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Abstract—Statistical speech recognition using continuous-
density hidden Markov models (CDHMMs) has yielded many
practical applications. However, in general, mismatches between
the training data and input data significantly degrade recognition
accuracy. Various acoustic model adaptation techniques using
a few input utterances have been employed to overcome this
problem. In this article, we survey these adaptation techniques,
including maximum a posteriori (MAP) estimation, maximum
likelihood linear regression (MLLR), and eigenvoice.

I. I NTRODUCTION

In statistical speech recognition, there are usually mis-
matches between the conditions under which the model was
trained and those of the input. Mismatches may occur because
of differences between speakers, environmental noise, and
differences in channels. They should be compensated in order
to obtain sufficient recognition performance.Acoustic model
adaptation is the process of modifying the parameters of
the acoustic model used for speech recognition to fit the
actual acoustic characteristics by using a few utterances from
the target user. In this paper, we mainly deal withspeaker
adaptation focused on the mismatch caused by the speaker
variability.

Speaker-dependent speech recognition systems that were
intended to recognize utterances from one target speaker were
studied until the early 1980’s. In this system, the target
speaker registers his/her utterance for each word in the recog-
nition vocabulary beforehand to create its template pattern. In
recognition, each template pattern is matched to his/her input
speech, and the word whose template has the smallest distance
to the input speech is selected as the recognized word. In
practice, the number of utterances to be registered should be as
small as possible to decrease the load of users to register their
voice. On the other hand, if a speaker uses a speaker-dependent
system for the other speaker, its recognition accuracy seri-
ously deteriorates, since acoustic characteristics vary much
from speaker to speaker. Speech recognition systems which
require only a few utterances from a user and have as high
recognition performance as speaker-dependent systems were
strongly demanded. This was the motivation for researchers
to start development of speaker adaptation techniques.

Speech recognition technologies using hidden Markov mod-
els (HMMs) have significantly advanced since the late 1980’s.
In particular, speech recognition algorithms often employ
continuous density HMMs (CDHMMs) using triphones as
recognition units and a Gaussian mixture distribution as

the output distribution. In CDHMMs, a variety of speech
signals are represented as a continuous density distribution
whose parameters are determined by using the expectation-
maximization (EM) algorithm to make a maximum-likelihood
(ML) estimation. The use of utterances from many speakers for
training enables these models to represent not only phonetic
features but also speaker features. Although this ability has
made speaker-independent systems practical, the systems still
do not perform as well as speaker-dependent systems in which
the HMM parameters are estimated from a sufficient amount
of utterances from one target user. This means that speaker
adaptation techniques are important to speech recognition
using CDHMMs.

There have been several surveys on adaptation techniques
for speech recognition. For example, Lee and Huo [43], Wood-
land [73] and Sagayamaet al. [62] surveyed the adaptation
techniques in existence around 2001. Moreover, Furui [17]
reviewed generalization techniques for training and adapta-
tion, and Bellegarda [3] surveyed language model adaptation
techniques for large vocabulary continuous speech recogni-
tion. This overview summarizes our recent comprehensive
survey [67]. We aim to give the reader a unified view of
present-day speaker adaptation methods.

The rest of this paper is organized as follows. Section II
outlines speaker adaptation techniques for speech recognition.
Sections III, IV, V explains the three major approaches in
speaker adaptation; Section III explains adaptation techniques
based on MAP estimation, Section IV explains transformation-
based techniques including MLLR, Section V explains tech-
niques using a pool of speakers including eigenvoice. Section
VI describes speaker adaptive training techniques, which use
adaptation techniques for feature normalization. Section VII
briefly explains adaptation techniques for noisy environment,
and Section VIII concludes our paper.

II. W HAT IS SPEAKER ADAPTATION?

A. Purpose

Let us assume that we have an acoustic model that has high
recognition accuracy for one speaker, and let us consider how
we can improve its speech recognition accuracy for another
speaker by using only a few utterances worth of his/her speech
data (adaptation data).

