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Abstract—Existing grid-based techniques cannot suit for high-
resolution fluid simulation due to the high computational cost.
This paper presents a novel modified linear interpolation(MLI)
upsampling method for animating details-abundant fluids quick-
ly. Our method runs on a high-resolution grid while creating a
divergence-free velocity field on a coarse grid to speed up the
calculation. Different from previous work, we use a novel MLI-
upsampling operator to reconstruct a fine velocity field from the
coarse divergence-free velocity field. The upsampled velocity field
is kept divergence-free without solving Poisson equation on the
fine grid. We provide several examples to demonstrate that our
method is efficient and effective, and it is ideal for CG application
where visual detail and speed are essential.

I. INTRODUCTION

The grid-based technique was introduced to Computer
Graphics by Foster and Metaxas [1] in 1997. Next, Stam [2]
successfully remedied it by introducing the pressure projection
scheme to enforce incompressibility and the semi-Lagrangian
algorithm of the advection to ensure the stability of the
fluid. The integrated solution is prevalent for the simulation
of incompressible fluids, such as smoke [3], water [4] and
sand [5], etc. Although many authors such as Fedkiw [3,
4], Bridson [5] have used grid-based techniques to produce
visually compelling results, the quality of simulation is still
tightly related to the size of the grid, which was limited by
the amount of computational resource available.

In this paper, we propose a fast method for simulating
fluid with small scale details by a combined fine-coarse grid,
using a novel modified linear interpolation(MLI) upsampling
as our core tool. We advect the fluid on the fine grid, followed
by mapping, coarsen projection step, plus a MLI-upsampling
process to reconstruct the fine fluid field. Our upsampling
operator maps velocity field from the coarse grid to the
fine grid and keeps the divergence-free property naturally for
incompressible fluids, which are important phenomena for
fluid animation.

Our method can be regarded as a fast simulation of the tradi-
tional grid-based approach. As we know, there are three steps
to solve Navier-Stokes equations: advection, body force and
pressure projection. Among of these steps, solving pressure
equation (or we called projection) is the most important but so
expensive that the computational cost occupies more than 90%
of the traditional fluid solver. Our method can greatly reduce
the projection cost by using a novel projection algorithm, and
it also produces the same level of details as the traditional
high-resolution solver does.

II. RELATED WORK

There are many efforts to enhance the grid-based fluid
solver, among which some work tried to use higher order inter-
polation method in the solver, such as using cubic interpolation
instead of linear interpolation, tracing back curved path rather
than straight line path [3] in the semi-Lagrangian step, using
higher order methods in space, such as BFECC [6], QUICK
[7], MacCormack [8], or in time, such as Runge Kutta [9].
Although these methods can decrease the numerical dissipa-
tion in traditionally stable fluid solver and enhance details,
it involves more computational cost and more complicated
implementation.

Some previous work synthesized details by introducing with
noise. For example, Kolmolgorov noise [10, 11] and curl
noise [12]. Kim [13] proposed a wavelet turbulence model to
synthesize different levels of details onto the result of a coarse
grid simulator. Energy transport model, introduced by Narain
[14], was proposed to track the dynamics of turbulent energy
over time and combine it with procedural synthesis process
on a base simulator. All of these techniques are successful at
adding details but nonphysical, and can produce significantly
less realistic results than simply simulating with a higher
resolution grid.

Lentine et al. [15] proposed a method to accelerate pro-
jection step on fine-grid simulation for incompressible flow.
Instead of solving an expensive large Poisson equation on the
fine grid, they accelerate simulation by solving one coarse grid
Poisson equation and many smaller Poisson equations for the
refined cells. Our work is inspired by their research and we
adopt a similar framework combining fine and coarse grids to
accelerate projection. The main difference is that, by taking
advantage of the mass-conserving property of our novel MLI-
upsampling operator, we do not solve Poisson equation on the
fine grid, and only solve one Poisson equation on the coarse
grid in each time step.

III. METHOD OVERVIEW

The motion of fluid is calculated by the numerical analysis
of the following incompressible Navier-Stokes equations.

∂u⃗

∂t
+ u⃗ · ∇u⃗+

1

ρ
∇p = f⃗ (1)

∇ · u⃗ = 0 (2)

where u⃗ is velocity, t is time, ρ is density, p is pressure, and
f⃗ is external force. ∇ is vector gradient operator and ∇· is
vector divergence operator.
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The classical grid-based method solves these equations in
three steps, including advection, body force and projection.
More details are given in [16]. The part we are interested in is
that, the projection step is most computationally costly while
solved by traditional method, which occupies more than 90%.

Therefore, we present a novel projection to replace the tra-
ditional projection. As illustrated in Fig. 1, there are three key
components in our method: map the velocity field to coarse
uniform grid; make the coarse grid velocity field divergence
free; and map these velocities back to our fine simulation grid
which still keeps the fine velocity field divergence free. Each
of them will be discussed in detail as following.

Fig. 1. The entire fluid simulation pipeline.

