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Abstract— Fast proliferation of digital images have aroused 
forensics needs to identify and verify the source class for a given 
image patch. Statistical forensics features are known to be useful 
to fingerprint traditional source classes, such as device models 
and brands. The key challenge is to construct compact templates 
based on the features that are discriminant for different classes 
and stable for devices of the same class. While dissimilar camera 
sources are relatively easy to discriminate, this paper proposes to 
identify very similar digital single-lens reflex (DSLR) cameras on 
a new source class, i.e. the digital processor used. By computing 
several types of derivative correlation features, an eigenfeature 
extraction technique is employed to learn the compact model 
templates. The source processor is identified through finding the 
nearest neighbor model template. Our compact templates 
achieve an average accuracy of 96.0% in identifying five DSLR 
processors from Canon brand using small image patches. 

I. INTRODUCTION 

With advances in digital photography technology and the 
cost reduction, the high-end digital single-lens reflex (DSLR) 
cameras have become affordable and popular among the 
worldwide photo enthusiasts. The growing trend of images 
acquired by DSLR cameras has also triggered urgent forensics 
needs on the DSLR images such as identifying the image 
source class and detecting possible forgeries as both the 
source information and content of digital images can be 
electronically altered with ease for malicious purposes 
through the ubiquitous computers and the cheap yet powerful 
image editing tools. 

Image source identification is the technology to identify the 
image source based on its content, which typically involves 
investigation on the hidden links between the image content 
and its corresponding source. Depending on the outcomes, we 
divide image source identification into two categories: 
individual device identification and identification of a class of 
devices sharing similar attributes, e.g. devices of the same 
model or of the same type. Prior works on individual device 
identification often extract certain defect pattern, such as 
sensor noise pattern [4] and sensor dust pattern [5], which are 
intrinsic to each individual device. Through correlating the 
pattern extracted from a test image with the synchronized 
reference patterns, the source device can be identified based 
on the highest correlation score. Since devices of the same 
model, brand, digital image processor or type often share 
similar software and hardware components, prior works on 
identification of device models or types rely on extracting 

some processing regularities e.g. demosaicing regularity [2-3, 
6-8, 10] and color features [14], which are associated with the 
in-device software modules, or regularities such as noise 
statistics [3, 11] and image quality metrics [13, 14], which are 
related with the image sensor size and quality. These 
statistical forensics features can be used in conjunction with 
machine learning techniques to identify the source class. In 
the scenarios that the forensics analyst does not have the 
target camera device or do not have plenty of images from a 
device for learning the reference defect pattern, tracing the 
individual source device would be impossible. Alternatively, 
it would be desirable to identify the source class instead using 
source class templates, which are constructed using images 
from similar cameras. The statistical forensics regularities for 
source class identification are expected to generalize well so 
that the class template learned is applicable to numerous 
unseen cameras within the same class. 

Previous works [6-8] have shown that the accurately 
detected correlation features perform well in identification of 
diverse image sources including different demosaicing 
algorithms, RAW conversion software tools, dissimilar digital 
still camera models and the low-end mobile camera models. 
However, it remains insufficiently explored among existing 
works for identifying very similar sources and on how to 
define the source classes sensibly in such a challenging 
context. In this paper, we study the identification of five 
similar high-end Canon DSLR camera processors using 
compact model templates. By first extracting three sets of 
derivative correlation features, we combine the different 
feature sets and construct compact model templates through 
learning a discriminative transformation. Comparison results 
show that our compact model templates achieve better 
classification performance than the pixel correlation features 
using cropped image patches. 

The remainder of this paper is organized as follows. 
Section II details the feature extraction and reduction 
techniques used. Section III discusses some experimental 
results. Section IV concludes this paper. 

II. PROPOSED METHOD 

A. Derivative Correlation Features 

Proprietary demosaicing algorithms are often implemented 
in the single-sensor DSLR cameras and each demosaicing 
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technique can introduce some unique and persistent 
correlation throughout the image. Since demosaicing is not 
the last process in a camera processing pipeline, the 
correlation can be further distorted by the post-demosaicing 
processes such as white balancing, color space transformation, 
gamma correction, etc. The interplay of demosaicing and the 
different post-processes in a camera can leave unique image 
correlation patterns, which can be detected for identification 
of source camera classes. 