The number of parameters in a triphone CDHMM is gener-
ally large. It consists of a few thousand states, and each state
has a Gaussian mixture distribution with dozens of mixture
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Fig. 1. Speaker adaptation.f is a mapping function (an adaptation model).
θ1 . . .θn are the parameter sets of initial models, andθ̂ is the parameter set
of the target model.

components. Each mixture component has a mean vector with
dozens of elements and its corresponding covariance matrix.
Moreover, it also includes parameters for expressing transition
probabilities and initial probabilities. In total, the parameters
usually number more than 1,000,000. In contrast, the number
of data samples that can be obtained from a few utterances is
much more limited. Each utterance is typically about 1 sec.
long, and one feature vector with dozens of elements can be
obtained every 10 msec. That means only a few thousand data
samples can be obtained from a few utterances.

In this situation, ML estimation using the EM algorithm
cannot precisely estimate the model parameters. As a result,
recognition accuracy would be much worse than under the
original conditions. This is called the data sparseness problem.

Speaker adaptationaims to overcome the above problems.
Let θi be the parameter set of an initial modeli given
beforehand, and let̂θ be that of the target model to be
determined. Speaker adaptation can be defined as a process
to find a mapping functionf from the space of parameters
of the initial models to the space of the target model using
adaptation data

θ̂ = f(θ1, . . . , θn), (1)

where n is the number of initial models provided. We
hereafter call this mapping functionf an adaptation model
(Figure 1). Whenf consists of mapping functions defined for
each CDHMM parameter independently, adaptation using it is
called direct adaptation. Adaptation using adaptation models
with parameter sharing are calledindirect adaptation [43].

An adaptation model should meet the following require-
ments.

1) It should improve recognition accuracy even with a small
amount of adaptation data.

2) As the amount of adaptation data increases, it should
make the recognition accuracy asymptotically approach
the accuracy of amatchedmodel.

Here, a matched model is the CDHMM whose parameters are
estimated using a sufficient amount of data collected in the
new condition. Figure 2 illustrates these requirements.

The first requirement can be met by designing good adapta-
tion models with only a few free parameters to be estimated.
However, such simple models may fail to fulfill the second
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Fig. 2. Requirements of acoustic model adaptation

requirement; they may not improve recognition accuracy once
a larger amount of adaptation data becomes available. This
happens because the models are too simple to represent
the richness of information contained in a large amount of
adaptation data. Thus, the adaptation model should have an
appropriate number of free parameters (i.e., an appropriate
model size).

B. Supervised and unsupervised adaptation

Speaker adaptation techniques are categorized into super-
vised adaptation and unsupervised adaptation. In supervised
adaptation, a transcription exists for each utterance. In unsu-
pervised adaptation, it does not.

In supervised adaptation, the user should register his or her
own voice. To do so, the system shows the user predetermined
words or sentences and asks him/her to utter them. The speaker
registration process used in dictation software is an example of
this process. The early speaker adaptation techniques required
up to 20 minutes worth of speech data. Nowadays, thanks to
the progress of speaker-independent recognition and speaker
adaptation, most systems require only one minute worth of
data.

While dictation software is intended to be used for a long
time, other applications, e.g., airline ticket reservations by
telephone, are intended to be used by one person for only
a short time. Unsupervised adaptation techniques are needed
for such short-period applications since users should not have
to spend time registering their voices. Most techniques are
related to supervised adaptation in that they use transcriptions
obtained from speaker-independent speech recognition as the
supervising signal for adaptation1 These techniques usually
perform well when the recognition accuracies of speaker
independent speech recognition are high enough to get reliable
transcriptions.

