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Abstract—The detection of double compression plays an im-
portant role in JPEG image forensics and steganalysis. This
paper introduces a new statistic called factor histogram, which
describes the distribution of the factors being related to the
quantized discrete cosine transform coefficients of JPEG image.
Then, two concrete schemes based on factor histogram are
presented for detecting doubly compressed images and identifying
primary quality factor, respectively. Our experimental results
demonstrate that both of the proposed schemes perform well,
which validates the applicability of factor histogram in the
detection of double compression and the estimation of primary
quantization parameter.

I. INTRODUCTION

JPEG is one of the most widely used standards for com-
pressing image data. Most image acquisition devices and
processing softwares output JPEG files, and the digital images
on the web are often transmitted in this format. So JPEG
images are playing an increasingly important role in our daily
lives. However, with the development of image processing
techniques, it is now easier than ever to tamper with digital
images and the tampered images are usually stored in JPEG
format for distribution. Furthermore, many steganography al-
gorithms (such as F5 [1], Outguess [2], Yass [3], etc.) store
stego images also in JPEG format. In some scenarios, fake
or stego images may cause serious harms if it is failed to
detect them. Therefore, the authentication of JPEG images
and the detection of the secret messages in JPEG images have
become important issues. And many forensics and steganalysis
techniques have been developed to address these issues in
recent years.

The detection of double compression (DC) and the esti-
mation of the primary quantization matrix (PQM) of doubly
compressed images are hot topics in the field of JPEG image
forensics and steganalysis. Double compression refers to the
procedure that a natural image is compressed firstly, then
the compressed image is decompressed into spatial domain
and recompressed with a different quantization matrix. DC
detection is usually the first step to detect forged or stego JPEG
images, while PQM estimation may help to further reveal more
details, such as the location of tampered areas or the length
estimation of the secret message embedded in stego images.
DC detection and PQM estimation have been addressed by
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many researchers, who have also proposed a plenty of algo-
rithms. And these algorithms could be roughly classified into
two categories: the spatial-domain-based algorithms [4]−[6]
and the frequency-domain-based algorithms [7]−[14].

Among the spatial-domain-based algorithms, Luo et al. [4]
proposed a characteristic matrix for blocking artifacts to detect
cropped and recompressed images. Based on the work of [4],
Barni et al. [5] recently proposed two algorithms to identify
cut and paste tampering in forged JPEG images. Chen and Hsu
[6] proposed a blocking periodicity model to analyze blocking
artifacts. The idea of the spatial-domain-based algorithms is
based on detecting the abnormal blocking artifacts of intra
blocks. However, if there is no shift between the JPEG grids of
the two sequential compressions (i.e., recompress with aligned
8×8 grids), these algorithms will fail to detect DC.

The frequency-domain-based algorithms apply the statistics
of quantized discrete cosine transform (DCT) coefficients
to detect DC and/or estimate PQM, requiring that the two
sequential compressions are with aligned 8× 8 grids. Lukas
and Fridrich [7] studied the histogram shape of the quantized
DCT coefficients in doubly compressed image and proposed
three schemes for estimating primary quantization step (PQS).
The first two of their schemes are non-training-based, and
the last one is a training-based scheme that adopts neural
network. Pevny and Fridrich [8] trained a SVM with 144-D
features for DC detection, and designed several SVM-based
multi-classifiers for PQS estimation. Popescu and Farid [9]
observed that the histogram of quantized DCT coefficients in
doubly compressed image appears periodic artifacts, so they
proposed a measure to evaluate the periodicity in histogram
and applied it for DC detection. Fu et al. [10] presented a
novel statistical model called generalized Benford’s law to
study JPEG compression. They reported that the distribution
of the first digits of the quantized DCT coefficients in doubly
compressed image no longer follows the generalized Benford’s
law, which could be used as a clue to detect DC. Li et al. [11]
improved and extended the work in [10] by proposing mode
based first digit features for DC detection and the estimation
of primary quality factor (PQF). Chen and Hsu [12] combined
the features in frequency domain with that in spatial domain
for DC detection, which makes their proposed scheme work
well in both JPEG grids aligned and non-aligned situations.
Besides, several techniques have been developed to locate the
tampered regions in forged JPEG images via DCT coefficient
analysis [13], [14]. Since frequency-domain-based algorithms
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have potentials to detect DC as well as estimate PQS/PQF,
they seem to attract more attentions in recent years.