We compute the derivative correlation features based on an 
accurate detection model [7], which is briefly described in the 
following steps: 

1. As Bayer color filter array (CFA) has been widely used 
[1], we assume one of the Bayer CFAs in Fig. 1 to be the 
underlying CFA and separate the sensor color samples 
and the demosaiced samples accordingly; 

2. A reverse classification is then performed to precisely 
divide all demosaiced samples from three color channels 
and at different periodical 22 CFA lattice positions into 
sixteen categories with known demosaicing axes. Each 
category contains the samples demosaiced by a similar 
formula; 

3. Knowing that demosaicing a sample along an edge 
direction is equivalent to estimate its partial second-order 
derivative along that axis, we write one derivative 
equation for the jth demosaiced sample of the ith 
category, 

T
ij ij ij ie d    s w   (1) 

where eij is the prediction error, ijd  is the partial 

derivative of the demosaiced sample, 1m
ij

 s  contains 

the neighboring supporting derivatives computed from 
the sensor samples, 1m

i
w   is the demosaicing weight 

vector and m denotes the number of weights selected. 
Pooling all the demosaicing equations for the ith category 
together, we can solve the optimal weights by minimizing 
L2-norm of the prediction errors using a regularized least 
square solution; 

4. With the weights solved for each category, we compute 
three types of features including 316 weights (WT) for 16 
categories, 64 error cumulants (EC) including mean, 
variance, skewness and kurtosis of the absolute errors, 
and 8 normalized group sizes (NGS), which characterize 
the distribution of demosaiced samples; 

5. Steps 1-4 are repeated to cater for three other Bayer 
CFAs in Fig. 1. As the outcome, we have a total of 1248 
WTs, 64 ECs and 32 NGSs. 

Our features capture the image correlation pattern 
originated by demosaicing and these features also contain the 
distortion signature for differentiating various post-
demosaicing processes for a fixed demosaicing algorithm [7]. 

B. Learning Compact Model Templates 

We choose to learn the model template since devices of the 
same model are similar in terms of both hardware and 
software processing. In order to construct compact DSLR 
model templates, we learn an eigenfeature transformation for 
extracting a number of eigenfeatures from our combined 
correlation features. Our early work in [16] has shown that 
eigenfeature extraction technique typically results in better 
identification accuracy with less number of required features 
than the sequential forward floating feature selection 
technique used in [7]. Let 1{ ,M

pq
x   where 1≤p≤P and 

1≤q≤Qp} be the training feature vectors from P DSLR camera 
models, where Qp feature vectors are available for the pth 
model and M denotes dimension of the combined features. 
Learning of the model templates is summarized in the 
following steps. 

1. Compute the within-model covariance matrix using 

  ( )

1 1

1 1 pQP Tw
pq p pq p

p qpP Q 

   S x x x x  (2) 

where 
1

1 pQ

p pq
qpQ 

 x x ; 

2. Perform eigen decomposition on (w)S where 
(w){ ,mv 1≤m≤M} are the eigenvectors and (w) (w)

1 M    

correspond to the eigenvalues; 

3. Due to high feature dimension and the relatively small set 
of learning samples in practice, a large number of very 
small eigenvalues are prone to estimation errors. As the 
inverse of these eigenvalues are commonly used for 
feature scaling and measuring discriminant power of an 
eigen axis, their poor estimation can severely affect our 
selected subspace and quality of eigenfeatures. To 
circumvent this problem, we use an eigen spectrum 
regularization method to divide the entire eigen spectrum 
{ (w)

n } into three regions, namely signal, noise and null. 

The reliable eigen values in the signal region are for 
computing parameters of an eigen spectrum model [9], 
which is subsequently used to regularize the unreliable 
eigen values in the noise region to improve numerical 
stability and discriminant performance. Eigen values for 
null region are replaced with a constant spectrum that 
smoothly transits from the regularized spectrum in the 
noise region; 

Fig. 1. Bayer color filter array and its three shifted versions, where the 
numbers (1-4) indicate the relative position in 22 periodical CFA lattice   



4. Based on the regularized eigenvalues (w){ }m , we perform 

whitening transformation using 

(w)T
pq M pqy x   (3) 

where (w) (w) (w) (w) (w)
1 1 , , .M M M     

v v   

5. Compute the total covariance matrix (t )S  on {ypq} and 
perform its eigen decomposition to have the eigenvectors 

(t ){ }mv  with descending corresponding eigenvalues; 

6. Perform principal component analysis transformation as 

 ( t ) (w) (t ) TT
pq L pq M L pq z y x    (4) 

where (t ) (t ) (t )
1 , ,L L   v v  and .L M 1L

pq
z  is a 

eigenfeature vector. Note that after whitening 
transformation, our selected eigen axes have the large 
total covariance energy (i.e. eigen values of (t)S ), which 
is contributed by the between-model feature differences;  

7. We compute 
1

1 pQ

p pq
qpQ 

 z z as the pth model template. 

