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Abstract—Single channel speech enhancement is an important
problem in practice. One of the well used single channel speech
enhancement method, spectral subtraction, can only work for
stationary noise. Another method based on Kalman filtering is
able to work with non-stationary signals. However, it can only
produce optimal estimation of speech signal which is corrupted by
Gaussian noise. In practice, speech acquisition also suffers from
non-stationary temporal sparse noise. In this paper, we propose
a method based on robust Kalman filter to remove not only
the stationary noise but also such kind of temporal sparse noise.
Formulated as a convex optimization problem, the robust Kalman
filtering based method can be solved efficiently by Interior Point
Method (IPM). Numerical results show that the proposed method
is robust against temporal sparse noises.

I. INTRODUCTION

In practice, speech signals are always corrupted by various
noises. The presence of noise affects the intelligibility and
quality of speech signals. Hence, enhancing speech degraded
by noises is an important problem in many signal processing
applications, like hearing aids, mobile communications and
speech recognition, etc. The goal of speech enhancement is
to improve both the intelligibility and the quality of speech,
by attenuating the noises without substantially degrading the
speech. A large number of methods on speech enhancement
have been reported in the literatures [1], [2], including single
channel speech enhancement method [1] and multi-channel
speech enhancement method like microphone array [2] etc.

Single channel speech enhancement methods, like spectral
subtraction [3] and stationary Wiener filtering method [1] are
widely applied in practice because their simple hardware struc-
tures and efficient algorithms. Spectral subtraction method
has drawbacks on ”music noise” effects in the enhanced
speech. Also, since speech is nonstationary in nature, station-
ary Wiener filter does not perform very well. To overcome
this problem, a Kalman filtering based method was proposed
in [4]. The Kalman filtering based method exploits the speech
production model in processing and allows for nonstationarity
of speech. With the existence of efficient Kalman filtering
algorithm, this method as well as its derivations [5], [6] have
been well applied to speech enhancement.

We know that the Kalman filter [7], [8] is derived based on
two assumptions, linearity and Gaussian noise. The assump-
tion on Gaussian noise holds for many applications and the
Kalman filter based method produces high quality enhanced

speech signals. However, after carefully checking the recorded
speech signal, we can find that the observed signal is al-
ways corrupted by zero-mean Gaussian and sparse (Laplacian)
noises. The sparse noise often has Laplacian distribution.
The conventional Kalman filter treats the Laplacian noise as
Gaussian noise so that it cannot achieves optimal denoising
performance. In this paper, we propose an speech enhancement
method based on robust Kalman filter. The robust Kalman filter
[9] is designed to deal with Gaussian and Laplacian noises
and formulated as a convex optimization problem. Efficient
numerical methods, like Interior Point Method (IPM), are
available to solve such convex optimization problem [10].
Some numerical results are shown to demonstrate the superior
performance of the proposed method.

II. BRIEF REVIEW ON SPEECH ENHANCEMENT USING
KALMAN FILTER

Using Kalman filter for speech enhancement was first intro-
duced in [4]. The derivation of Kalman filter normally assumes
the process noise and observation noise are both uncorrelated
and have normal distributions. This implies that the Kalman
based method is best suitable for reduction of white Gaussian
noise. To deal with color noises, extended method can be
found in [5].

In frame based processing, it is assumed that speech signal
is stationary during each frame. For each frame, the speech
signal can be represented by an autoregressive (AR) process
and all the AR parameters remain constant across the segment.
Since an AR process is the output of an all-pole linear system
driven by white noise, the speech signal at kth time instant,
s(k), is given as

s(k) =

p∑
i=1

ais(k − i) + u(k) (1)

where ai, i = 1, · · · , p are the AR model parameters, p is
the order of AR process, u(k) is the white process noise. In
Kalman filter based speech enhancement approach, we also
assume that it is Gaussian white noise.