This paper introduces a new statistic called factor histogram
by analyzing the procedure of double quantization. Factor
histogram describes the distribution of the factors being related
to quantized DCT coefficients. By theoretically analyzing its
characteristics, we find that factor histogram can be applied
to DC detection and PQM estimation, and then design two
schemes to further investigate the advantages and drawbacks
of factor histogram. Our experimental results show that the
proposed schemes can achieve satisfactory performance even
when the tested image is quite small or is compressed by
multiple times, which indicates that factor histogram can be
used as a feasible and effective technique for JPEG DC
detection and PQM estimation.

The rest of the paper is organized as follows. Section
II derives the concept of factor histogram by analyzing the
procedure of the double quantization in JPEG DC, and Section
III describes the details of the proposed DC detection and
PQM estimation schemes. Experimental results are presented
in Section IV. Finally, we conclude our work in Section V.

II. FACTOR HISTOGRAM

JPEG DC makes the DCT coefficients undergo double
quantization. In this section, we derive the concept of factor
histogram by theoretically analyzing the procedure of double
quantization.

Fig. 1 shows the procedure of JPEG DC. In order to
highlight double quantization in JPEG DC, some operations,
such as entropy encoding and decoding, and etc., are omitted.
As shown in Fig. 1, the original coefficient c0 is quantized
by the step size q1 to generate c1, then the quantized coeffi-
cient c1 undergoes a series of operations, which include de-
quantization, inverse DCT, rounding and/or truncating, DCT,
and then becomes into c1q1 +e, where the term e denotes the
error due to the rounding and/or truncating operations. Finally,
the whole term c1q1 + e is quantized again by the step size
q2 to form the coefficient c2. Note that the input and output
data in Fig. 1 are in form of matrix in practice, but for clearly
describing and analyzing the procedure of double quantization,
we adopt the above-mentioned scalar notations.

According to the DC procedure shown in Fig. 1, the
quantized coefficient c2 can be expressed as

c2 =

[
c1q1 + e

q2

]
(1)

where [·] denotes the round operator, and the quantization step
size q1 and q2 are positive integers. In order to derive a clear
relationship among c1, q1, c2 and q2, we ignore the error term
e. According to the rule of round operator, it can be obtained
that [13],

c2 −0.5 ≤ c1q1/q2 < c2 +0.5 (2)

From (2), we can further get the value range of c1q1:

(c2 −0.5)q2 ≤ c1q1 < (c2 +0.5)q2 (3)

Quantization
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Fig. 1. Procedure of JPEG double compression. Some operations are
omitted in order to highlight double quantization.

The above range of c1q1 includes q2 consecutive integers,
which can be collected to form a set D(c2,q2). The set
D(c2,q2) is determined by c2 and q2, and can be described
by

D(c2,q2) = {⌈(c2 −0.5)q2⌉+ x | x = 0,1, · · · ,q2 −1} (4)

where ⌈·⌉ denotes the ceiling operator. Then, according to (3)
and (4), we have

c1q1 ∈ D(c2,q2) (5)

Observing that q1 is one of the positive factors of the term
c1q1, we factorize each integer in D(c2,q2), and collect all of
the positive factors to form the factor set F(c2,q2), which is
given by

F(c2,q2) = {x | mod(y,x) = 0,y ∈ D(c2,q2),x > 0} (6)

where mod(·, ·) denotes the modulo operator. Then we can
obtain that

q1 ∈ F(c2,q2) (7)

Note that the set F(c2,q2) can be regarded as a constraint for
the value range of the step size q1. If c2 = 0, according to (4),
we have 0 ∈ D(0,q2), then, according to (6), we further have
F(0,q2) = Z+, which means that if c2 = 0, F(0,q2) does not
provide any constraint on q1. Therefore, the case that c2 = 0
is omitted in our following analysis.