By regularizing the within-class eigen spectrum, the above 
procedures can efficiently address the common issues of high 
feature dimensionality and relatively small training sample 
size. Extensive experiments in [9] have shown that the 
regularized eigenfeatures perform more reliably than a 
number of conventional subspace methods in classification 
tasks. Our compact model templates constructed using the 
eigenfeatures hence reliably captures the uniqueness of each 
model through suppressing the within-model covariance. 

C. Source Processor Identification 

A simple one nearest neighbor classifier (1NNK) is used in 
conjunction with a correlation similarity metric to identify the 
source model for a test eigenfeature vector z. The correlation 
similarity between z and a model template g is computed 
below 

     , TS  z g z g z g   (5) 

where  denotes Frobenius norm. The processor of the 

identified DSLR model is regarded as the processor class. 
Here, each of the processor class is represented as a number 
of DSLR model templates, which share the same processor. 

III. EXPERIMENTS 

We first prepare a set of JPEG photos from 18 camera 
models of 6 brands with a total of 31 cameras. As tabulated in 

Table 1, we have 13 DSLR models with 26 cameras for 
Canon brand. Five types of DIGIC processors are employed 
in these 13 Canon DSLR models. The remaining models are 
Nikon D2X, Fujifilm Finepix S5Pro, Panasonic DMC LX1, 
Konica Minolta DYNAX 7D and Sony DSC T100 with one 
camera in each model. For each camera, we crop 200 image 
blocks of 512512 within the fixed central image region. 
Overall, these blocks cover a large variety of scenes under 
different lighting conditions such as indoor, outdoor, studio 
and night. After performing feature extraction, we randomly 
select 150 blocks per camera for learning the model template 
and the remaining are for testing. The random apportion is 
repeated for five times and we report the test identification 
results averaged over the five different apportions in the 
following section. 

A. Identification Scenarios and Feature Comparison 

As shown in Fig. 2, we compare our proposed templates 
with those generated from the color interpolation coefficient 
(CIC) features [2] in three different identification scenarios: 
1) identification of cameras from different brands; 2) 
identification of cameras of the same brand with different 
processor types and 3) identification of cameras using the 
same processor type but of different models. Note that CIC 
features also model the image correlation but are computed 
based on pixel correlation model within each of the three 
color channels. From our results in Fig. 2, we can observe the 
following: 1) For all three identification scenarios, our test 
error rate tends to drop quickly at the initial few eigenfeatures 
and stabilizes to a low level within about 10-30 eigenfeatures; 
2) Based on the same number of eigenfeatures, our derivative 
correlation features give lower test error rate in all three 
identification scenarios; 3) the best achievable test error rates 
using our eigenfeature are 1.2%, 2.9% and 12.3% for the three 
scenarios in Fig. 2(a), (b) and (c), respectively. As each 
scenario identifies similar number of cameras, these results 
show that our eigenfeatures can distinguish dissimilar 
cameras of different brands with a high confidence. When 
DSLR cameras become incrementally more similar, e.g. of 
different brands, of the same brand and using the same 

TABLE I  
CANON DSLR CAMERA PROCESSORS WITH DIFFERENT MODELS USED 

Processor Model #Cameras Resolution 

DIGIC 
10D 1 30722048 

300D 1 30722048 

DIGIC 2 

1D mark 2 2 35042336 
5D 5 43682912 
20D 1 35042336 
30D 1 35042336 

350D 1 34562304 
400D 3 38882592 

Dual DIGIC 3 1D mark 3 1 38882592 

DIGIC 3 
40D 4 38882592 

450D 4 42722848 

DIGIC 4 
5D mark 2 1 56162592 

500D 1 47523168 



version of DIGIC processor, our identification rate for each 
camera drops. Especially, we observe an increment of about 
9.4% error rate in identifying four DSLR cameras of the same 
DIGIC2 processor. This is because the image correlation is 
largely associated with the in-camera software processing. 
Thus, cameras equipped with the same processor are 
expectedly harder to classify using statistical correlation 
features. 

