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Abstract—This paper introduces activity recognition based on
our proposed array sensor. The array sensor consists of an
antenna array on the receiver side and decomposes received
signals into eigenvectors and eigenvalues. It exploits these compo-
nents depending on its applications, such as activity recognition.
When an event occurs, the propagation environment changes,
and thus the eigenvector and eigenvalue change. Eigenvector
and corresponding eigenvalue are inherent to their propagation
environments so that to activity as well. Based on the change
of these components, we can detect an activity accurately. In
addition, using machine learning based on these components, the
proposed array sensor can classify several more complex states
and activities. This paper also introduces various applications of
array sensor.

I. INTRODUCTION

It is well-known that Japan is the fastest aging society in the
world. In Japan there are a lot of elderly persons living at home
alone [1]. They need to be monitored for their safety. Video
cameras is one way to monitor persons accurately. However,
of course, people do not want to be monitored even by their
children or relatives; people do not want surveillance cameras
to be installed in their home. In addition, information obtained
from one sensor or camera is local. Therefore, we need a
way that can monitor people without invading their privacy.
In house one of the places where an accident occurs most
and need to be monitored is bathroom. We need to monitor
person’s activities, such as falling and drowning in bathroom.
As we can easily imagine, however, one of the places where it
is difficult to install camera is bathroom. In addition infrared
sensors cannot work correctly in bathroom.

For the above application, monitoring, we often want to
know not only whether it happens but also where it does.
Thus, localization is also important. Localization techniques
are roughly classified into two classes, active localization
and passive localization. Majority of localization techniques
is active localization where a person being localized and/or
tracked needs to carry tags/electric devices. In passive local-
ization a person is localized and/or tracked without the need of
tags/electric devices being carried by him. In general passive
localization is preferred owing to relief of stress brought on by
carrying tags/devices. In addition it can extend the application
such as localization in a bathroom. However, localization
accuracy of passive localization is lower than that of active
one in general.

As event detection systems, several electrical wave-based
systems are reported in [2][3][4] where an event such as
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Fig. 1. L-element uniform linear array with source signal s(t) from DOA θ

intrusion is detected based on the change of received signal
strength (RSS). Electrical waves arrive every corner, and thus
wide sensing range is expected. The electrical wave-based
security system has no need to be worried about privacy
invasion by images. However, RSS suffers from the effects of
noise and fluctuates even in static conditions. Thus, a detection
error occurs.

We have proposed an event detection system using the
signal subspace spanned by eigenvector [5]–[8]. This system
uses antenna array as receiver to obtain direction of arrivals
(DOAs) of incident signals (i.e. the signal subspace spanned
by eigenvector). Eigenvector is based on not RSSs but DOAs.
The subspace changes only when the indoor environment of
interest changes intermittently, and statically or dynamically
because the array signal processing removes the effects of
fading and noise. Thus, the systems is referred to as array
sensor. We reported the principle of our array sensor and some
of fundamental detection performance of the system using
dipole antennas arranged linearly or circularly as the receiver,
although they are not necessarily arranged regularly.

This paper introduces activity recognition based on our
proposed array sensor. Using machine learning based on eigen-
vector and eigenvalue components obtained by array sensor
with array signal processing, the proposed array sensor can
classify several more complex states and activities. This paper
also introduces various applications of array sensor.

II. ARRAY DATA MODEL

Consider the L-element circular linear array for simplicity
of explanation. Note that any type of array antennas can be
used in array sensor, even the precise alignment of antenna
elements is not required. The angle of elevation of DOA
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has only 90 degree, because the each element used in this
experiment is dipole antenna. There is one source signal s(t)
shown in Fig. 1. DOA θ is defined clockwise relative to the
Broadside. The source signal s(t) is a plane wave owing to
the far field assumption. The noise n(t) is an additive white
Gaussian noise (AWGN) of zero mean and variance σ2. The
received signal vector x(t) from DOA θ is represented as

x(t) = a(θ)s(t) + n(t) (1)

where a(θ) is referred to as a steering vector, which is a
complex vector denoting a phase shift of a source signal at
each antenna relative to the first antenna (reference point). In
the uniform linear array, the steering vector is represented as

a(θ) =
[
1, e−j 2π

ν d sin θ, . . . , e−j 2π
ν (L−1)d sin θ

]T

(2)

where ν is wavelength and [·]T is transposition. In the indoor
wireless scenario, the antenna array receives not only signals
from direct path but also many reflected multipath components
with different DOAs [9]. Therefore, we represent the received
signal vector that includes the total signal picked up by the
antenna array as follows.

x(t) =
M∑
i=1

αia(θi)s(t) + n(t) = a′s(t) + n(t) (3)

(4)

where M is the total number of direct and multipath com-
ponents, and αi is the phase difference and amplitude decay
between the direct path and the ith multipath. a′ is a new
steering vector, which consists of the linear coupling of the
incident signals.

