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Abstract—Statistical speech recognition using continuous- the output distribution. In CDHMMSs, a variety of speech
density hidden Markov models (CDHMMs) has yielded many signals are represented as a continuous density distribution
practical applications. However, in general, mismatches between \,hqse parameters are determined by using the expectation-
the training data and input data significantly degrade recognition L ) : -
accuracy. Various acoustic model adaptation techniques using maXImIZ_atlor_l (EM) algorithm to make a maximum-likelihood
a few input utterances have been employed to overcome this (ML) estimation. The use of utterances from many speakers for
problem. In this article, we survey these adaptation techniques, training enables these models to represent not only phonetic
including maximum a posteriori (MAP) estimation, maximum  features but also speaker features. Although this ability has
likelihood linear regression (MLLR), and eigenvoice. made speaker-independent systems practical, the systems still
do not perform as well as speaker-dependent systems in which
the HMM parameters are estimated from a sufficient amount

In statistical speech recognition, there are usually misf utterances from one target user. This means that speaker
matches between the conditions under which the model wagaptation techniques are important to speech recognition
trained and those of the input. Mismatches may occur becausing CDHMMs.
of differences between speakers, environmental noise, and’here have been several surveys on adaptation techniques
differences in channels. They should be compensated in oréterspeech recognition. For example, Lee and Huo [43], Wood-
to obtain sufficient recognition performanc&coustic model land [73] and Sagayamet al. [62] surveyed the adaptation
adaptation is the process of modifying the parameters akchniques in existence around 2001. Moreover, Furui [17]
the acoustic model used for speech recognition to fit theviewed generalization techniques for training and adapta-
actual acoustic characteristics by using a few utterances freion, and Bellegarda [3] surveyed language model adaptation
the target user. In this paper, we mainly deal wsieaker techniques for large vocabulary continuous speech recogni-
adaptation focused on the mismatch caused by the speai@i. This overview summarizes our recent comprehensive
variability. survey [67]. We aim to give the reader a unified view of

Speaker-dependent speech recognition systems that wakesent-day speaker adaptation methods.
intended to recognize utterances from one target speaker wer€he rest of this paper is organized as follows. Section Il
studied until the early 1980’s. In this system, the targeiutlines speaker adaptation techniques for speech recognition.
speaker registers his/her utterance for each word in the rec8gctions Ill, IV, V explains the three major approaches in
nition vocabulary beforehand to create its template pattern.dpeaker adaptation; Section Il explains adaptation techniques
recognition, each template pattern is matched to his/her inflnstsed on MAP estimation, Section IV explains transformation-
speech, and the word whose template has the smallest distarased techniques including MLLR, Section V explains tech-
to the input speech is selected as the recognized word.nliques using a pool of speakers including eigenvoice. Section
practice, the number of utterances to be registered should b&/aslescribes speaker adaptive training techniques, which use
small as possible to decrease the load of users to register tlaeiaptation techniques for feature normalization. Section VII
voice. On the other hand, if a speaker uses a speaker-depenteefly explains adaptation techniques for noisy environment,
system for the other speaker, its recognition accuracy seaaird Section VIII concludes our paper.
ously deteriorates, since acoustic characteristics vary much
from speaker to speaker. Speech recognition systems which
require only a few utterances from a user and have as hifjh Purpose
recognition performance as speaker-dependent systems weleet us assume that we have an acoustic model that has high
strongly demanded. This was the motivation for researcheetognition accuracy for one speaker, and let us consider how
to start development of speaker adaptation techniques.  we can improve its speech recognition accuracy for another

Speech recognition technologies using hidden Markov mosipeaker by using only a few utterances worth of his/her speech
els (HMMs) have significantly advanced since the late 1980data @daptation data
In particular, speech recognition algorithms often employ The number of parameters in a triphone CDHMM is gener-
continuous density HMMs (CDHMMSs) using triphones asally large. It consists of a few thousand states, and each state
recognition units and a Gaussian mixture distribution dms a Gaussian mixture distribution with dozens of mixture