Incorrect supervised signals generated by misrecognitions
may significantly degrade adaptation performance. Some tech-
niques for alleviating their effect calculate aconfidence mea-

1Although there are unsupervised adaptation methods that are not related
to supervised adaptation (i.g., [16]), their recognition accuracies are not as
good as the unsupervised methods that are related to supervised adaptation.



sure, such as a posterior probability, for each utterance and use
only those utterances with confidence measures larger than a
predetermined threshold for adaptation (e.g., [57]). Matsuiet
al. used N-best sentences output from a speech recognizer as
the supervising signals [49]. More recently, Shinozakiet al.
proposed a cross-validation based scheme [68].

C. Batch and on-line adaptation

Speaker adaptation can also be categorized as batch adap-
tation or on-line adaptation [77]. Batch adaptation is done
after all the available utterances are collected, whereas on-line
adaptation is done each time one utterance is obtained. Batch
adaptation requires sufficient memory to store the statistics
to be used for parameter estimation, while on-line adaptation
does not require such a large memory.

Batch adaptation performs better than on-line adaptation
when both methods use the same adaptation data, since it can
simulate any on-line adaptation. Thanks to recent advances
in computational technology, high CPU speeds and large
memories, batch adaptation can use all the previous utterances
each time a new utterance is obtained.

On-line adaptation is preferable for applications such as
speech recognition during meetings, where the speakers often
change and the change points are not given beforehand. The
forgetting parameters [27] of on-line adaptation should be
carefully tuned so as not to use utterances obtained before
a certain point in time.

The above explanation indicates that supervised batch adap-
tation is fundamental and unsupervised adaptation and on-line
adaptation are its applications. Hence, in what follows, we will
discuss supervised batch adaptation unless otherwise noted.

III. MAP ADAPTATION

Maximuma posteriori(MAP) estimation (e.g., [10]) is used
in statistical modeling and has a wide range of applications.
In particular, it has been often used for speaker adaptation
(e.g., [21]). It estimates model parameters more robustly
than ML estimation when the amount of data is small, and
its estimates asymptotically approach ML estimations as the
amount of data increases.

Let f(x|θ) be the probability density function (pdf) of
variablex. We estimate its parameterθ by usingT samples
of x, X = {x1, . . . , xT }. In ML estimation, the parameter is
estimated as follows.

θ̃ = argmax
θ

f(X|θ), (2)

where θ̃ is the maximum likelihood estimator ofθ. In MAP
estimation,θ is regarded as a random variable that follows a
certainpdf. We expect that our knowledge about it increases
as we observe data samples. The parameter distribution before
observing the data is called aprior distribution. Letg(θ) be
the prior distribution forθ. The pdf of the parameter after
observingX , g(θ|X ) is called a posterior distribution, and it

is written as follows (Bayes’ Theorem),

g(θ|X ) =
f(X|θ)g(θ)∫
f(X|θ)g(θ)dθ

. (3)

MAP estimation obtains the value of̂θ that maximizes the
mode of the posterior distribution, that is, the value which
gives the maximum of the posterior distribution:

θ̂ = argmax
θ

g(θ|X )

= argmax
θ

f(X|θ)g(θ). (4)

When we have little knowledge aboutθ, we should select a
uniform distribution over the range of possibleθ values as the
prior distribution2. In this case, the MAP estimator becomes
almost identical to the ML estimator.

There are notheoretically correctanswers as to which
class to use for prior pdfs and how to set their parameters.
Users may determine them according to their own preference
by making observations. However, we can analytically obtain
the MAP estimator whenf(x) has sufficient statistics with
a fixed dimension, and such anf(x) should belong to an
exponential family. Furthermore, whenf(x) belongs to an
exponential family and we choose the prior distribution from
the same family of the kernel distribution off(x) (the distri-
bution whose parameters are sufficient statistics off(x) only),
which we call the conjugate family, the posterior distribution
accordingly belongs to the same family. This fact makes our
calculation much easier. This type of prior distribution is
called a natural conjugate prior distribution, and used in many
adaptation techniques.

A. MAP estimation for CDHMMs

Next, let us discuss a MAP estimation method for CDHMM
parameters [21]. This method is calledMAP adaptation.

