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Abstract—In this paper, we address the important problem
of channel selection for a P300-based brain computer interface
(BCI) speller system in the situation of insufficient training
data with labels. An iterative semi-supervised support vector
machine (SVM) is proposed for time segment selection as well as
classification, in which both labeled training data and unlabeled
test data are utilized. The performance of our algorithm has
been evaluated through the analysis of a P300 dataset provided
by BCI Competition 2005. The results show that our algorithm
for channel selection and classification achieves satisfactory
performance, meanwhile it can significantly reduce the training
effort of the system1.

I. INTRODUCTION

A brain computer interface (BCI) is a direct pathway
between a brain and an external device for the purpose of com-
munication and control, particularly for the paralyzed people
who suffer severe neuromuscular disorders, through exploiting
the brain signals such as non-invasive electroencephalogram
(EEG) or invasive neural spikes [1], [2]. Typically, P300 ERP
is an evoked potential of the brain to some specific external
stimulus including auditory, visual, or somatosensory stimuli
in a stream of frequent stimuli [3]. P300-based BCI has been
implemented to help disabled to communicate with computers
through virtual keyboard [4], [5], and the whole system is
called a P300 speller.

Although P300 can be detected at distributed sites of scalp,
it has a dominant parietal topography. Hence, most of the exist-
ing P300 based BCI research has focused on the EEG signals
from a few standard P300 scalp locations (e.g., Fz, Cz, Pz) [6].
However, as a matter of fact, there exists significant spatial
discrepancy of P300 on scalp among individuals. Therefore
the fixed sets of standard P300 channels cannot meet the needs
of building BCIs with high performance for all the subjects.
From the data analysis reports of BCI Competition 2005 [7],
personalized automatic channel selection plays an important
role in the overall performance of the P300 BCI speller. As
a typical example, in [8], recursive channel elimination based
on discriminative score has been used for channel selection.
By eliminating four least important channels in each iteration,
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the classification performance of a large validation data set
is adopted as a fitness index to select the significant subset
of channels. Channel selection and classification regarding a
P300 BCI dataset from BCI Competition 2003 has also been
implemented by a genetic algorithm in [9]. When sufficient
training data are available, the aforementioned channel se-
lection and classification approaches can achieve outstanding
performance.

The state-of-art method, stepwise linear discriminant anal-
ysis (SWLDA) has been widely used in recent work to select
the features for P300 speller [5]. However, this method is a
supervised method without using the information of the test
dataset, which may be not stable over time especially when
the training dataset is small. For the purpose of improving
the performance of P300 speller, we consider to use a semi-
supervised approach in this paper for channel selection. Along
with the feature selection, classification is also performed.

In this paper, we extend the algorithm in [10] for channel
selection in P300 speller where labeled data are insufficient.
Our proposed algorithms make use of both training data with
labels and test data without labels. The statistical distance
of two classes is measured by Fisher ratio, the computation
of which also involves both labeled and unlabeled data. Our
data analysis results from a P300 dataset provided by BCI
Competition 2005 validate the effectiveness of the proposed
algorithm and the benefit brought by using unlabeled data.

II. SELF-TRAINING ALGORITHMS FOR CHANNEL
SELECTION

In P300-based BCIs, the detection of P300 in a segment of
EEG signal can be well described by a two class problem.
The signal containing P300 is labeled by 1, and the signal
without P300 is labeled by -1. In this section, we first define
a Fisher ratio based on SVM score to measure the statistical
distance of feature vector ensembles from the two classes.
Then we present the details of self-training semi-supervised
SVM algorithms for channel selection.

