APSIPA ASC 2011 Xi'an

Epsipa

A Method for Improving the Convergence
Characteristics of the Kernel LMS Algorithm based
on the Repeating Method

Kiyoshi NISHIKAWA, Yoshiki OGAWA, and Koji MAKIZAKI
Dept. of Information and Communications Systems, Tokyo Metropolitan University
6-6 Asahigaoka, Hino-shi, Tokyo 191-0065 JAPAN
E-mail: knishikawa@m.ieice.org Tel: +81-42-585-8423

Abstract—In this paper, we propose a method for improving
the convergence characteristics of the kernel least mean square
(KLMS), especially, kernel nomalized LMS (KNLMS) adaptive
algorithm. The proposed method is based on the concept of
the repeating method for the linear LMS adaptive algorithm
which uses the information of the past input and desired signals.
We derive a method for applying it to the KLMS algorithm,
and propose an efficient implementation method. We confirm
the effectiveness of the proposed method through the computer
simulations.

I. INTRODUCTION

In this paper, we propose a method for improving the
convergence characteristics of the kernel least mean square
(KLMS) adaptive algorithm[1], [2] based on the concept of
the repeating method[3], [4].

Kernel adaptive filters enable us to estimate non-linear
systems, and are expected to be used in applications such
as non-linear channel equalization[1]. Kernel adaptive filters
are derived by applying the kernel method to linear adaptive
filtering theory[1]. For the learning of the kernel adaptive
filters, algorithms have been proposed based on the ones
for linear filters, e.g., kernel recursive least squares (KRLS),
kernel affine projection algorithm (KAPA), KLMS, and so
force[1], [2], [5], [6].

The characteristics of those kernel algorithms resemble
the counterpart of the linear algorithm. Namely, the kernel
LMS algorithm requires less computational complexity, but
slower convergence characteristics compared with the kernel
RLS. We, therefore, are required to improve the convergence
characteristics of the kernel LMS algorithm to extend the area
of applications where the kernel adaptive filters could be used.

In this paper, we propose a method for improving the
convergence characteristics of the KLMS using the concept
of the repeating method. The repeating method was proposed
by Nagumo and Noda in the original paper of the normalized
LMS (NLMS), or the leaning method[3]. In the repeating
method, the past input and desired signals of the fixed length
are stored to be reused at later time. Using these stored data,
the adaptive filter will be updated several times at each time
instead of one time in the normal configuration. It is shown
that, by reusing the past data, the rate of convergence of the
algorithm could be accelerated[4], [7].

We derive the repeating method for the KNLMS algorithms
by slightly modifying the original for the linear adaptive filters.
Then, we consider an efficient implementation of the proposed
method. It is shown that we could reduce the required amount
of calculations by storing the results of computation at the
previous times instead of input signals. Through the com-
puter simulations, we verify the effectiveness of the proposed
method.

II. PREPARATION

Here, we describe the repeating method for the linear NLMS
algorithm. Then, we briefly summarize the conventional kernel
method and kernel NLMS.

A. Repeating method

First, we describe the concept of the repeating method. The
method was proposed in the original paper of the NLMS,
or the learning method by Nagumo and Noda[3]. Later, the
method was redeveloped by other researchers, and the method
was renamed as the data reusing method in their papers[7],
[8]. The idea of the repeating method is to store the r past
input and desired signals and reusing them at later time.

It is well known that, in the standard NLMS algorithm, the
filter coefficient vector w(n) will be updated at each time n
using the equation below.

e(n)x(n)
e+ [|lz(n)|?
where w(n), the coefficient vector of the adaptive filter, and
x(n), the input vector, are defined as

w(n) =[wo(n) wi(n) ...wy_1(n)]T (2)
x(n) =[z(n) z(n—-1) ...z(n—N+1)]7 3)

where N shows the length of the filter w(n), and ||-|| show the
Euclidean norm of a vector. The error signal e(n) is defined
as e(n) = d(n) —wT(n)z(n); n (0 <n < 2)is the step size
parameter of the NLMS; and e is a small constant to prevent
the divergence of the update term in case of ||z (n)|| = 0.

When we apply the repeating method, we store the r past
input vectors and desired signals, namely,

wn)=wn-—1)+n9 (D

z(n—1),...,xz(n—r)
d(n),...,dn—r).

At each time n, after the update of the filter w(n) using
Eq. (1), w(n) will be updated using those stored past signals.
Let us express the filter coefficient vector after ¢-th iteration
at time n as w(n, 7). Then, we modify the update equation of
the NLMS algorithm as,

Fori=0tor
w(n,i) =w(n,i—1)
e(n —i)x(n —1)

Uy ree— @

where e(n — i) is defined as
e(n —i) =d(n —i) —w’ (n,i —)x(n —1) ®)

and we set w(n,—1) = w(n — 1,7). Note that this formula
includes Eq. (1) as a case of ¢ = 0 and by letting » = 0, the
algorithm is reduced to the NLMS.