Let Λ = {Π,A,W,B} be the parameter set of a CDHMM.
Here,Π = {πi} is the set of initial probabilities,A = {aij}
is the set of transition probabilities,W = {wik} is the set
of mixture weights in the Gaussian mixture distribution, and
B = {bik(x)} is the set of pdfs in each mixture component,
wherei, j are state indexes, andk is an index for each mixture
component in a state.

In general, models with hidden variables, such as HMMs,
do not have natural conjugate priors. Accordingly, the MAP
estimator can not be analytically calculated for these models.
To overcome this problem, we assume thatΠ, A, W , and
B are independent from each other, and furthermore, their
elements are independent from each other. Accordingly, the
prior distribution can be defined as the joint probability of the
natural conjugate prior for each parameter [41], [21]. Here,
the normal-Wishart distribution can be used as the prior for
normal distribution, and the Dirichlet distribution can be used
as the prior for the initial probability, transition probability,

2We call such a prior distribution a non-informative prior distribution. An
example is Jeffreys’ prior distribution.



and mixture weight. The prior for an HMM can be expressed
as follows.

g(Λ) = g(Π)g(A)g(W )g(B) =

C
N∏
i=1

πηi−1
i

 N∏
j=1

a
ηij−1
ij

( K∏
k=1

wνik−1
ik g(bik)

) .

(5)

Here,C is a normalization factor, andηi, ηij , andνik are pa-
rameters of a prior pdf for the initial probabilityπi, transition
probability aij , and mixture weightwik, respectively.g(bik)
is the prior pdf for the normal distributionbik(x) and is a
normal-Wishart distribution.

B. Related methods

Quasi-Bayes adaptation [27], [28] is an application of MAP
estimation to on-line adaptation. In this method, the posterior
probability is approximated with a normal distribution in the
sequential Bayes estimation scheme. The parameter estimation
is carried out using the following auxiliary function.

R(Λ, Λ̄) = Q(Λ, Λ̄) + ρ log g(Λ) (6)

Here, the model parameterΛ is estimated from all past sam-
ples. ρ is the forgetting factor, which should be optimized
for each application. While it is not necessary to memorize
sufficient statistics for the past samples, the estimated pa-
rameters may not converge to the ML estimator obtained in
batch training. MAP adaptations for discrete HMMs and semi-
continuous HMMs have also been studied [26].

Shinoda and Lee proposed structural maximum aposteriori
(SMAP) adaptation [65], [66]. This method shares parameters
by using a tree structure when the data amount is small,
yet retains the asymptotic nature of MAP estimation. In this
method, a tree of Gaussian distributions is first constructed
using the Kullback-Leibler pseudo distance as the distance
between distributions. The root node represents the whole
acoustic space, and each of its leaf nodes corresponds to a
Gaussian distribution in an HMM.A Gaussian distribution is
assigned to each node, and it is estimated as a shared parameter
among its descendant leaf nodes. The parameter of the parent
node is used as the prior, and the MAP estimation is carried
out from the root node to leaf nodes in a cascade manner.
This method was proved to be effective even when only a few
utterances were available as adaptation data.

IV. T RANSFORMATION-BASED TECHNIQUES

A. Shift

A shift is the difference between mean vectors before adap-
tation and after adaptation. The method of sharing one shift
for the mean vectors of all mixture components in a CDHMM
is called signal bias removal (SBR) [60]. It corresponds to
parallel displacement in the parameter space. It has been used
to adapt to multiplicative noise when cepstral coefficients are
used as features. It is a special case of the MLLR method

explained later, whereA = I (I is an identity matrix). It
becomes identical to ML estimation of mean vectors when a
shift is provided for each mean vector.