As mentioned above, D(c2,q2) consists of q2 consecutive
integers, therefore, it is obvious that

{1,2, · · · ,q2} ⊆ F(c2,q2) (8)

Especially, when q1 > q2, according to (7) and (8), we further
have

{1,2, · · · ,q2,q1} ⊆ F(c2,q2) (9)

Here we give a concrete example to show the factor set
property described by (9). Given that c1 = 1, q1 = 8, and q2 =
3, according to (1), we obtain c2 = [c1q1/q2] = 3. Further,
according to (4) and (6), we have D(c2,q2) = {8,9,10} and
F(c2,q2) = {1,2,3,4,5,8,9,10}, respectively. So it is obvious
that {1,2, · · · ,q2,q1}= {1,2,3,8} ⊆ F(c2,q2).

We have analyzed double quantization for a single quantized
coefficient above, and some conclusions (i.e., (8) and (9)) are
drawn. In the following, we consider the case of a quantized
coefficient sequence. Let c2 =

[
c1

2,c
2
2, · · · ,cn

2
]

denote a nonzero
coefficient sequence of length n, in which each component
has been doubly quantized with step size q1 and q2. For each
component ci

2 (i = 1,2, · · · ,n) of c2, we calculate F(ci
2,q2)

according to (6), thus we can get n factor sets totally. All



elements of these factor sets are collected to form a factor
sequence. Then we calculate the histogram of the factor
sequence, and denote the resulting histogram by h f . Since
h f describes the distribution of the elements in the factor
sequence, we call it factor histogram. We also denote the
histogram of the quantized coefficient sequence c2 by hc, and
call it quantized coefficient histogram. It is interesting that h f
can be computed based on hc, and h f can be expressed by

h f (u) =
b

∑
x=a

hc(x)s(u,x,q2),1 ≤ u ≤ r (10)

where a and b denote the minimum and maximum in c2,
respectively, and r is a parameter that controls the interested
range, and s(u,x,q2) is given by

s(u,x,q2) =

{
1, u ∈ F(x,q2)
0, u /∈ F(x,q2)

(11)

Then, according to the definition of h f described by (10) and
(11), we have

0 ≤ h f (u)≤ n (12)

where n = ∑b
x=a hc(x) is the length of the nonzero coefficient

sequence c2.
Up to now, we have derived the concept of factor histogram.

According to (10) and (11), it can be found that the cal-
culation of factor histogram just depends on the quantized
coefficient sequence c2 and its current quantization step size
q2. Therefore, as long as the quantized coefficient sequence
and its current quantization step size are available, the factor
histogram of the sequence can be calculated in practice,
no matter the sequence has been singly quantized, doubly
quantized or repeatedly quantized. For the images being saved
in JPEG format, its quantized coefficients and the quantization
step size can be read from the image file directly; while for
the images that have been JPEG compressed and then been
resaved in other format, such as BMP format, its quantization
step size can be estimated by some existing algorithms [15],
[16], and its quantized coefficients can also be calculated after
knowing the quantization step size.

In the following we analyze some characteristics of the
factor histogram h f . According to (8), (10), and (11), we have

h f (u) = n,u ∈ {1,2, · · · ,q2} (13)

Especially, when q1 > q2, according to (9), (10) and (11), we
have

h f (u) = n,u ∈ {1,2, · · · ,q2,q1} (14)

Eq. (13) means that factor histogram will reach its maxima at
positions 1,2, · · · ,q2, which has nothing to do with how many
times the coefficient sequence have been quantized, and thus
is an inherent characteristic of factor histogram. Furhtermore,
for the doubly quantized sequence with q1 > q2, the factor his-
togram will achieve its maximum at q1 in addition. It is worth
noting that (14) describes a quite important characteristic for
DC detection and PQM estimation.

Here is an example to intuitively illustrate the conclusions
mentioned above. Let c0 denote a coefficient sequence gener-
ated by a Gaussian process with mean 0 and standard deviation

25. Then, we quantize the sequence c0 in three different
manners, which are single quantization with step size qa = 3,
double quantization with step size pair (q′b,qb) = (5,3), and
double quantization with (q′c,qc)= (3,5), then denote the three
quantized coefficient sequences by ca, cb and cc, respectively.
Factor histograms of the three quantization versions of c0
are shown in Fig. 2. The three factor histograms achieve
their maxima at positions 1,2, · · ·qa, positions 1,2, · · · ,qb and
positions 1,2, · · · ,qc, respectively, which validates (13). Since
q′b > qb, Fig. 2(b) shows that the factor histogram of cb also
reaches its maximum at q′b, which validates (14). Although
cc has also gone through double quantization, there is no
additional maximum in its factor histogram due to that q′c < qc.