I. INTRODUCTION

Il. WHAT IS SPEAKER ADAPTATION?
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Fig. 1. Speaker adaptatiotf. is a mapping function (an adaptation model).
01 ...0, are the parameter sets of initial models, @hi$ the parameter set ]
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Fig. 2. Requirements of acoustic model adaptation

components. Each mixture component has a mean vector with

dozens of elements and its corresponding covariance matrix. . »
Moreover, it also includes parameters for expressing transitiggfluirement; they may not improve recognition accuracy once

probabilities and initial probabilities. In total, the parameter@ larger amount of adaptation data becomes available. This
usually number more than 1,000,000. In contrast, the numBEPPeNs because the models are too simple to represent
of data samples that can be obtained from a few utteranced¥§ richness of information contained in a large amount of
much more limited. Each utterance is typically about 1 se@daptation data. Thus, the adaptation model should have an
long, and one feature vector with dozens of elements can Propriate number of free parameters (i.e., an appropriate
obtained every 10 msec. That means only a few thousand d&@de! size).
samples can be obtained from a few utterances. B. Supervised and unsupervised adaptation
In this situation, ML estimation using the EM algorithm . . . .
Speaker adaptation techniques are categorized into super-

cannot precisely estimate the model parameters. As a res\%gbd adaptation and unsupervised adaptation. In supervised

recognition accuracy would be much worse than under th . - .
o L o adaptation, a transcription exists for each utterance. In unsu-
original conditions. This is called the data sparseness problem

S ervised adaptation, it does not.
Speaker adaptatioaims to overcome the above problems:. : : . .
I o In supervised adaptation, the user should register his or her
Let #; be the parameter set of an initial modglgiven

beforehand, and lef be that of the target model to pe0Wn voice. To do so, the system shows the user predetermined

. . ) words or sentences and asks him/her to utter them. The speaker
determined. Speaker adaptation can be defined as a process., _.. S .

. . : registration process used in dictation software is an example of
to find a mapping functiory from the space of parameter

of the initial models to the space of the target model usizthIS process. The early speaker adaptation techniques required
. u(r]p to 20 minutes worth of speech data. Nowadays, thanks to
adaptation data . o
A the progress of speaker-independent recognition and speaker
0= f(01,...,0,), @) ; : X
adaptation, most systems require only one minute worth of
where n is the number of initial models provided. Wedata.
hereafter call this mapping functiofi an adaptation model ~ While dictation software is intended to be used for a long
(Figure 1). Whenf consists of mapping functions defined fotime, other applications, e.g., airline ticket reservations by
each CDHMM parameter independently, adaptation using ittelephone, are intended to be used by one person for only
called direct adaptation Adaptation using adaptation modelsa short time. Unsupervised adaptation techniques are needed
with parameter sharing are call@ulirect adaptation [43]. for such short-period applications since users should not have
An adaptation model should meet the following requirdo spend time registering their voices. Most techniques are

ments. related to supervised adaptation in that they use transcriptions
1) It should improve recognition accuracy even with a sme@Ptained from speaker-independent speech recognition as the
amount of adaptation data. supervising signal for adaptatibriThese techniques usually

2) As the amount of adaptation data increases, it shollgrform well when the recognition accuracies of speaker
make the recognition accuracy asymptotically approadfdependent speech recognition are high enough to get reliable
the accuracy of anatchedmodel. transcriptions.

Here, a matched model is the CDHMM whose parameters aréncqrre_c_t supervised signals g_enerated by misrecognitions
estimated using a sufficient amount of data collected in theY significantly degrade adaptation performance. Some tech-

new condition. Figure 2 illustrates these requirements. niques for alleviating their effect calculatecanfidence mea-

The first requirement can be met by designing good adapta;
q y gning 9 P alAIthough there are unsupervised adaptation methods that are not related

tion models with 9“'y a few free parameters tQ be e5timate(g'supervised adaptation (i.g., [16]), their recognition accuracies are not as
However, such simple models may fail to fulfill the secongood as the unsupervised methods that are related to supervised adaptation.




sure such as a posterior probability, for each utterance and usenritten as follows (Bayes’ Theorem),

only those utterances with confidence measures larger than a F(X10)9(0)

predetermined threshold for adaptation (e.g., [57]). Ma&sui g(0|X) = ———. 3)

al. used N-best sentences output from a speech recognizer as I 1(x16)9(6)d8

the supervising signals [49]. More recently, Shinozakial. MAP estimation obtains the value @f that maximizes the
proposed a cross-validation based scheme [68]. mode of the posterior distribution, that is, the value which

gives the maximum of the posterior distribution:
C. Batch and on-line adaptation

Speaker adaptation can also be categorized as batch adap-
tation or on-line adaptation [77]. Batch adaptation is done
after all the available utterances are collected, whereas on-line = argmax f(X1]0)g(0). (4)
adaptation is done each time one utterance is obtained. Batch o
adaptation requires sufficient memory to store the statisticsWhen we have little knowledge abofitwe should select a
to be used for parameter estimation, while on-line adaptatighiform distribution over the range of possitflevalues as the
does not require such a large memory. prior distribution?. In this case, the MAP estimator becomes