Between SBR and ML estimation lies spectral interpola-
tion [64] and vector field smoothing (VFS) [55]. Spectral
interpolation [64] estimates the shifts for the parameters
without corresponding data samples in the adaptation data by
interpolating the shifts in the neighborhood in the parameter
space. Its estimates asymptotically become close to ML es-
timators. VFS [55] applies smoothing to shifts close to each
other after interpolation. The smoothing is effective when the
amount of adaptation data is small. The recognition accuracy
of VFS cannot reach that of ML estimation when the amount
of adaptation data is sufficient. To avoid this, the degree of
smoothing has to be controlled according to the amount of
available data . Tonomuraet al. used MAP estimation to
estimate shifts in VFS [72].

Stochastic matching (SM) [63] estimates not only the shift
but also its variance to improve robustness against noise.
Chienet al. [7] used MAP estimation for stochastic matching
(SM) [63].

B. Linear mapping

Maximum likelihood linear regression (MLLR) [44] uses a
linear mapping between the acoustic feature spaces of different
speakers as the adaptation model. It is one of the most popular
model adaptation methods since it is easy to use and performs
well in most cases.

In MLLR, the mean vectors of the Gaussian distributions
in the HMMs, µ = (µ1, . . . , µn)

′ wheren is the dimension
of a feature vector, are updated according to the following
transformation:

µ̂ = Aµ+ b, , (7)

Here,A is ann× n matrix, andb is an-dimensional vector.
There are two major methods of transforming covari-

ance matrices: constrained MLLR [11] and unconstrained
MLLR [18]. Constrained MLLR transforms features in feature
space. The covariance matrix is transformed as follows:

Σ̂ = AΣA′. (8)

A cannot be analytically calculated since it is inside the
Jacobian of the variable transformation. Instead, it can be
numerically calculated by using Newton’s method, etc. LU
decomposition can also be used in some situations [54].
Unconstrained MLLR, on the other hand, assumes that the
covariance matrix represents speaker characteristics that are
different from the mean. It results in a different transforma-
tion matrix from that of the mean vector and estimates its
parameters independently. Although it increases the number
of parameters, unconstrained MLLR is useful in noisy envi-
ronments where the variances of parameters are usually large.
As in the case of MAP adaptation, adaptation of variances
does not bring much improvement to MLLR. For example,
Gales [19] evaluated MLLR on the Wall Street Journal (WSJ)
task. Adaptation of only mean vectors reduced the error rate



by 13%, but further adaptation of the mean and covariance
amounted to only a 2% reduction.

Several studies have applied MLLR to on-line adapta-
tion [8], [35]. For example, Chienet al. applied Quasi-Bayes
estimation to affine mapping parameters [8].

MAP is a method to estimate parameters and MLLR pro-
vides a class of adaptation models. Using MAP estimation
within the MLLR framework is thus expected to yield a
larger improvement than using them independently. Digalakis
et al. [12] used the mean vectors obtained by MLLR as the
mean vectors of the prior distribution for MAP adaptation.
Different from MLLR alone, this method performs as well as
ML estimation even when the amount of data is large. Chesta
et al. [6] and Chou [9] separately proposed maximum apos-
teriori linear regression (MAPLR); the algorithm refines the
MLLR algorithm in the same way as MAP estimation does ML
estimation. That is, the problem whereby the MLLR estimate
becomes unstable when the amount of data is extremely small
can be solved by using an elliptically symmetric matrix variant
prior, which is a natural conjugate prior for a linear mapping.
In addition, Siohanet al. proposed SMAPLR, a combination
of SMAP with MLLR [69].

V. A DAPTATION METHOD USING A SPEAKER POOL

A. Speaker clustering

Speaker clustering clusters speakers and prepares an HMM
for each resulting cluster. In the recognition phase, a few
utterances from a speaker are used to identify the cluster to
which he or she belongs, and the corresponding HMM is used
to recognize his/her voice.

The measure of the distance between speakers is the key
issue in speaker clustering. Popular measures are the Bhat-
tacharyya distance between output probabilities [37] and the
probability of generating one speaker’s data from another
speaker’s model after clustering [56]. Yoshizawaet al. used
sufficient statistics to measure the distance [74], [22]. Hazen
et al. used a soft selection method in which a speaker model
is represented by a weighted sum of more than one speaker
cluster [24].