To analyze wave propagation, we use the data correlation
matrix estimated from the received signal vector. The data
correlation matrix Rxx is defined as follows.

Rxx = E[x(t)x(t)H ] (5)

where E[·] is ensemble average and [·]H is conjugate trans-
pose. In general, additive noise is uncorrelated with the source
signal. The noise is independent in each element Therefore,
the data correlation matrix can be simplified as follows.

Rxx = E[a′s(t)s(t)Ha′H ] +
E[a′s(t)n(t)H ] + E[n(t)a′Hs(t)H ]︸ ︷︷ ︸

→0

+E[n(t)n(t)H ]

= a′Sa′H + σ2I (6)

where S = E[s(t)s(t)H ] and I is the identity matrix. However,
the data correlation matrix Rxx cannot be strictly obtained. In
effect, on the basis of ergodic hypothesis, ensemble average
of eq. (3) is replaced with time average. The estimated data
correlation matrix R̂xx is written for time t = t1, t2, . . . , tNs

R̂xx =
1

Ns

Ns∑
k=1

x(tk)x(tk)H (7)

where Ns is the number of snapshots. In this paper, we treat
R̂xx as Rxx.

III. SUBSPACE-BASED METHOD

Subspace-based method [10] decomposes the data correla-
tion matrix into orthogonal signal and noise subspaces via
the eigenvalue decomposition (EVD). In this paper, signal
subspace spanned by eigenvector is proportional to a′ of
eq. (4).

By the EVD of Rxx, we obtain eigenvalue λi and eigen-
vector vi, which satisfy the following equation:

Rxxvi = (a′Sa′H + σ2I)vi = λivi, i = 1, 2, · · · , L.(8)

EVD of the L-element data correlation matrix Rxx is as
follows.

Rxx = a′Sa′H + σ2I

=
L∑

i=1

λivivH
i (9)

= VΛVH (10)
V = [v1,v2, · · · ,vL] (11)
Λ = diag{λ1, λ2, · · · , λL} (12)

where λi and vi are respectively eigenvalue and eigenvector,
which satisfy the following equation: Since Rxx is a positive
definite Hermitian matrix, the eigenvalue λ is nonnegative real
number and is sorted in the descending order: λ1 ≥ λ2 ≥
· · · ≥ λL(> 0). Then, we can write

a′Sa′Hvi = (λi − σ2)vi = λ′
ivi, i = 1, 2, · · · , L(13)

λ′
i = λi − σ2 (14)

where, because rank[a′Sa′H ] = 1,

λ′
1 > λ′

2 = · · · = λ′
L = 0. (15)

Thus, eigenvalue distribution of the data correlation matrix is

λ1 > λ2 = · · · = λL = σ2. (16)

Therefore, the eigenvalue matrix Λ is decomposed into signal
and noise eigenvalues. However, the eigenvalue distribution is
ideal, and in fact some errors are observed owing to using the
estimated correlation matrix R̂xx.

We can write

a′Hvi = 0, i = 2, 3, · · · , L. (17)

Therefore, the space spanned by the eigenvector matrix V is
decomposed into the orthogonal signal and noise subspaces via
the EVD. The first eigenvector v1 spans signal subspace and
is proportional to a′, because all the eigenvectors are mutually
orthogonal.

IV. DETECTION METHOD

The signal subspace spanned by eigenvector is stable when
the environment of interest does not change, while it changes
when the environment changes. For detecting simple events,
such as intrusion, we can use a simple threshold-based detec-
tion based on change of first eigenvector [5]. For detecting and
classifying more complex states and activities, such as sitting



in a bathtub and falling in a bathroom, we use support vector
machine (SVM). We explain detection methods used in array
sensor in the following.