A. Fisher Ratio Based on SVM Score

In this paper, we use SVM as a classifier. Given the Nc

epochs of training data set {(x1, y1), . . . , (xNc
, yNc

)}, where
xi ∈ Rm is an m-dimensional feature vector and yi ∈ {−1, 1}
is the label indicating the class that xi belongs to. A standard
SVM for two-class problem can be defined as [11]
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min
1
2
‖w‖+ C

Nc∑

i=1

ξi

s.t. yi(wT xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1 . . . Nc,

(1)

where w denotes the weight vector of the classifier and ξi

denotes the ith slack variable; ‖ · ‖ indicates L2-norm opera-
tion; and the parameter C > 0 controls the tradeoff between
the slack variable penalty and the margin. The training of the
SVM classifier finds a suitable weight vector w and new data
point x is classified according to the sign of d(x) given by

d(x) = wT x + b, (2)

where d(x) is designated SVM score. SVM score is propor-
tional to the distance between the decision boundary and the
data point x. In this paper, we define a Fisher ratio based on
SVM score for feature selection as well as classification of
P300-based EEG signal.

Generally, Fisher ratio describes the discriminability of data
points from two classes. It is defined as the ratio of the
interclass difference to the intraclass spread [12] and has been
successfully used as an index for feature selection of a motor
imagery BCI [13]. Herein, Fisher ratio based on SVM score
is defined as follows to measure the statistical distance of two
classes of feature vectors. One class refers to P300, the other
one refers to background.

FR =
(mean(di, i ∈ Cl1)−mean(di, i ∈ Cl2))2

(std(di, i ∈ Cl1))2 + (std(di, i ∈ Cl2))2
, (3)

where di denotes SVM score of the ith data point; Cl1 and
Cl2 denote the two classes of epoches with labels being +1
and −1 respectively; mean(·) and std(·) represent mean and
standard deviation operations respectively.

In the case of insufficient training data with labels, however,
the SVM model is generally not reliable, and therefore the
resultant Fisher ratio calculated from SVM score is subject
to bias. We try to solve this problem through semi-supervised
learning where unlabeled data points are also utilized together
with labeled data.

B. Self-Training Algorithm for channel Selection

Assume the availability of an insufficient training data set
with labels and a large test data set without labels. Based
on these data, we present a self-training SVM algorithm
for channel selection and signal classification for P300-based
BCI, where both the Fisher ratio and the SVM classifier are
iteratively updated until the algorithm converges.

The two data sets under consideration include a training
data set Dc containing Nc epochs of EEG signal matrix
Xi ∈ RL×T , i = 1, . . . , Nc with labels yi ∈ {+1,−1},
(i = 1, . . . , Nc), and a test data set Dt containing Nt epochs of
downsampled EEG signal Xi ∈ RL×T , i = Nc + 1, . . . , Nc +
Nt without labels, where L denotes the number of EEG
channels and T denotes the number of samples in time domain.

Firstly, all channels are ranked according to their individ-
ual Fisher ratio in descending order. Secondly, the ranked
channels are grouped into a number of subsets followed by
computing Fisher ratio for each subset. Typically, L subsets
can be obtained, with the first subset containing the top
ranked channel, the second subset containing the top two
ranked channels, and so on. Finally, the subset of channels
with the highest Fisher Ratio is supposed to bear the most
significant discriminability, and is chosen for classification.
The self-trained channel selection and classification algorithm
is summarized below for P300-based BCI.

Algorithm 1: Channel Selection
Define:
[1] Feature vector construction function: FV (Xj , Qi)
consisting the operations of squeezing data point Xj by
deleting the rows not in the subset of channels Qi and
then vectorizing the resultant matrix. FV (Xj , l) picks
out the lth row of Xj .
[2] Iteration stopping criterion: the normalized difference
between labels predicted in two successive iterations
being less than a predefined threshold δ1.
Input: the training set Dc = {X1,X2, . . . ,XNc

} and
their corresponding labels {y1, y2, . . . , yNc

} the test set
Dt = {XNc+1,XNc+2, . . . ,XNc+Nt}
threshold δ2 for stopping the iterations

iter = 1
xl,j = FV (Xj , l), for l = 1 to L, j = 1 to Nc + Nt

Repeat
For l = 1 to L

If iter == 1
{w, b} =SVMtrain{(xl,j , yj)|j = 1, 2, . . . , Nc}
by solving Eq.(1)