Although gender-dependent models, in which a cluster is
made for each gender, are effective, clustering inside the same
gender results in little improvement. This is mainly because
the data used for making a cluster model becomes smaller as
the number of clusters increases. That is, there is a trade-off
between the detailed representation of speaker characteristics
and the amount of data to make a precise cluster model.

Speaker clustering decreases the size of recognition models
without incurring a large degradation in speech recognition
accuracy, and thus, it decreases the computational cost for
recognition.

B. Eigenvoice

Kuhn et al. recently proposed the eigenvoice [38], [40]
method for speaker adaptation. This nameeigenvoiceis in

analogy to the eigenface [36] method, which employs prin-
cipal component analysis for face image recognition. Eigen-
voice uses principal component analysis to project a speaker-
supervector to a subspace of much smaller dimension.

In the training phase, training data from a large number of
speakers are prepared and a speaker-dependent model is built
for each speaker. Then, for each speaker, a speaker-supervector
is constructed by concatenating all the mean vectors of his/her
speaker-dependent HMM. Next, principal component analysis
is done on the set of speaker-supervectors, and the principal
components (eigen vectors) are extracted. Each set of eigen
vectors is called an eigenvoice, and it forms a subspace of
much smaller dimension than that of the speaker-supervectors.

A linear mapping of a new speaker’s supervector to the
subspace is estimated by using ML estimation on a small
amount of his/her speech data. LetM be the dimension of a
speaker-supervector andJ be the number of its eigen vectors
(J < M ), which are expressed as:

e(j) = (e1(j), . . . , eM (j))′, j = 1, . . . , J. (9)

The speaker-supervector of a new speaker is approximated by
the weighted sum of the eigen vectors as follows.

µ = (µ1, . . . , µM )′ =
J∑

j=1

w(j)e(j), (10)

where the weight for each eigen vectorw(j), j = 1, . . . , J
is ML estimated with the EM algorithm. This estimation
procedure is called maximum likelihood eigen-decomposition
(MLED).

The dimension of a speaker-supervector is usually very large
but the amount of data for each speaker used for training is
usually relatively small. Many techniques have been proposed
to deal with the data insufficiency problem. The original
eigenvoice paper proposed to use mean vectors estimated by
eigenvoice adaptation as the priors for MAP adaptation, and
this proved to be effective [38]. Other approaches have used
probabilistic PCA (PPCA) in eigenvoice adaptation [29], [33],
[34], [32]. Mak et al. applied non-linear PCA using kernel
methods [46], [47]. Tanjiet al. explored the way to efficiently
cluster the speaker-phone matrix [71].

There is an alternative approach that combines MLLR
and eigenvoice [5] wherein a transformation matrix for each
speaker in the training data is used to form a speaker-
supervector and eigenvoice adaptation is applied to the set
of speaker-supervectors.

Some other studies the other multivariate analysis method
than PCA to obtain the subspace. For example, Duchateauet
al. employed non-negative matrix factorization (NMF) [13],
Hahm et al. used probabilistic latent semantic analysis
(PLSA) [23].

VI. SPEAKER ADAPTIVE TRAINING

Adaptation updates model parameters to fit the speaker’s
acoustic features. Normalization, on the contrary, modifies the
feature space to fit a prepared model. Sometimes, these two



approached can be combined (e.g., [63]). We shall discuss
normalization in this section, in particular, speaker adaptive
training, which is normalization for speaker differences.

A. Feature compensation

Feature compensation methods, for example, cepstrum mean
normalization (CMN) [2] and vocal tract length normalization
(VTLN) [14], try to exclude from input features factors caused
by the mismatches in speaker characteristics, environmental
noise, and channels.