Batch adaptation performs better than on-line adaptati@fnost identical to the ML estimator.
when both methods use the same adaptation data, since it cahhere are notheoretically correctanswers as to which
simulate any on-line adaptation. Thanks to recent advan&dass to use for prior pdfs and how to set their parameters.
in computational technology, high CPU speeds and largsers may determine them according to their own preference
memories, batch adaptation can use all the previous utteran@¥gnaking observations. However, we can analytically obtain
each time a new utterance is obtained. the MAP estimator whery(z) has sufficient statistics with

On-line adaptation is preferable for applications such asfixed dimension, and such af(x) should belong to an
speech recognition during meetings, where the speakers of&Ronential family. Furthermore, whefi(z) belongs to an
change and the change points are not given beforehand. Fgonential family and we choose the prior distribution from
forgetting parameters [27] of on-line adaptation should BBe same family of the kernel distribution ¢fx) (the distri-
carefully tuned so as not to use utterances obtained beffkion whose parameters are sufficient statisticg(ef) only),

a certain point in time. which we call the conjugate family, the posterior distribution

The above explanation indicates that supervised batch adagcordingly belongs to the same family. This fact makes our
tation is fundamental and unsupervised adaptation and on-If@iculation much easier. This type of prior distribution is
adaptation are its applications. Hence, in what follows, we wi@/led & natural conjugate prior distribution, and used in many
discuss supervised batch adaptation unless otherwise note@daptation techniques.

A. MAP estimation for CDHMMs

Next, let us discuss a MAP estimation method for CDHMM
Maximuma posteriori(MAP) estimation (e.g., [10]) is used parameters [21]. This method is call®AP adaptation
in statistical modeling and has a wide range of applications.Let A = {II, A, W, B} be the parameter set of a CDHMM.
In particular, it has been often used for speaker adaptatibere, Il = {m;} is the set of initial probabilitiesAd = {a;;}
(e.g., [21]). It estimates model parameters more robusily the set of transition probabilitied) = {w;;} is the set
than ML estimation when the amount of data is small, araf mixture weights in the Gaussian mixture distribution, and
its estimates asymptotically approach ML estimations as tfie= {b;;(x)} is the set of pdfs in each mixture component,
amount of data increases. wherei, j are state indexes, arkdis an index for each mixture
Let f(xz|0) be the probability density functionp@f) of component in a state.
variablez. We estimate its parametérby using7 samples  In general, models with hidden variables, such as HMMs,

6 = argmaxg(6|X)
0

I1l. MAP ADAPTATION

of z, X = {z1,...,zr}. In ML estimation, the parameter isdo not have natural conjugate priors. Accordingly, the MAP
estimated as follows. estimator can not be analytically calculated for these models.
To overcome this problem, we assume tliat A, W, and
§ = argmax f(X|0), @) B are indeper_1dent from each other, and furthermgre, their
0 elements are independent from each other. Accordingly, the

. ) o ) prior distribution can be defined as the joint probability of the
where( is the maximum likelihood estimator @ In MAP  natyral conjugate prior for each parameter [41], [21]. Here,
estimation,¢ is regarded as a random variable that follows e normal-Wishart distribution can be used as the prior for
certainpdf. We expect that our knowledge about it increas§gyrmal distribution, and the Dirichlet distribution can be used

as we observe data samples. The parameter distribution befgteihe prior for the initial probability, transition probability,
observing the data is calledmior distribution. Letg(6) be

the p“?“ diStribUtion_ ford. The pdf Of_ the. pa_ran"_neter afte_r 2We call such a prior distribution a non-informative prior distribution. An
observingX', g(6]X) is called a posterior distribution, and itexample is Jeffreys’ prior distribution.




and mixture weight. The prior for an HMM can be expresseekplained later, whered = [ (I is an identity matrix). It
as follows. becomes identical to ML estimation of mean vectors when a
shift is provided for each mean vector.
Between SBR and ML estimation lies spectral interpola-