Else
{w, b} =SVMtrain{(xl,j , yj)|j = 1, 2, . . . , Nc+
Nt} by solving Eq.(1), where yj , j = Nc + 1,
. . . , Nc + Nt are the labels predicted in the
previous iteration.
End
For j = Nc + 1 to Nc + Nt

yl,j =SVMclass(xl,j ,w, b) according to Eq.(2)
End
with {(xl,j , yj)|j = 1, . . . , Nc} and
{(xl,j , yl,j)|j = Nc + 1, . . . , Nc + Nt},
obtain FR(l) by Eq.(3)

End
rank FR(1), . . . , FR(L) in a descending order, and
the corresponding channel sequence is denoted as a
vector Q
For i = 1 to L

Qi = {Q(1), Q(2), . . . , Q(i)}, which defines an
i-channel subset xQi,j = FV (Xj , Qi), for j = 1
to Nc + Nt

If iter == 1
{w, b} =SVMtrain{(xQi,j , yj)|j = 1, 2, . . . , Nc}
by solving Eq.(1)



Algorithm 1: Channel Selection
Else
{w, b} =SVMtrain{(xQi,j , yj)|j = 1, 2, . . . ,
Nc + Nt} by solving Eq.(1)

End
For j = Nc + 1 to Nc + Nt

yQi,j =SVMclass(xQi,j ,w, b) according to
Eq.(2)

End
calculate FR(Qi) by Eq.(3)

End
Q(s) = arg maxQi{FR(Q1), . . . , FR(QL)}
corresponding predicted labels
yj = yQ(s),j , j = Nc + 1, . . . , Nc + Nt

iter = iter + 1
Until stopping criterion satisfied
Output: the subset of channels Q(s) and the
corresponding labels yQ(s),j , j = Nc + 1, . . . Nc + Nt

III. DATA ANALYSIS AND RESULTS

In this section, we illustrate the application of Algorithm 1
on the data set II of a P300 speller from BCI Competition III
[7]. The data is briefly described as follows. Each subject was
presented with a 6 × 6 matrix of characters shown in Fig. 1,
and was asked to pay attention to one character in each run.
His/her 64-channel EEG signal was sampled at 240 Hz. The
data set was recorded from two different subjects (A and B).
The sequence of 12 row-column intensifications was repeated
15 times (named “repeats” in this paper) for the spelling
of each character. For each subject, the data of totally 185
character spellings were provided by the organizer. We adopt
similar pre-processing techniques as in [8] for the convenience
of comparison of different algorithms. For each channel, the
signals between 200-500 ms posterior to the beginning of
an intensification have been extracted and processed with a
bandpass filter of 0.1 to 10 Hz. The extracted signal has been
decimated by a rate of 10. The data point resulting from a
post-stimulus signal is of dimension 7 × 64, representing 7
temporal samples and 64 channels respectively.

Fig. 1. User interface of the P300 speller used in BCI Competition III

In the following data analysis with Algorithm 1, we simply
use the first 5 consecutive characters provided by the Com-
petition as the initial training set to simulate a small training

set scenario. The next 20 characters were used as the test data
set without labels for retraining in Algorithm 1. Regarding the
independent test set, we use the 100-character test set provided
by the Competition so that the results are comparable to the
other methods. We perform Algorithm 1 for channel selection.
The threshold δ1 for stopping the iterations of Algorithm 1 is
set as 0. Furthermore, we find that the algorithm converges
often within 3 iterations. Regarding the number of repeats
being 15, results show that the optimal number of channels
being 35 for subject A. The selected number of channels for
subject B is 30. At the same time, we perform prediction of
labels for the test data set. Performance has been evaluated
according to the percentage of correctly predicted characters
in the test datasets and in the independent test sets. For the
number of repeats being 3, 4, 5, 10, or 15, the accuracies of
the prediction averaged over the two subjects obtained by our
Algorithm 1 are shown in Table I.