III. PROPOSED SCHEMES

In practice, many camera manufacturers and image soft-
ware developers have designed their own JPEG quantization
matrixes [17], which may have some differences from each
other. But, the JPEG quantization matrixes provided by the
same company are usually very similar, thus can be regarded
as the same quantization matrix system (QMS).

In some scenarios, the knowledge of primary QMS (i.e., the
QMS used in the primary JPEG compression) can be used as
auxiliary information to detect DC and estimate PQM. Accord-
ing to whether the knowledge of primary QMS is available
or not, the problems of DC detection and PQM estimation
could be classified into two categories. The first category is to
detect DC and estimate PQM with the knowledge of primary
QMS. Whereas the second one is to detect DC and estimate
PQM without any primary QMS knowledge. If the information
of the quantized coefficients in different frequencies can be
integrated together by utilizing the knowledge of primary QMS
appropriately, then better performance should be achieved.
In this paper, we focus on solving the first category of the
problems (i.e. detecting DC and estimating PQM with the
knowledge of primary QMS) by using factor histogram. For
simplicity, standard QMS, which is recommended by JPEG
compression standard, is adopted in our analysis and experi-
ments. And we also assume that the primary and current JPEG
compression use the same QMS. The quality factor ranging
from 1~100 is used to represent the compression quality. User
can adjust quality factor to make a tradeoff between fidelity
and compression rate. In the following, we will describe our
proposed schemes in detail.

A. Detecting JPEG Double Compression

Let F denote the quality factor in standard QMS, and Q =[
qi j

]
8×8 denote the quantization matrix corresponding to F .

For a given JPEG image, we first extract the quantized DCT
coefficients and quantization matrix from the image file, and
calculate the factor histogram for each frequency according to
(10) and (11). We denote the factor histogram of the frequency
(i, j) by hi j

f . Then, we define the following statistic for DC
detection

M(F) =
∑(i, j)∈L hi j

f (q
i j)

∑(i, j)∈L hi j
f (1)

,F = 1,2, · · · ,100 (15)
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Fig. 2. Factor histogram of different quantized sequences (a) singly quantized with step size 3 (b) doubly quantized with step size pair (5,3)

(c) doubly quantized with step size pair (3,5)

where L denotes the set of the interested frequencies. Through
(15), we unify the information of the factor histograms of
different frequencies together to calculate the statistic M(F).
We name the statistic M(F) as the factor matching degree
(FMD) of F for F = 1,2, · · · ,100, and name the curve formed
by the value of M(F) at each position F as FMD curve, due
to M(F) has the following characteristics:

1) Since 0 ≤ hi j
f (q

i j)≤ hi j
f (1) for 1 ≤ i, j ≤ 8, according to

(15), we have 0 ≤ M(F)≤ 1.
2) Let Fc denote the quality factor of current compression,

and Qc denote its corresponding quantization matrix.
According to (13), it is obtained that hi j

f (u) = ni j, u ∈
{1,2, · · · ,qi j

c }, 1≤ i, j ≤ 8, where ni j denotes the number
of nonzero coefficients at frequency (i, j). And we also
notice that for standard QMS, when Fc ≤ F ≤ 100,
qi j

c ≥ qi j. Thus, for Fc ≤ F ≤ 100, we have

M(F) =
∑(i, j)∈L hi j

f (q
i j)

∑(i, j)∈L hi j
f (1)

=
∑(i, j)∈L ni j

∑(i, j)∈L ni j = 1 (16)

which means that FMD curve reaches its maxima at
positions Fc,Fc +1, · · · ,100.

3) If the detected image is doubly compressed with quality
factor pair (Fp,Fc), and Fp < Fc. In this case, we have
qi j

p ≥ qi j
c for 1 ≤ i, j ≤ 8. Then, according to (14),

hi j
f (q

i j
p ) = ni j. Thus we have

M(Fp) =
∑(i, j)∈L hi j

f (q
i j
p )

∑(i, j)∈L hi j
f (1)

=
∑(i, j)∈L ni j

∑(i, j)∈L ni j = 1 (17)

which means that the FMD curve of a doubly com-
pressed image with Fp < Fc also reaches its maximum at
Fp. In summary, if a given image is doubly compressed
with quality factor pair (Fp,Fc), and Fp < Fc, the FMD
curve of the given image reaches its maxima at positions
Fp,Fc,Fc +1, · · · ,100.

