scene(the 3rd image form the left) details have already
been lost. As iteration goes on, more details are smoothed out,
and that results in significant numerical dissipation. In contrast,
the lower two scenes preserve details at the beginning. Then
these details are enhanced step by step, and blurring effect is
compensated by this enhancement along, so that dissipation
of details is delayed.

However, a small l(0.03) maintains the smoke shape but en-
hanced details are not that clear, and a large l(0.05) contributes
to clear details in the beginning(the 3rd and 4th images from
the left) but the smoke edges are unnatural at last(the 7th to
9th images from the left). This may be caused by the modified
Laplace kernel. Larger l brings more obvious enhancement
effect. As the kernel convolves with fluid field again and again,
a slight change in the beginning affects the field tremendously
in the end. When iterating with a smaller l, the impact of
the initial slight change is limited. So, a better kernel that
both maintains shape and clearly enhances detail may solve
this problem. We could use machine learning technologies to
generate this kernel in the future.

V. FUTURE WORK

The enhancement in our enhanced advection is done by
convolution, which consumes a lot of computing resources
and time in the space domain. According to signal processing,
this could be done by multiplication in the frequency domain
using FFT. Since multiplication is cheaper than convolution
and there is a great amount of stable and fast implementations
of FFT, it makes sense to port our enhanced advection to
frequency domain.

In Section III, we’ve discussed how to choose a modified
Laplace kernel that is fit for a certain kind of fluid field. But
this is done manually and the result needs to be tuned. We
seek to find a way that generates a suitable kernel automati-
cally. Besides, it is tempting to introduce more techniques of

Fig. 4. Advection of a 64 × 64 image along the same up-going velocity
field as Figure r̃efBoxDens on 128 × 256 grids. The left two images show
initial locations. The upper four are advected using standard semi-Lagrangian
method, while the lower four are with enhanced advection(l=0.05).

signal processing or image processing to fluid animation. Our
experiments in this paper show the connection of these two
fields and the feasibility of this introduction.
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Fig. 5. Solutions of fluid solvers that animate smoke on 64×128 grids. The left three images show initial locations of density field. In the upper nine images,
we use standard semi-Lagrangian method for velocity’s self-advection, while the lower two rows are with enhanced advection, l = 0.03 for the middle nine,
and l = 0.05 for the bottom nine. No obstacles are placed in the scene.

Fig. 6. Solutions of fluid solvers that animate smoke on 64×128 grids. The left three images show initial locations of density field. In the upper nine images,
we use standard semi-Lagrangian method for velocity’s self-advection, while the lower two rows are with enhanced advection, l = 0.03 for the middle nine,
and l = 0.05 for the bottom nine. A solid sphere is placed in the scene.