9(A) = g()g(A)g(W)g(B) = tion [64] and vector field smoothing (VFS) [55]. Spectral
N N K interpolation [64] estimates the shifts for the parameters
[ ij—1 Vik— . . . .
CH L ' H a?j (H Wik 19(bz‘k)> . without corresponding data samples in the adaptation data by
i=1 J=1 k=1 interpolating the shifts in the neighborhood in the parameter

(5) space. Its estimates asymptotically become close to ML es-
timators. VFS [55] applies smoothing to shifts close to each
other after interpolation. The smoothing is effective when the
amount of adaptation data is small. The recognition accuracy
of VFS cannot reach that of ML estimation when the amount
of adaptation data is sufficient. To avoid this, the degree of
smoothing has to be controlled according to the amount of
B. Related methods available data . Tonomurat al. used MAP estimation to

Quasi-Bayes adaptation [27], [28] is an application of MAIgSt"”nate shn‘ts n V'.:S [72]. . .
estimation to on-line adaptation. In this method, the posteri rStOChaS.tIC ma_tchlng (SM) [63] estimates not only the Sh.'ft
probability is approximated with a normal distribution in th Ut_ also its variance to improve robustness a_gamst NOISE.
sequential Bayes estimation scheme. The parameter estimal enet al. [7] used MAP estimation for stochastic matching
is carried out using the following auxiliary function. ) [63].

R(A, A) = Q(A, A) + plog g(4) () B Linear mapping
) ) Maximum likelihood linear regression (MLLR) [44] uses a
Here, the model parameteris estimated from all past sam-|inear mapping between the acoustic feature spaces of different
ples. p is the forgetting factor, which should be optimizedyeayers as the adaptation model. It is one of the most popular

for each application. While it is not necessary (o memorizg,qe| adaptation methods since it is easy to use and performs
sufficient statistics for the past samples, the estimated Rgs| in most cases.

rameters may not converge to the ML estimator obtained in, \ | R, the mean vectors of the Gaussian distributions
batch training. MAP adaptations for discrete HMMs and sem5 the HMMs w= (ju1,...,un) wheren is the dimension

continuous HMMs have also been studied [26]. . of a feature vector, are updated according to the following
Shinoda and Lee proposed structural maximuposteriori .o nsformation:
(SMAP) adaptation [65], [66]. This method shares parameters f=Ap+b @)
by using a tree structure when the data amount is small, »
yet retains the asymptotic nature of MAP estimation. In thidere, A is ann x n matrix, andb is a n-dimensional vector.
method, a tree of Gaussian distributions is first constructedThere are two major methods of transforming covari-
using the Kullback-Leibler pseudo distance as the distanarce matrices: constrained MLLR [11] and unconstrained
between distributions. The root node represents the whol LR [18]. Constrained MLLR transforms features in feature
acoustic space, and each of its leaf nodes corresponds tspace. The covariance matrix is transformed as follows:
Gaussian distribution in an HMM.A Gaussian distribution is . ,
assigned to each node, and it is estimated as a shared parameter Y=AXAL (®)
among its descendant leaf nodes. The parameter of the pargngannot be analytically calculated since it is inside the

node is used as the prior, and the MAP estimation is carri§gcobian of the variable transformation. Instead, it can be
out from the root node to leaf nodes in a cascade manngimerically calculated by using Newton's method, etc. LU
This method was proved to be effective even when only a fef¢composition can also be used in some situations [54].
utterances were available as adaptation data. Unconstrained MLLR, on the other hand, assumes that the
covariance matrix represents speaker characteristics that are
) different from the mean. It results in a different transforma-
A. Shift tion matrix from that of the mean vector and estimates its
A shiftis the difference between mean vectors before adgparameters independently. Although it increases the number
tation and after adaptation. The method of sharing one shift parameters, unconstrained MLLR is useful in noisy envi-
for the mean vectors of all mixture components in a CDHMNMonments where the variances of parameters are usually large.
is called signal bias removal (SBR) [60]. It corresponds tAs in the case of MAP adaptation, adaptation of variances
parallel displacement in the parameter space. It has been udeds not bring much improvement to MLLR. For example,
to adapt to multiplicative noise when cepstral coefficients atgales [19] evaluated MLLR on the Wall Street Journal (WSJ)
used as features. It is a special case of the MLLR methtakk. Adaptation of only mean vectors reduced the error rate

Here,C' is a normalization factor, angi, 7;;, andv;;, are pa-
rameters of a prior pdf for the initial probability;, transition
probability a;;, and mixture weighto;;, respectively.g(b;x)

is the prior pdf for the normal distributioh;;(x) and is a
normal-Wishart distribution.