We have observed from a lot of experiments that the FMD
curves of doubly compressed images show two different char-
acteristics, which are determined by the relationship between
Fp and Fc. If Fp < Fc, the FMD curve will have a local peak
at Fp, and is quite distinct from the FMD curve of singly
compressed image. However, if Fp > Fc, the FMD curve is

similar to that of singly compressed image. For instance, given
an uncompressed image, let it undergo a single compression
with quality factor Fc = 80, a double compression with quality
factor pair (Fp,Fc) = (70,80), and a double compression with
quality factor pair (F ′

p,Fc) = (80,70), respectively, then we
get three compressed images. The FMD curves corresponding
to the three compressed images are shown in Fig. 3. All of
the three FMD curves reach the maxima at their positions
Fc,Fc +1, · · · ,100. Particularly, the FMD curve corresponding
to the double compression with Fp < Fc (as shown in Fig.
3(b)) has a local peak at position Fp. According to (17), the
FMD curve should reach its maximum at this position. But,
in practice, M(Fp) suffers a slight decrease inevitably due to
the rounding and truncating errors. However, the FMD curve
corresponding to the double compression with F ′

p > Fc (as
shown in Fig. 3(c)) not only has no obvious local peak, but also
is very similar to that corresponding to the single compression
(as shown in Fig. 3(a)), which indicates that FMD curve is not
suitable for distinguishing double compression with F ′

p > Fc
from single compression.

In the following, we will calculate the height of the above-
mentioned local peak to measure the smoothness of FMD
curve. We first define a statistic as follows

S(F) = M(F)−min{M(i) | i = F +1,F +2, · · · ,100} (18)

Then, the height of local peak can be calculated by

Sp = max
F

{S(F)} (19)

Because that the FMD curve of singly compressed images
decrease from right to left (as shown in Fig. 3(a)), thus Sp
is usually zero for singly compressed image; while Sp takes
positive value (as shown in Fig. 3(b)) for doubly compressed
image, especially for the case that Fp < Fc. Then, we choose a
threshold t to make a binary decision for DC detection. That
is, if Sp > t, the detected image will be regarded as a doubly
compressed image; otherwise, it will be regarded as a singly
compressed one.

Based on the above descriptions, the proposed DC detection
scheme can be summarized by the following steps:
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Fig. 3. FMD curves of three compressed versions (a) single compression with quality factor 80 (b) double compression with quality factor pair (70,80)

(c) double compression with quality factor pair (80,70)

1) For a given JPEG image to be detected, extract its
quantized DCT coefficients and current quantization
matrix to calculate the factor histogram hi j

f for each
frequency (i, j) ∈ L;

2) According to (15), calculate the factor matching degree
M(F) for F = 1,2, · · · ,100, then according to (18) and
(19) , calculate Sp;

3) If Sp > t, the detected image is classified as a doubly
compressed image; otherwise, it is classified as a singly
compressed one.

B. Estimating Primary Quality Factor

We have explained in section III-A that the FMD curve
corresponding to the doubly compression with Fp < Fc usually
has a local peak at position Fp. By detecting the position of
the local peak, we can estimate Fp by

F̂p = argmax
1≤F≤Fc,S(F)>0

M(F) (20)

Note that F̂p can be used as the estimation of Fp only when
Fp < Fc. In practice, we may need to confirm whether the
condition Fp < Fc is satisfied or not when we use the proposed
scheme to estimate PQF. This can be performed by checking
whether M(F̂p) is close to 1 or not.

For simplifying our analysis and description, we have as-
sumed that the primary and current JPEG compression adopt
the same QMS. However, the proposed schemes with minor
modifications can also perform well even if the two consequent
compressions adopt different QMS.

IV. EXPERIMENTAL RESULTS

In order to test the performances of the proposed schemes,
we setup several image sets for our experiments. First, 2000
color images are randomly selected from COREL and NRCS
image sets. Then these color images are converted to grayscale,
and center-cropped into smaller images of sizes 512× 512,
256× 256,· · ·, 8× 8. Thus, there are totally 7 natural image
sets with different sizes. In our experiments, we adopt Matlab
image processing toolbox to implement JPEG compression,
and use JPEG toolbox [18] to extract the quantized DCT
coefficients and the quantization matrix for calculating factor
histogram. And the parameters of the proposed schemes are

set as a = −128, b = 128, r = 50, and L takes the first 30
frequencies in Zigzag order.