Using the repeating method, we could update the filter r
times at each time. It is shown that we could increase the rate
of convergence by the repeating method[3], [4]

B. Kernel method

Next, we briefly describe the kernel adaptive filtering[1]. In
this case, the input signal x(n) is transformed into a high-
dimensional feature space F'. By denoting the transformation
to the space Fas ®(-), the output signal of the adaptive filter
is expressed as

f(z(n)) = @7 (z(n)) w(n). (©)

Here, let us assume that the filter vector w(n) can be
expressed as a linear combination of m training vectors

®(y(j)) as
w(n) = a;® (y())). (7
j=1

The vectors y(j) are subset of x(¢) (¢ =0,1,...,n— 1) and
the detail will be described in the next sub-section, and «; is
the weight corresponding to y(j). Then, the output in (6) is
expressed[1] as

@) =) (87 (z(n) 2 (y(5) aj. ®)

j=1

By defining o as & = [ay,. .. ,am]T, a could be regarded
as a new set of coefficients of the filter. The kernel adaptive
algorithms are derived[2], [9] to estimate the optimum c.

To estimate o, we should calculate the inner product
®T (x(n))®(y(4)) in Eq. (8). The kernel adaptive filters use
the kernel function to calculate the inner product. A kernel
function k (-, -) is given as

Va,b € X k(a,b) = ®7(a)® (b))

and is used to calculate the inner product in the space F'. This
method is referred to as the kernel trick[1]. Note that, we
do not need to know the transformed vectors ®(a), or ®(b)
themselves to calculate the inner product.

In the following, we use the Gaussian kernel defined as
below that is widely used in the kernel adaptive filters[2], [9].

r(a,b) = exp (~ fla b /263)

where [is called the kernel bandwidth.

(10)

C. Kernel adaptive filter

By applying the kernel method to the linear adaptive filters,
the concept of the kernel adaptive filter is derived[1], [2]. The
description below, and also our proposed method, are based
on the method for designing sparse kernel adaptive filters
proposed in [2].

First, we rewrite Eq. (8) as

® (x(n))" @ (y(1)) k(z(n),y(1)]"
F (@)= <I>(w(n))T.<I>(y(2)> _ k(w(n?7y(2)) N
i (m(n))f ® (y(m)) k (w(n)ﬂ y(m))
=h(n)a (11)
where we set h(n) as
h(n) = [k (z(n),y(1)) ..., s (z(n),y(m)] . (12)

Then, the filter o can be updated using a linear adaptive
algorithm by regarding h(n) as the input vectors to a[1].
Here, we define the matrix D as

D = [y(1)

and D is called the dictionary[2]. The vectors stored in the
dictionary D are m (m < n) past input vectors &, where m is
a variable determined by the algorithm below, and, in general,
m increases as 1.

Let us denote D at time n by D,,. Then, D,, and h(n) are
updated according to the following pseudo algorithm:

y(m)] (13)

Initialization
D, =y(1) =z(1)
hy =k (x(1),y(1))
a(l)=0 , m=1
forn=2,3,---
if max | (2(n),y(7)| > po (14)
D, =D, ;
h = [k (2(n),y(1)) k(@(n),y(m)]" (15
else

m=m-++1

D, =D, U{x(n)}

B = [((n), (1))
end if

end for

T

K (x(n),y(m))]" (16)

In Eq. (14), 1o is a threshold in the range 0 < pp < 1 and its
value is determined according to the sparseness of the filter.

The input vector x(n) will be compared with the vectors in
D,, by the condition shown in Eq. (14). If the condition met,
x(n) will be stored in D,, as a new training vector.

D. Kernel NLMS algorithm

For updating o, several algorithms based on the ones
for linear adaptive filters were proposed, namely, NLMS[2],
RLS[9], ERLS-DCD[6] and so on. We consider the kernel
NLMS algorithm in this paper.

In the kernel NLMS algorithm[2], the filter coefficient
vector a(n) is updated according to

a(n) =a(n —1)

n
TR (a(n) = T (m)an = 1) hn) (17)

where h(n) is given as

T
h(n) = [k (z(n),y(1)) K (z(n), y(m))]
From the equation, we can see that the update formula for the
kernel NLMS is almost identical to that of the linear NLMS.

However, we should remind that the length of the adaptive
filter will become longer as adaptation progress.