The AR process in (1) can be easily transformed into the
following state-space model as

x(k) = Ax(k − 1) +Bu(k) (2)
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where the state vector x(k), state transition matrix A and input
matrix B are defined as

x(k) =
[
s(k) s(k − 1) · · · s(k − p+ 1)

]T
A =


−a1 −a2 · · · −ap
· · · · · · · · · · · ·
0 1 · · · 0
0 · · · 1 0


B =

[
1 0 · · · 0

]T
(3)

In practice, we only have noise corrupted speech y(k)
available for processing

y(k) = s(k) + n(k) (4)

where n(k) is the observation noise. In conventional Kalman
filtering problem, it is assume that n(k) has normal distribution
N (0, σ2

v). By expressing (4) in state-space model, we have

y(k) = Cx(k) + n(k) (5)

where the observation matrix C is defined as

C =
[
1 0 · · · 0

]
(6)

In speech enhancement problem, we only have obser-
vations {y(1), y(2), · · · , y(k)} available, what we want is
to estimate the state vector x(k) from the observations
{y(1), y(2), · · · , y(k)}. With the state and observation equa-
tions (2) and (5), if the parameters ai, i = 1, · · · , p are known,
it is the clear that Kalman filter can readily be applied for
an estimate of the state-vector x(k) [7], [8]. Hence, Kalman
filtering for speech enhancement can be implemented in two
steps:

1) Estimate the AR parameters, process and observation
noise covariances based on the noisy observations [11].
Since the objective of this paper is to show the ef-
fectiveness of using robust Kalman filter in speech
enhancement, we assume that the AR model parameters
are estimated from clean speech [4], [12], [13].

2) Apply the Kalman filtering algorithm using the esti-
mated parameters values.

If we denote x̂(k|k) and x̂(k|k−1) as the estimates of state-
vector x(k) given the measurements up to y(k) and y(k− 1),
and Σ denotes the steady-state error covariance associated with
predicting the next state. The time update of Kalman filtering
is given as

x̂(k|k − 1) = Ax̂(k − 1|k − 1) (7)

which propagates forward the state estimate at time k−1, after
the measurement y(k− 1), to the state estimate at time k, but
before the measurement y(k) is known. With the measurement
y(k) is available, the measurement update is given as follows

x̂(k|k) = x̂(k|k) + ΣCT (CΣCT + σ2
v)

−1ỹ(k) (8)

where ỹ(k) = y(k)−Cx̂(k|k − 1) is the innovation.

III. ROBUST KALMAN FILTERING BASED SPEECH
ENHANCEMENT METHOD

In practice, we find that the observation noise contained in
the acquired speech signal can be modeled as Gaussian noise
mixed with Laplacian noise. Hence, the observation equation
in (5) is modified as

y(k) = Cx(k) + ng(k) + ns(k) (9)

where ng(k) denotes the Gaussian measurement noise
N (0, σ2

v), ns(k) is the zero-mean Laplacian noise (sparse
noise). With the above two noises, the standard Kalman filter
is unable to find the optimal estimate of state vector.

In this paper, we use the robust Kalman filter [9] in speech
enhancement problem. For easy understanding of the robust
Kalman filter, we first reformulate the measurement update
(8) into a convex optimization problem as follows

min n2(k)/σ2
v + (x− x̂(k|k − 1))TΣ−1(x− x̂(k|k − 1))

s.t. y(k) = Cx+ n(k)
(10)

The optimization problem (10) is derived based on the maxi-
mization of a posterior p(x(k)|y(k)). The first term in the cost
function is a loss term corresponding to the noise n(k), and
the second is a loss term associated with the state estimate
deviated from the prior. The problem in (10) produces the
same estimate as (8).

With the observation equation given in (9), the robust
Kalman filter is given as

min n2
g(k)/σ

2
v + (x− x̂(k|k − 1))TΣ−1(x− x̂(k|k − 1))

+ λ||ns(k)||1
s.t. y(k) = Cx+ ng(k) + ns(k)

(11)

where ||x||1 denotes the L1 norm

||x||1 =
N∑
i=1

|xi|,

and the parameter λ ≥ 0 is used to adjust the sparsity of ns(k).
If the variable λ is large enough, the value of ns(k) in the
above optimization problem will become zero. In such case,
the robust Kalman filter is the same as the standard Kalman
filter.