The first scheme proposed by Lukas and Fridrich in [7]
is used for comparison. Lukas and Fridrich’s (shortened as
L&F’s) scheme estimates primary quantization steps by pro-
ducing a bench image with the cropping and recompressing
operations and then performing compatibility test. As the
authors of [7] said, it can be easily extended to detect DC
and estimate PQM with the knowledge of primary QMS.

A. Experimental Results on DC Detection

We first compare the performance between the proposed and
L&F’s schemes on DC detection. For obtaining appropriate
thresholds for the proposed scheme, each of the 7 natural im-
age sets is divided into two image subsets of the same number
(i.e., each subset has 1000 images). The first image subset is
used to determine the threshold t, while the second one is
used to test the performances of the two compared schemes.
For each image in the first image subset, we randomly selected
two quality factors Fp and Fc from {50,51, · · · ,95} with the
constraint

∣∣Fp −Fc
∣∣≥ 5, then compress the image by a double

compression with quality factor pair (Fp,Fc) and a single
compression with quality factor Fc, respectively. After the
feature Sp of the proposed DC detection scheme is extracted
from each image of the first image subset, we then determine
the thresholds by minimizing the classification error. Finally,
we get 7 thresholds corresponding to the 7 different image
sizes.

In the test stage, each image in the second image subset
is singly compressed with quality factor Fc and doubly com-
pressed with quality factor pair (Fp,Fc), respectively. (Fp,Fc)
is randomly selected from {50,51, · · · ,95}with the restriction∣∣Fp −Fc

∣∣ ≥ 5. We classify the feature Sp of these singly and
doubly compressed images by the determined thresholds and
then calculate the accuracy of classification. For showing the
performance of the two compared schemes in more detail, we
present the experimental results, respectively, for the two cases
that Fp < Fc and Fp > Fc.

It is clearly shown from Table I that the proposed scheme
performs quite well in the case that Fp < Fc. When the size
of the test image is relatively small, the proposed scheme
can obtain higher detection accuracy than L&F’s scheme.



TABLE I
DETECTION ACCURACY (%) OF DOUBLE COMPRESSION

(THE BETTER RESULTS ARE HIGHLIGHTED BY RED AND BOLD FONT)

Size of image 512×512 256×256 128×128 64×64 32×32 16×16 8×8

L&F’s Fp < Fc 98.8 97.2 95.6 88.8 81.7 75.0 -

scheme Fp > Fc 98.1 92.5 73.8 63.8 54.1 48.3 -

Proposed Fp < Fc 97.1 96.6 94.4 90.0 87.5 80.7 76.0

scheme Fp > Fc 67.4 64.1 54.4 50.2 49.9 48.7 48.5

TABLE II
ESTIMATING ACCURACY (%) OF THE PRIMARY QUALITY FACTOR OF DOUBLE COMPRESSION

(THE BETTER RESULTS ARE HIGHLIGHTED BY RED AND BOLD FONT)

Size of image 512×512 256×256 128×128 64×64 32×32 16×16 8×8

L&F’s A(±0) 90.5 90.8 87.1 81.6 61.9 18.8 -

scheme A(±1) 98.9 98.7 96.1 91.6 80.2 36.3 -

Proposed A(±0) 89.5 89.3 88.0 84.3 76.5 62.6 40.1

scheme A(±1) 99.0 98.8 98.0 95.8 89.6 79.0 56.4

TABLE III
ESTIMATION ACCURACY (%) OF THE SECONDARY QUALITY FACTOR OF TRIPLE COMPRESSION

(THE BETTER RESULTS ARE HIGHLIGHTED BY RED AND BOLD FONT)

Size of image 512×512 256×256 128×128 64×64 32×32 16×16 8×8

L&F’s A(±0) 65.5 65.3 63.4 55.9 38.9 11.3 -

scheme A(±1) 74.3 74.6 73.6 67.7 54.2 23.4 -

Proposed A(±0) 86.2 85.5 84.2 80.8 72.7 57.2 36.9

scheme A(±1) 95.5 95.3 94.7 92.7 87.6 74.6 52.2

Especially, when the size of the test image decreases to
8×8, L&F’s scheme fails to work because that the cropping
and recompressing operations cannot be applied to a single
8×8 image block, but the detection accuracy of the proposed
scheme is up to 76%. As mentioned in section III-A, the
proposed scheme is likely unable to detect DC for the case
that Fp > Fc. But we can found from Table I that the proposed
scheme can also detect the doubly compressed image with
Fp > Fc to some extent. In summary, the proposed DC detec-
tion scheme is effective in distinguishing double compression
with Fp < Fc from single compression, even when the size of
the detected image is very small.