(18)

III. PROPOSED METHOD

Let us consider applying the repeating method to the kernel
NLMS algorithm. Then, we notice that we could not directly
apply the method to the KNLMS because of the variation
of the length of the filter coefficients. Besides, the direct
implementation requires the large amount of computation for
calculating the kernel functions repeatedly. Hence, we consider
an efficient implementation method.

A. Repeating method for the kernel LMS algorithm

For deriving the repeating method for the kernel NLMS
algorithm, we consider to store the signals of the previous
time at each time n as in the repeating method for the linear
adaptive filters. Namely, we store r signals, i.e.,

x(n—1),...,x(n—7r)

d(n),...,d(n—r) (19)

For the description of the proposed method, we redefine the
error signal as

e(n,i) =d(n—i) —h' (n—i)a(n,i—1) (20)

where a(n, i) shows the filter coefficient vector of i-th itera-
tion at time n. We set a(n, —1) as the last state of the filter
coefficient at time n — 1, i.e.,

a(n,—1) =a(n—1,r). 21

By letting » = 0, this selection makes the formula of the
repeating method to that of the normal NLMS, or KNLMS
without the repetition. Besides, we use h(n — i) whose
expression is given as

h(n —i)=[x (x(n —i),y(1)) - & (x(n — i), y(m))]"

22)

Using the stored data, the filter coefficient vector «(n, i)
will be update r times at n namely,

Fori=0tor
a(n,i) =a(n,i—1)

N U

me(n,i)h(n — 1)

(23)

However, known from Eq. (22), we need to calculate
m kernel functions at each iteration, and these calculation
are rather heavy computational load. Therefore, we should
consider an efficient implementation method next.

B. Proposed implementation method

Here, let us consider an implementation method of the
repeating method for the KNLMS described in Sec. III-A.
For implementing the method, we should calculate the
kernel functions to obtain h(n) in Eq. (22). The amount of
calculation increases as the number of repeat r increases.
Hence, we consider an efficient way to implement the method.
Let us consider to store the past h(n) instead of x(n) and
reuse it for updating. However, there arise a problem as below.
For simplicity, we show the case of h(n — 1), ie.,

h(n—1) = [k (x(n—1),y(1)) - £ (z(n - 1),y(m))]".
(24)
We should note that the value of m, the length of the filter, at

time n could be different from that at time n — 1. Hence, the
following two cases should be distinguished, namely,

1) m increased at time n — 1 because x(n — 1) was added
to the dictionary.

2) m remains the same as that of time n — 1, or z(n — 1)
was not added to the dictionary.

When the case 2) above, all the elements of h(n — 1) were
calculated at time n — 1, and hence, we can reuse the vector
at time 7.

On the other hand, if m increased at time n — 1, then the
last term of h(n — 1), namely, x(x(n — 1),y(m)) was not
calculated previously. This means that, when m increases, we
can reuse it at time n, by calculating and adding the term
K(@(n—1),y(m)).)

In general, by expressing the vector as h(i), it is defined as

[h(n —)]
r(@(n —1),y(m))]

m not increased
m increased
(25)

0 = { o

By storing the vectors h(i) and reusing at n, we could reduce
the amount of calculation to implement the repeating method
for the kernel NLMS algorithm.

We denote the stored values

H=[h(1) h(2) - k()]

and

TABLE I
COMPARISON OF COMPUTATIONAL COST PER ITERATION OF KRLS,
KNLMS AND THE PROPOSED METHOD. IN THE PROPOSED METHOD 7
SHOWS THE NUMBER OF REPEAT.

KRLS KNLMS Proposed
X 4m? 4 4m 3m + 1 Bm+1Dr
+ 4m? +4m +1 3m (3m)r
kernel M M M

Using the stored data in H and d, we update the filter
coefficients according to

Fori=0tor
a(n,i) =a(n,i—1)

P e(n,i)h(i)

n
+— 28
e+ ||h() (28)

at each time.

We show a comparison of the computational cost per
one iteration of the KNLMS and the proposed method in
Table I. The required calculation in the proposed method is
proportional to the number of repeatr.

IV. SIMULATION RESULTS
Here, we show results of computer simulations using the
proposed method to demonstrate its effectiveness.

A. Forward prediction

In the simulations, we generated the input signal using the
equation[2]

z(n) = (0.8 — 0.5exp (—z(n —1)"?%)) z(n — 1)
— (0.3+0.9exp (—z(n —1)%)) z(n —2)
+0.1sin (z(n — 1)m)

(29)

and the initial values of x_; and x_5 were given as random
numbers of uniform distribution in the region (0, 1).

The order M of the input vector x(n) was set as four, and
we added a white Gaussian noise of SNR 30dB to the signal
2(n). The results were evaluated in terms of the mean squared
error (MSE) and the ensemble averages of 10000 independent
trials are shown.