In CMN, the long-time average of the cepstrum coefficients
is subtracted from the cepstrum coefficients. Influences from
surrounding noise or channel variations, whose rates of change
are much slower than phonetic features in speech, are removed
from the features. CMN is a standard method in practical
applications.

The formant frequencies in the power spectrum vary from
speaker to speaker, since vocal tract lengths vary. VTLN
estimates the vocal tract length of each speaker from his/her
spectrum of speech data and transforms the spectrum to
that of a canonical speaker. It is difficult to estimate the
vocal tract length precisely, so some methods have uses ML
estimation (ML-VTLN) [42], [76]. These methods prepare
several different-length vocal tract models and choose the
model maximizing the likelihood for the speaker’s utterances.
McDonough et al. approximated the warping function in
VTLN by using all-pass transforms [50]. VTLN is a special
case of speaker adaptive training using MLLR (explained in
the next subsection) where the transformation matrix has free
parameters only in its diagonal elements and their neighbor-
hood [15], [58].

B. Speaker Adaptive Training

Speaker adaptive training (SAT) and related techniques
are intended to provide a good initial model for speaker
adaptation [16], [1], [59]. If we assume that speaker adaptation
is always carried out, an initial model of acanonicalspeaker
who has the average nature of all speakers is preferable
to a speaker-independent model representing the difference
between phonemes and the difference between speakers.

The canonical speaker model is estimated as follows. First,
an initial model is prepared and the mapping between its
parameters and the parameters of the speaker-dependent model
for each training speaker is estimated. Next, this mapping
is used to transform speech data of each training speaker.
The canonical speaker model is trained with the transformed
data of many training speakers and set as the initial model
for the next step. This process is repeated several times. The
recognition phase estimates the mapping from the canonical
model to the target speaker by using the speaker’s utterances
and the mapping to adapt the model. The mapping should be
carefully selected so that it can be precisely estimated even
when there is only a small amount of data for each training
speaker. Affine mapping as in MLLR is often used.

Cluster adaptive training (CAT) uses several models made
by speaker clustering for SAT, and it simultaneously estimates

the model parameters and the weight among the models [20].
When only the weight coefficients for speakers are estimated
in adaptation, the number of free parameters is very small
and thus has a similar tendency with eigenvoice. Yuet al.
introduced discriminative learning to CAT [75]. Arindamet
al. combined CAT with MLLR [48]. Tanget al. discussed the
relationship between CAT and eigenvoice [70].

VII. A DAPTATION TO NOISY SPEECH

Since speech recognition accuracy significantly deteriorates
in noisy environments, many studies have sought ways to
lessen the effect of noise. The methods can be roughly classi-
fied into three categories: feature compensation, model adap-
tation, and missing feature theory. Many techniques have been
applied to model adaptation in noisy environments. For exam-
ple, Zhanget al. applied tree-structure-based adaptation [78],
and Nguyenet al.applied MLLR and eigenvoice [53]. Adapta-
tion to noisy speech is different from speaker adaptation in that
noisy speech has not only convolutive factors, but also additive
factors in the spectral domain. The vector Taylor series based
approach [51], Jacobian adaptation [61], and their extensions
(e.g., [4], [45]) have been extensively studied.

VIII. C ONCLUSION AND FUTURE WORK

We surveyed acoustic model adaptation techniques for
speech recognition using CDHMMs. In the future, as more
speech data recorded in different noisy environments and
channels becomes available, we expect that the adaptation
techniques using the a speaker pool will become especially
prominent. Such techniques will include ones that can effi-
ciently exploit transcriptions that vary largely among speak-
ers [74], [22], those based on multivariate analysis such
as eigenvoice, subspace-based methods to separate phonetic
features and speaker features [52], and unified approaches for
speaker and phonetic features [30], [31].

Lastly, the analysis of speaker variety remains as an impor-
tant challenge. A large amount of data from many speakers
is now available, so we believe it is time to tackle this
problem (e.g., [39], [25]).
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