B. Processor and Model Identification 

We further test the identification of all 13 Canon DSLR 
models by incrementally increasing the number of training 
cameras per model by one in each phase for a total of five 
phases. For instance, in Phase 1, 13 training cameras from 13 
models with one from each model are used to learn the 
respective model template. In Phase 5, all 26 cameras are used 
where the 5D model in Table I contributing 5 cameras for 
learning the 5D model template and the remaining models 
contributing their maximally available cameras. In all 5 
phases, we use the same set of test images from all 26 

cameras to evaluate the performance. From the results in Fig. 
3 using 25 eigenfeatures, both the overall identification rate 
and the rates for three separate models, for which we have 4-5 
cameras each, increase when more cameras per model are 
used in the training. Especially, a significant increment of 
about 18% on the overall rate is observed from Phase 1 to 
Phase 2. This huge increment is because that by including 
more cameras per model, our computed within-model 
covariance better represents the common statistical 
differences between different cameras of the same model. 
Also, the increased number of training images leads to more 
representative model templates. The model identification 
errors are mainly caused by the confusion between the Canon 
DSLR camera models that employ the same type of DIGIC 
processor. We also note that 40D and 450D models, both 
using DIGIC 3 processor, behave differently in Fig. 3. This is 
due to the different learning quality at the initial phases which 
depends on representativeness and the content variety of our 
available training images. Visually, we find that the training 
images from our initial two 40D cameras contain less variety 
than the images from the first two 450D cameras. Our 450D 
template is hence better learnt at the initial phases with a 
significant portion of 40D test images being misclassified as 
the 450D model. 

After the Phase-5 learning, we show in Table 2, the 
confusion matrix where the (i,j)th field denotes the accuracy 
rate of predicting the ith processor class as the jth output 
processor class. We achieve a good average processor 
identification accuracy of 96.0% considering that these five 
different DIGIC processor types are all from the same Canon 
brand. Compared with our overall model identification rate of 
about 80% in Fig. 3, our good processor identification rate 
suggest that it is more feasible to define source classes based 
on the digital processor used in the context that available 
camera devices are very similar. 

IV. CONCLUSIONS 

In this paper, we proposed to construct compact model 
templates using eigenfeatures, which are extracted from a set 

(a) 

(b) 

(c) 

Fig. 2. Test error rate versus number of eigenfeatures in identification of (a) 
6 cameras of different brands; (b) 4 Canon cameras (10D, 400D, 450D, 

500D) associated with 4 different DIGIC processors; (c) 4 Canon cameras 
of different models (1D mark2, 5D, 30D and 400D) associated with the 

same DIGIC2 processor 

Fig. 3. True positive model identification rates when the number of cameras 
per model for training is incrementally increased in five phases 



of high-dimensional image derivative correlation features. A 
processor class was then constructed as a group of the model 
templates, where these models share a same digital processor. 
Comparison results show that our features perform better than 
the pixel-level image correlation features. Our identification 
accuracy is dependent on the processing similarity inside the 
source cameras. The identification error rate could increase 
from 1.2% for identifying six cameras of different brands to 
12.3% for identifying four cameras using the same processor. 
In identification of five similar processors, we achieved an 
overall accuracy of 96.0%, which is significantly higher than 
81% accuracy for identifying 13 DSLR models. This suggests 
that using processor as the source classes is more reliable 
choice in the challenging source-class identification task for 
very similar DSLR cameras. Our results also show that the 
model identification accuracy can be largely improved when 
more training cameras per model are involved and the 
improvement is particularly significant when this number 
increases from one to two. 
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TABLE II 
CONFUSION MATRIX (%) OF OUR IDENTIFICATION ACCURACY FOR 5 CANON DIGIC PROCESSORS USING 25 EIGENFEATURES, WHERE ONE TEMPLATE IS 

LEARNED FOR EACH MODEL AND A PROCESSOR CLASS CAN SEVERAL SEVERAL LEARNED MODEL TEMPLATES 
Ave. Accuracy = 96.0% DIGIC DIGIC 2 Dual DIGIC 3 DIGIC 3 DIGIC 4 
DIGIC (2 models with 2 cameras) 100 0 0 0 0 
DIGIC 2 (6 models with 13 cameras) 0 99.2 0 0.5 0.3 
Dual DIGIC 3 (1 model with 1 camera) 0 0 100 0 0 
DIGIC 3 (2 models with 8 cameras) 0 2.5 0 97.0 0.5 
DIGIC 4 (2 models with 2 cameras) 1.0 14.0 0 1.0 84.0 
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