Since (11) is a convex optimization problem [10], it is not
difficult to find the optimal values of the variables ng(k), ns(k)
and x. However, we know that if more variables are involved in
optimization problem, the numerical method for solving (11),
such interior point method [10], [14], is less efficient. In order
to solve this problem, we can manually eliminates the variables
in (11). After applying some mathematical manipulations, the
problem in (11) can be formulated as

min (ỹ(k)− ns(k))
TQ(ỹ(k)− ns(k)) + λ||ns(k)||1 (12)



where

ỹ(k) = y(k)−Cx̂(k|k − 1)

L = ΣCT (CΣCT + σ2
v)

−1

Q = ||I−CL||22/σ2
v + LTΣ−1L

(13)

After solving the optimization problem in (12), we can
recover the speech signal from the state-vector

x̂(k|k) = x̂(k|k − 1) + L(ỹ(k)− ns(k)) (14)

IV. NUMERICAL RESULTS

In this section, we demonstrate some numerical examples
to show the performance of the proposed method. The speech
used in simulations are sampled with rate 10kHz. The order of
AR model used in simulation is 13. The output signal-to-noise
ratio (SNR) of the enhanced speech at different input SNR
are studied using the standard Kalman filtering based method
and the proposed method. In the simulation of measurement
noise, the sparse noise are simulated to randomly distributed in
time axis with probability 0.05 and has amplitude in Gaussian
distribution.

In the first experiment, a clean speech signal shown in Fig.
1 are corrupted by Gaussian noise of variance 1.0 and sparse
noise with amplitude variance 2.25. The noise corrupted signal
is shown in Fig. 2. It is clear that this speech signal is seriously
corrupted by noise and its input SNR is −15.5193dB. The
speech enhanced by the standard Kalman filtering method
and the proposed robust Kalman filtering method are shown
in Fig. 3 and Fig. 4, respectively. Comparing the original
speech signal with the enhanced speech signals in Fig. 3
and Fig. 4, it is clear that the speech enhanced by the
standard Kalman filtering method has shrunk amplitude and
some residual sparse noises. Moreover, from the difference
between the enhanced speech and the original one shown in
Fig. 5, we can find that the speech signal enhanced by the
standard Kalman filtering method has significant difference to
the origianl one. The signal error of the proposed method is
significantly lower than that of the standard Kalman filtering
method. After listening test, we find that the signal enhanced
by the robust Kalman filtering method also has high speech
quality.

To further compare the performance of the methods under
different input SNR, in the second simulation experiment, we
compare the output SNR of these method with different input
SNR. The SNR is changed by setting different amplitude of
the sparse noise. The results shown in Table I indicate that
when the sparse noise is weak, the proposed method has
similar performance as the standard Kalman filtering based
method. This is because in such case, the Gaussian noise is
the dominant noise, the robust Kalman filter performs similarly
as the standard one. However, when the sparse noise increases,
for example, when the input SNR is −12.2303dB, the output
SNR of the proposed method is significantly higher than that
of the standard Kalman filtering method.
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Fig. 1. The clean speech signal
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Fig. 2. The speech signal with Guassian and Sparse noises
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Fig. 3. The estimated speech signal by standard Kalman filtering method
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Fig. 4. The estimated speech signal by the proposed robust Kalman filtering
method
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Fig. 5. Comparison of the signal error produced by the proposed robust
Kalman filtering method and the standard Kalman filtering method

V. CONCLUSIONS AND DISCUSSIONS

A robust Kalman filtering based method is proposed for
speech enhancement. This method is especially useful when
the speech signal is corrupted by not only conventional
Gaussian noise but also sparse noise. In this method, we
firstly use conventional method to estimate the AR parameters
of the speech segments, then use these AR parameters in
Kalman filtering. Since the sparse noise only affects the
observation equation, in the robust Kalman filtering method,

Input SNR Standard Kalman Robust Kalman
-0.1586 9.5742 9.4606
-0.6402 9.2184 9.2544
-2.1082 8.1398 8.8342
-6.7830 5.0359 8.3517

-12.2303 1.5013 8.2773

TABLE I
COMPARISON OF OUTPUT SNR AT DIFFERENT INPUT SNR BY THE

STANDARD KALMAN FILTERING METHOD AND THE PROPOSED ROBUST
KALMAN FILTERING METHOD. (THE UNIT OF THIS TABLE IS dB)

we still use the conventional time updating approach, but
modify the measurement updating approach. The simulation
results show the effectiveness of the proposed method. It has
significantly higher output SNR than the standard Kalman
filtering based method. Although the measurement update
approach is formulated in convex optimization problem, its
computational complexity is higher than the conventional
measurement updating approach in Kalman filter. How to
derive an efficient method to get the solution of the robust
Kalman filter is one of our future research topic. Also in the
the estimation of AR parameters, we do not consider effects
of the sparse noise contained in the observed speech. How to
improve the performance of AR parameters with the existence
of sparse noise is also an important problem in our future
research.
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