B. Experimental Results on PQF Estimation

In this sub-section, we evaluate the performance of the
proposed scheme on PQF estimation. For each image in our
image sets, we doubly compress it by (Fp,Fc) , where Fp
and Fc are randomly selected from {50,51, · · · ,95} with the
constriction of Fc−Fp ≥ 5. In order to make a fair comparison,
we modify L&F’s scheme to make it use the prior knowledge
of Fp < Fc. Here, A(±0) and A(±1) are introduced to measure
the accuracy in estimating PQF. A(±0) denotes the percentage
of the cases that the estimated PQF is equal to the true PQF,
while A(±1) denotes the percentage of the cases that the
absolute difference between the estimated PQF and the true
PQF is not greater than 1.

As shown in Table II, when the size of the detected image
is relatively large, the two compared schemes have almost the

same performance on estimating PQF. With the size of the de-
tected image decreases, the proposed PQF estimation scheme
obtains higher estimation accuracy than L&F’s. Especially, for
the images of size 16×16, the A(±1) of L&F’s scheme is only
36.3%, while the A(±1) of the proposed scheme is 79%, and
for the images of size 8× 8, L&F’s scheme fails to work,
but the proposed scheme can still work and its A(±1) reaches
56.4%. These experimental results show that the local peak of
FMD curve is a quite robust feature for the PQF estimation
in the case that Fp < Fc.

To further show the good performance of the proposed PQF
estimation scheme, we set up 7 image sets consisting of triply
compressed images, and then attempt to estimate the secondary
quality factors of the triply compressed images. It should
be pointed out that, for a triple compression, if we regard
the first compression as a disturbing operation, then the last
two compressions can be regarded as a double compression
disturbed by the first compression, and thus the quality factor
using in the second compression can be also regarded as the
PQF of the disturbed double compression. In this experiment,
we first randomly select a pair of quality factor (Fp,Fc)
from {50,51, · · · ,95} with the constraint Fc −Fp ≥ 5 and a
parameter d from {1,2, · · · ,20}, then let F ′

p = Fp − d, finally
we compress each image in our testing image sets triply with
quality factor group (F ′

p,Fp,Fc). Note that the quality factor
group (F ′

p,Fp,Fc) in this experiment satisfies the condition that
F ′

p < Fp < Fc.

By comparing the experimental results in Table III with



that in Table II, it can be found that the first compression
disturbs the estimation of the secondary quality factor in some
degree. The estimation accuracy of L&F’s scheme decreases
significantly, however, that of the proposed scheme does not
decrease too much. For the images of size 512 × 512, the
A(±0) of L&F’s scheme reaches 90.5% in the case of double
compression, while is only 65.5% in the case of triple com-
pression, which indicates that L&F’s scheme is very sensitive
to disturbances, such as a pre-compression before double
compression. The proposed scheme performs much better than
L&F’s scheme in the case of triple compression. Even for the
images of size 64× 64, the A(±0) of the proposed scheme
also reaches up to 80%, which shows that the feature extracted
from factor histogram is robust to serious disturbances.

V. CONCLUSIONS

In this paper, we have derived the concept of factor his-
togram by theoretically analyzing the procedure of the double
quantization in JPEG double compression. By investigating
the characteristics of factor histogram, we found that the
factor histogram of a doubly quantized sequence with primary
quantization step size larger than current quantization step
size likely has obvious artifact, which can be used as a
clue to detect double quantization and to estimate primary
quantization parameter. We have proposed two schemes to
validate the applicability of factor histogram. The experimental
results show that the proposed schemes have satisfactory
performances even when the detected images are of small size
and are compressed several times, which means that factor
histogram has great potential in detecting double compression
and estimating primary quality factor.
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