A signal subspace spanned by an eigenvector is obtained
as the first eigenvector by EVD of the data correlation matrix
and is proportional to a′. Thus, the signal subspace spanned
by eigenvector consists of the linear coupling of the steering
vectors from incident multipath signals as follows.

v1 = span{a(θ1), . . . ,a(θM )} (18)

where span{·} represents the linear coupling of vectors. The
incident multipath signals go through indoor everywhere of
interest. Therefore, the signal subspace spanned by an eigen-
vector represents a wave propagation. When the environment
of interest changes, the wave propagation changes and thus
the signal subspace spanned by an eigenvector changes. Con-
sequently, the signal subspace spanned by an eigenvector is
inherent to each environment of interest.

In the array sensor, we use cost functions based on eigen-
vector and eigenvalue to detect events, depending on what
we want to detect. Each cost function is obtained from Nt

received signal vectors. The cost function P (u) based on the
eigenvector is defined as

P (u) = |v1(uno)Hv1(u)|, (0 ≤ P (u) ≤ 1), (19)

where v1(uno) is the first eigenvector obtained in advance, the
reference vector, and v1(u) is the first eigenvector obtained
at the observation time u. Both eigenvectors are normalized
to unity. P (u) means the correlation between the indoor
environment at the reference time and the observation time
u. Therefore, the closer P (u) to one, the smaller the change
of environment is, and the smaller P (u) is, the larger the
change of environment is. The eigenvector is stationary even in
the noise and fading environment because it does not include
received signal strength (RSS) information.

The cost function Q(u) based on the eigenvalue is defined
as

Q(u) = 1 − |λ1(u) − λ1(uno)|
λ1(uno)

, (Q(u) ≤ 1), (20)

where λ1(uno) is the first eigenvalue obtained in advance, the
reference value, and λ1(u) is the first eigenvalue obtained at
the observation time u. Like P (u), the closer Q(u) is 1, the
smaller the change of environment is, and the smaller Q(u)
is, the larger the change of environment is. The eigenvalue is
less stationary than the eigenvector, but Q(u) can detect even
for the small events. Then, we use both P (u) and Q(u) as the
situation demands [8].

To detect simple events we just set the threshold Pth to the
cost function to detect an event. For detecting and classifying
more complex states and activities, such as sitting in a bathtub
and falling in a bathroom, we use SVM. SVM is one of
the most attractive machine learning [11]. SVM has shown
several advantages in prediction, regression, and estimation
over some of the classical approaches in a wide range of

applications owing to their excellent generalization capabil-
ities. For instance, SVM is used for image processing, natural
language processing, and various antenna processings such
as beamforming, DOA estimation, and sidelobe suppression
[12]. SVM is a supervised computer learning method that
exploits prior knowledge of similar scenarios and functions to
identify unknown (never experienced before) cases or similar
functions. Once the SVM has been trained, then all future
unknown samples can be classified in real time. If we use
machine learning for the safety system like array sensor, there
are some essential points as follows; detect in real time or
semi-real time; work on nonlinear problem; use as many
features as possible. SVM meets the above conditions and
then, it is suitable for localization based on array sensor
system. One of the attractive kernel used as a mapping function
is radial basis function (RBF) kernel, because it has less
numerical difficulties. The number of kernel parameters that
influences the complexity of model selection is small and the
other kernel functions have more kernel parameters than the
RBF kernel [11]. Moreover, we use cost functions based on
the eigenvector and eigenvalue for the features of SVM.

V. LOCALIZATION USING ARRAY SENSOR

The proposed array sensor can localize a person’s position.

A. Training Model

Assume that we classify Np positions. In the training phase,
we get the received signals xp(t) (p = 1, . . . , NP ) when a
person stands at position p for TN observation times. From the
signals, we compute the cost functions Pi(u), Qi(u), where
u = 1, . . . , TN . That is, we have NP TN training samples.
When we need more features for better classification perfor-
mance based on SVM, we also compute the cost functions
based on eigenvectors and eigenvalues with spatial smoothing
processing (SSP) P SSP

j (u), QSSP
j (u) for each data. Next, the

necessary cost functions are combined to one feature vector,
such as

zp = [P1(u), . . . , PL(u), Q1(u), . . . , QL(u), P SSP
1 (u),

. . . , P SSP
DS

(u), QSSP
1 (u), . . . , QSSP

DS
(u)]T . (21)

Then, zp is mapped into high dimensional space by RBF
kernel and the training model is obtained.