TABLE I
ACCURACY OF CHARACTER PREDICTION IN PERCENTAGE. (THE RESULTS
OF BOTH OUR ALGORITHM 1 AND THE STANDARD SVM ARE BASED ON

THE TRAINING SET WITH 5 CHARACTERS, WHILE RAKOTO’S RESULTS [8]
WERE BASED ON 85 CHARACTERS AS TRAINING DATA. “TEST SET”

INDICATES THE 20 UNLABELLED CHARACTERS USED IN RETRAINING IN
ALGORITHM 1. “IND. TEST SET” INDICATES THE INDEPENDENT TEST SET
WITH 100 UNLABELED CHARACTERS, WHICH IS THE SAME AS THE TEST

DATA SET IN THE COMPETITION.)

test set (20) ind. test set (100)

our Algorithm 1
with time segment 200-500 ms

(5 training characters)
90 88.5

semi-supervised SVM
without channel selection

(5 training characters)
87.5 85.5

standard SVM (5 training characters) 77.5 80

Rakoto’s method
(85 training characters)

not applicable 96.5

For comparison, we applied a standard SVM without self-
training to the same data sets as that used in the above
evaluation of Algorithm 1. From Table I, the prediction
accuracy of the standard SVM is much lower than the proposed
algorithm with respect to both the 20-character test set and the
independent test set.

We further compare the results of our Algorithm 1 with the
best performance achieved by Rakotomamonjy and Guigue
(whose method [8] will be denoted by Rakoto’s method in
the following). Notice that these two methods were applied
to different size of the training data set, but the same 100-
character independent test set. As mentioned above, the results
of our Algorithm 1 are based on the training set with 5
characters. Since the recursive channel elimination approach
in Rakoto’s method requires sufficient labelled data, it is not
applicable to the case of small training set. Therefore, we cite
the results in [8] which were based on 85 characters as training
data. From Table I, it is found that, at the number of repeats
from 3 to 15, our proposed algorithm achieves comparable



performance to Rakoto’s method although the sizes of their
respective training sets are of significant disparity. The out-
standing performance of Algorithm 1 can be explained by
the iterative update to the model with the test data set and
the predicted labels. Meanwhile, the results also confirm the
efficiency of the semi-supervised channel selection that utilizes
augmented training set instead of the small initial training set
for reliable feature selection to improve the classification. As
a consequence, this paradigm demonstrates that our algorithm
can potentially reduce the training process of BCI speller while
not affecting the accuracy.

IV. CONCLUSIONS

This paper focuses attention on improving the performance
of P300 speller when training data is insufficient. In this case,
traditional model selection methods, e.g., cross-validation,
usually do not work. Herein, we presented a self-trained
SVM algorithm for EEG channel selection, where Fisher ratio
calculated by SVM scores was used as an index. The SVM
classifier was retrained with both labeled training data and
unlabeled test data to improve its performance of prediction,
at the same time to achieve better channel selection. The
data analysis results of the off-line example demonstrate the
effectiveness of our algorithm.
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potentials during auditory and somatosensory discrimination in sighted
and blind human subjects,” Cognitive Brain Research, vol. 4, no. 2, pp.
77–93, 1996.

[4] L. Farwell and E. Donchin, “Talking off the top of your head: toward
a mental prosthesis utilizing event-related brain potentials,” Electroen-
cephalography and clinical Neurophysiology, vol. 70, no. 6, pp. 510–
523, 1988.

[5] E. Donchin, K. M. Spencer, and R. Wijesinghe, “The mental prosthesis:
assessing the speed of a P300-basedbrain-computer interface,” IEEE
Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 174–179,
2000.

[6] D. J. Krusienski, E. W. Sellers, D. J. McFarland, T. M. Vaughan, and
J. R. Wolpaw, “Toward enhanced P300 speller performance,” Journal of
neuroscience methods, vol. 167, no. 1, pp. 15–21, 2008.

[7] B. Blankertz, K. R. Müller, D. Krusienski, G. Schalk, J. R. Wolpaw,
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