IV. TRANSFORMATION-BASED TECHNIQUES



by 13%, but further adaptation of the mean and covarianaaalogy to the eigenface [36] method, which employs prin-
amounted to only a 2% reduction. cipal component analysis for face image recognition. Eigen-
Several studies have applied MLLR to on-line adaptaoice uses principal component analysis to project a speaker-
tion [8], [35]. For example, Chieet al. applied Quasi-Bayes supervector to a subspace of much smaller dimension.
estimation to affine mapping parameters [8]. In the training phase, training data from a large number of
MAP is a method to estimate parameters and MLLR pr&peakers are prepared and a speaker-dependent model is built
vides a class of adaptation models. Using MAP estimatid@ar each speaker. Then, for each speaker, a speaker-supervector
within the MLLR framework is thus expected to yield &s constructed by concatenating all the mean vectors of his/her
larger improvement than using them independently. Digalakégeaker-dependent HMM. Next, principal component analysis
et al. [12] used the mean vectors obtained by MLLR as thé done on the set of speaker-supervectors, and the principal
mean vectors of the prior distribution for MAP adaptationrcomponents (eigen vectors) are extracted. Each set of eigen
Different from MLLR alone, this method performs as well agectors is called an eigenvoice, and it forms a subspace of
ML estimation even when the amount of data is large. Chegtaich smaller dimension than that of the speaker-supervectors.
et al. [6] and Chou [9] separately proposed maximurpas- A linear mapping of a new speaker’s supervector to the
teriori linear regression (MAPLR); the algorithm refines théubspace is estimated by using ML estimation on a small
MLLR algorithm in the same way as MAP estimation does Miamount of his/her speech data. Lt be the dimension of a
estimation. That is, the problem whereby the MLLR estimagpeaker-supervector anfibe the number of its eigen vectors
becomes unstable when the amount of data is extremely snidll< M), which are expressed as:
can be solved by using an elliptically symmetric matrix variant N ‘ Y L
prior, which is a natural conjugate prior for a linear mapping. e(j) = (e1(g)s--em@))s G =1oeees . ©)
In addition, Sioharet al. proposed SMAPLR, a combinationThe speaker-supervector of a new speaker is approximated by

of SMAP with MLLR [69]. the weighted sum of the eigen vectors as follows.
V. ADAPTATION METHOD USING A SPEAKER POOL N
“:(,ula"'a/LM)/:Zw(.])e(])v (10)
A. Speaker clustering j=1
Speaker clustering clusters speakers and prepares an HWRere the weight for each eigen vecto(j),j = 1,...,J

for each resulting cluster. In the recognition phase, a fe# ML estimated with the EM algorithm. This estimation
utterances from a speaker are used to identify the clusterPi@cedure is called maximum likelihood eigen-decomposition
which he or she belongs, and the corresponding HMM is us€4LED).
to recognize his/her voice. The dimension of a speaker-supervector is usually very large
The measure of the distance between speakers is the Re{the amount of data for each speaker used for training is
issue in speaker clustering. Popular measures are the Bhgually relatively small. Many techniques have been proposed
tacharyya distance between output probabilities [37] and the deal with the data insufficiency problem. The original
probability of generating one speaker’s data from anoth@igenvoice paper proposed to use mean vectors estimated by
speaker's model after clustering [56]. Yoshizastal. used eigenvoice adaptation as the priors for MAP adaptation, and
sufficient statistics to measure the distance [74], [22]. Haz&¥s Proved to be effective [38]. Other approaches have used
et al. used a soft selection method in which a speaker mod¥pbabilistic PCA (PPCA) in eigenvoice adaptation [29], [33],
is represented by a weighted sum of more than one speaidtl: [32]. Mak et al. applied non-linear PCA using kernel
cluster [24]. methods [46], [47]. Tanjet al. explored the way to efficiently
Although gender-dependent models, in which a cluster f#uSter the speaker-phone matrix [71]. _
made for each gender, are effective, clustering inside the samd ere is an alternative approach that combines MLLR
gender results in little improvement. This is mainly becaug¥'d eigenvoice [S] wherein a transformation matrix for each
the data used for making a cluster model becomes smallerSR§aker in the training data is used to form a speaker-
the number of clusters increases. That is, there is a trade-3fPervector and eigenvoice adaptation is applied to the set
between the detailed representation of speaker characteristic§Peaker-supervectors. o _
and the amount of data to make a precise cluster model. Some other stu_dles the other multivariate analysis method
Speaker clustering decreases the size of recognition mod8f@? PCA to obtain the subspace. For example, Duchaeau
without incurring a large degradation in speech recognitidi €MPloyed non-negative matrix factorization (NMF) [13],

accuracy, and thus, it decreases the computational cost fhm et al. used probabilistic latent semantic analysis
recognition. (PLSA) [23].