We compared the conventional KNLMS, KRLS, and the
proposed method. For the proposed method, we set the number
of repeat 7 as » = 2. The threshold value p in the KNLMS
and the proposed methods were set as g = 0.8, and the length
of the signal was 1000.

The results are shown in Fig. 1. From the figure, we could
confirm that the proposed method provides faster rate of
convergence than that of the KLMS, and almost same as that
of the KRLS.

Thus, we could confirm the effectiveness of the proposed
method.

— Kernel-NLMS
Kernel-RLS
—— Proposed

-10

Mean Square Error (dB)
N
o

M{!m;‘\m‘m,,ug_g il

200 400 600 800 1000
Iteration

Fig. 1. Comparison of convergence characteristics of KNLMS, KRLS, and
the proposed method. The proposed algorithm provides almost identical
characteristics to that of the conventional KRLS although its computational
load is lower.

B. Channel equalization

We also applied the proposed method for the channel
equalization of the channel modeled as Rayleigh channel[5].
The parameters of the channel were set as the following. The
number of paths M., were set as M., = 2, the maximum
Doppler frequency fp as fp = 100 [Hz], sampling rate 7
as Ts = 0.8 [p s], and signal length as 1000. We added a
white Gaussian noise of SNR = 30[dB]. For simulating the
non-linearity, the output of the channel was applied to tanh
as[5]

d(n) = tanh(z(n) * w)) + v(n) (30)

where w, shows the optimum filter.

Again, the threshold value ¢ was set as 0.8 for the KNLMS
and the proposed method and r for the proposed as r = 2.
The performance of the KLMS, KRLS, and the proposed
methods were compared in terms of the MSE and the ensemble
averages of 10000 independent trials are shown.

The results are shown in Fig.2. From the figure, we could
confirm that the rate of convergence of the proposed method
was almost same as that of the KRLS at the first stage of the
learning. Besides, in the steady state, the mis-adjustment level
was almost same of that of the KLMS algorithm.

0

— Kernel-NLMS
Kernel-RLS
—— Proposed

Mean Square Error (dB)

200 400 600 800 1000
Iteration

Fig. 2. Comparison of convergence characteristics of KNLMS, KRLS, and the
proposed method for the Rayleigh channel estimation. The proposed algorithm
provides better convergence characteristics than that of the KLMS algorithm.

V. CONCLUSION

In this paper, we proposed the repeating method for the
kernel NLMS algorithm to improve the convergence charac-
teristics. Through computational simulations, we confirmed
that the proposed method could provide faster rate of conver-
gence compared with that of the KLMS algorithm. Besides,
it approaches to that of the KRLS algorithm under some
conditions.

As a future work, we will consider the theoretical analysis
of the proposed method.

REFERENCES

[1] W. Liu, J. C. Principe, and S. Haykin, Kernel Adaptive Filtering. Wiley,
2010.

[2] C. Richard, J. C. M. Bermudez, and P. Honeine, “Online Prediction of
Time Series Data With Kernels,” IEEE Transactions on Signal Processing,
vol. 57, pp. 1058-1067, Mar. 2009.

[3] J. Nagumo and A. Noda, “A learning method for system identification,”
IEEE Transactions on Automatic Control, vol. 12, pp. 282-287, June
1967.

[4] K. Nishikawa and H. Kiya, “A technique to improve convergence speed
of the LMS algorithm,” in Proceedings of IEEE International Symposium
on Circuits and Systems - ISCAS "94, pp. 405-408, IEEE.

[S] W. Liu, I. M. Park, Y. Wang, and J. C. Principe, “Extended Kernel Recur-
sive Least Squares Algorithm,” IEEE Transactions on Signal Processing,
vol. 57, pp. 3801-3814, Oct. 2009.

[6] Y. Ogawa and K. Nishikawa, “A Kernel Adaptive Filter based on ERLS-
DCD Algorithm,” in Proc. of Intl Tech. Conf. Circuits Systems, Computer,
Communications 2011, (Gyeongju), 2011.

[7]1 A. Sayed, “Mean-square performance of data-reusing adaptive algo-
rithms,” IEEE Signal Processing Letters, vol. 12, pp. 851-854, Dec. 2005.

[8] R. Soni, K. Gallivan, and W. Jenkins, “Low-Complexity Data Reusing
Methodsin Adaptive Filtering,” IEEE Transactions on Signal Processing,
vol. 52, pp. 394-405, Feb. 2004.

[9] Y. Engel, S. Mannor, and R. Meir, “The Kernel Recursive Least-Squares
Algorithm,” IEEE Transactions on Signal Processing, vol. 52, pp. 2275—
2285, Aug. 2004.