B. Localization for Testing Data

The proposed localization algorithm is shown in Fig. 2.
In the testing phase, although we get cost functions and the
feature vector in the same way as in the training phase, we
do not know what position this feature vector is classified
to. However, once the SVM has been trained, then all future
unknown samples can be classified in real time. We localize
the position of standing person based on above algorithm.



Fig. 2. Localization algorithm using array sensor

VI. EXPERIMENTAL RESULTS

A. Experiment 1: Detection of Person’s activities, Standing,
Walking, and Falling down

We show one of our experimental results obtained in the
room with concrete walls and glass walls shown in Fig. 3.
One transmitter and one receiver are fixed in non-line-of-sight
(NLOS) so that the signal subspace spanned by eigenvector
captures sharply the change of the propagation environment.
In NLOS there is no direct-path signal that is dominant over
the signal subspace spanned by eigenvector and thus the
signal subspace spanned by eigenvector enhances the impact of
multipath signals that capture the change of environment. The
experimental parameters are listed in Table I. The proposed
system does not use accurate DOA information of received
signals. Thus, different from general array applications, such
as DOA estimation, the proposed system can use array antenna
where each antenna element is placed in arbitrarily. In addition
no array antenna calibration is needed. Thus, array antenna can
be simple and cost-effective. In addition installation of array
antenna can be easy and simple in practical environments.

Figure 4 shows change of cost functions P (u) and Q(u)
for a series of person’s activities, standing, walking, standing,
and falling down. In this experiment, the person is first at the
point B for 10 seconds and goes through the points C, D, and
A as shown in Fig. 3. Between the points D and A, the person
stops for 10 seconds. For each activity, we can see the different
change of cost functions. Using SVM, we can classify each
activity with high probability. For instance, the classification
probability of activities between falling down and others is
93.3 % without filtering and higher than 98 % with filtering,
where filtering removes sudden changes of activity that is not
possible for people.

Fig. 3. The room used for experiment 1

Fig. 4. Change of cost functions: P (u) and Q(u)

B. Experiment 2: Localization Using Array Sensor

We show one of experimental results of localization using
array sensor. Experimental parameters are listed in Table
I. Localization system is composed of the 2.4 GHz band
transmitter like WLAN and the receiver with 8-element linear
array without calibration. Experimental room is shown in Fig.
5. It is a general class room constructed of ferro-concrete
walls and glass windows. There are obstacles in front of each
transmitter, and then the transmitters and receiver are set on
NLOS.

We define root mean square error (RMSE) as the distance

TABLE I
EXPERIMENTAL PARAMETERS

Transmission frequency 2484, 2467 GHz
Transmission power -10 dBm
Modulation method No modulation

Transmitter Dipole antenna
Receiver 8-element linear array

Sampling rate 20, 60 MHz
Number of snapshots 8192, 1024



Fig. 5. The room used for experiment 2

Fig. 6. RMSE at each position

error between true position and estimated position. 16 features
obtained by array signal processing are used for SVM.

In the training phase, we obtained the data when a person
stands at each position for 100 observation numbers (approxi-
mately 15 seconds) and experimented for three persons. Thus,
the number of training samples is 25×100×3 = 7500. Then,
the SVM separates 1800×3×2 = 10800 testing samples into
25 classes.

Figs. 6 and 7 show RMSE at each position in the room in
Fig. 5 in two ways. We can see that the proposed localization
using array sensor can achieve good RMSE performance
smaller than 2.5 m. We can also see that RMSE at near the
receiver is relatively large, though it is still smaller than 2.5
m.

VII. CONCLUSION

This paper introduces activity recognition based on our pro-
posed array sensor. The proposed system exploits an antenna
array on the receiver side and decomposes received signals into
eigenvectors and eigenvalues. The proposed system exploits
these components depending on its applications, such as
intrusion detection, monitoring, and passive localization. Using

RMSE [m]

Fig. 7. RMSE at each position

machine learning based on these components, the proposed
array sensor can classify several more complex states and
activities. We presented some of our experimental results, such
as detecting person’s activities in office environment and local-
ization performance of person’s position. The proposed array
sensor can be useful for monitoring without invading privacy,
such as monitoring elderly person living alone, monitoring
person in bathroom and restroom.
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