VI. SPEAKER ADAPTIVE TRAINING

B. Eigenvoice Adaptation updates model parameters to fit the speaker’s

Kuhn et al. recently proposed the eigenvoice [38], [40hcoustic features. Normalization, on the contrary, modifies the
method for speaker adaptation. This nagigenvoiceis in feature space to fit a prepared model. Sometimes, these two



approached can be combined (e.g., [63]). We shall discuke model parameters and the weight among the models [20].

normalization in this section, in particular, speaker adaptiWwhen only the weight coefficients for speakers are estimated

training, which is normalization for speaker differences. in adaptation, the number of free parameters is very small

and thus has a similar tendency with eigenvoice. etual.

introduced discriminative learning to CAT [75]. Arindagt
Feature compensation methods, for example, cepstrum meaércombined CAT with MLLR [48]. Tanggt al. discussed the

normalization (CMN) [2] and vocal tract length normalizatiomelationship between CAT and eigenvoice [70].

(VTLN) [14], try to exclude from input features factors caused

by the mismatches in speaker characteristics, environmental VII. A DAPTATION TO NOISY SPEECH

noise, and channels. Since speech recognition accuracy significantly deteriorates
In CMN, the long-time average of the cepstrum coefficieni noisy environments, many studies have sought ways to
is subtracted from the cepstrum coefficients. Influences fragssen the effect of noise. The methods can be roughly classi-
surrounding noise or channel variations, whose rates of chai@g| into three categories: feature compensation, model adap-
are much slower than phonetic features in speech, are remowgfbn, and missing feature theory. Many techniques have been
from the features. CMN is a standard method in practicahplied to model adaptation in noisy environments. For exam-
applications. ple, Zhanget al. applied tree-structure-based adaptation [78],
The formant frequencies in the power spectrum vary froahd Nguyeret al. applied MLLR and eigenvoice [53]. Adapta-
speaker to speaker, since vocal tract lengths vary. VTLin to noisy speech is different from speaker adaptation in that
estimates the vocal tract length of each speaker from his/jisy speech has not only convolutive factors, but also additive
spectrum of speech data and transforms the spectrumfdetors in the spectral domain. The vector Taylor series based
that of a canonical speaker. It is difficult to estimate theapproach [51], Jacobian adaptation [61], and their extensions

vocal tract length precisely, so some methods have uses llg., [4], [45]) have been extensively studied.
estimation (ML-VTLN) [42], [76]. These methods prepare

several different-length vocal tract models and choose the VIIl. CONCLUSION AND FUTURE WORK

model maximizing the likelihood for the speaker’s utterances. \y surveyed acoustic model adaptation techniques for
McDonough et al. approximated the warping function ingneech recognition using CDHMMs. In the future, as more

VTLN by using all-pass transforms [50]. VTLN is a speciakpeech data recorded in different noisy environments and
case of speaker adaptive training using MLLR (explained ghannels becomes available, we expect that the adaptation

the next subsection) where the transformation matrix has frfe%hniques using the a speaker pool will become especially
parameters only in its diagonal elements and their neighbetsminent. Such techniques will include ones that can effi-

hood [15], [58]. ciently exploit transcriptions that vary largely among speak-
ers [74], [22], those based on multivariate analysis such

as eigenvoice, subspace-based methods to separate phonetic

Speaker adaptive training (SAT) and related techniquesyires and speaker features [52], and unified approaches for
are intended to provide a good initial model for Speak%rpeaker and phonetic features [30], [31].

adaptation [16], [1], [59]. If we assume that speaker adaptation| oqtly the analysis of speaker variety remains as an impor-
is always carried out, an initial model ofcanonicalspeaker ;¢ challenge. A large amount of data from many speakers

who has the average nature of all speakers is preferaflenq,; available, so we believe it is time to tackle this
to a speaker-independent quel representing the d'ﬁererﬂﬁﬁblem (e.g., [39], [25]).
between phonemes and the difference between speakers.
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