IV. OUR PROJECTION

After steps of advection and body force, we get a fine
grid velocity field u⃗f . With standard grid-based method, the
following projection step will make u⃗f divergence free by
solving a costly Poisson equation and updating to an incom-
pressible field u⃗n+1. However, in this section, we significant
reduce the cost of projection step using three steps: map
u⃗f to coarse grid to get the coarse velocity u⃗c ; make u⃗c

divergence free via solving a coarse Poisson equation to get
a coarse incompressible velocity u⃗∗ ; and map u⃗∗ back to
fine grid using MLI-upsamling technique that maintains the
incompressibility from coarse to fine.

A. Mapping Velocity to Coarse Grid

In this section, we present a normalized spline kernel
method that can map the intermediate fine grid velocity u⃗f to
coarse grid and then get coarse velocity u⃗c . The normalized
spline kernel [17] is popular in particle-based method because
this kernel has second order interpolation errors. In this paper,
we extend this kernel to grid-based fluid and apply it as our
mapping method.

Fig. 2. Mapping the fine velocity to coarse grid.

To map the velocity field u⃗f stored on the fine MAC grid to
coarse MAC grid field u⃗c , as illustrated in Fig. 2, the result
of x component velocity uc

i,j is mapped from fine to coarse
by a distance-weighted average function given by:

uc
i,j =

∑
m ufW (dm, h)∑
m W (dm, h)

(3)

where dm = ∥xf
m −xc

i,j∥ is the distance between the position
of the mth fine grid velocity uf

m and the position of coarse
grid velocity uc

i,j , and we choose the normalized spline kernel
W as:

W (d, h) =


315

64πh9 (h
2 − d2)3 , d < h

0 , d ≥ h
(4)

where the influence radius h we adopted is a constant value
as 0.5 times the size of a coarse grid.

B. Making Coarse Grid Incompressible

Once we have the downsampled velocity field u⃗c on the
coarse grid, we can make this field divergence-free by using a
coarse projection operation. Since we define our solid objects
on fine grid, standard coarse projection was not exactly ac-
curate, especially around objects. Therefore, we must modify
the coarse projection step when handling object boundaries.

We use the variational framework [9] to handle the boundary
mismatch between the coarse grid and the fine grid. Instead of
using the standard discretization of the laplacian operator, we
use the mass-weighted 7-point laplacian stencil to discretize
the Poisson equation. We use Preconditioned Conjugate Gradi-
ent method to solve the resultant linear system and get pressure
result.

Then, we subtract off the pressure gradient from u⃗c:

u⃗∗ = u⃗c −∆t
1

ρ
∇p (5)

where the result u⃗∗ satisfies the incompressibility of fluid on
the coarse grid.

C. Mapping back to Fine Grid

After we get the divergence free velocity field u⃗∗ on the
coarse grid, we need to map this field back to the fine
grid. In this section, we present a novel MLI-upsampling
method to reconstruct a fine divergence-free field from a coarse
divergence-free field.

Fig. 3. Reconstructing of the divergence-free field using MLI-upsampling.



Subplot (a), (b) and (c) in Fig.3 show the steps of our MLI-
upsampling method. Starting with a coarse grid shown in (a),
we need to refine the grid by a factor of 4, as shown in subplot
(c). First, from the known values uc0 , uc1 , vc0 , vc1 of the
coarse faces, we set the boundary face of the fine grid that
overlapping the coarse grid equal to the corresponding value
of coarse grid, as shown in subplot (b). Then, other values on
fine grid are calculated by using a simple linear interpolation
of the known values that computed in step (b), as in subplot
(c). The MLI-upsampling method also works with other factor
m (=2, 3, 4).

Fig. 4. The reconstruction field refined by a factor of m.

Next, we simply demonstrate that MLI-upsampling method
is perfectly satisfying the incompressibility of fluid. Suppose
we refine the cell by a factor of m , without loss of generality,
we focus on the grid cell (i, j) of the refined cell. As illustrated
in Fig. 4, from the known values uc0 , uc1 , vc0 , vc1 of the
coarse grid, we can calculate the values on the grid cell (i, j)
on the fine cell by using MLI-upsampling method, and these
values are:

ui−1/2,j =
(m− i)uc0 + iuc1

m
(6)

ui+1/2,j =
(m− i− 1)uc0 + (i+ 1)uc1

m
(7)

vi,j−1/2 =
(m− j)vc0 + jvc1

m
(8)

ui,j+1/2 =
(m− j − 1)vc0 + (j + 1)vc1

m
(9)

Remember the discrete divergence in two dimensions is:

(∇ · u⃗)i,j =
ui+1/2,j − ui−1/2,j

∆x
+

vi,j+1/2 − vi,j−1/2

∆x
(10)

We simply substitute the values on equations (6-9) into the
divergence formula, equation (10), and get the following
equation:

(∇ · u⃗)i,j =
1

∆x
(
uc1 − uc0

m
+

vc1 − vc0
m

) (11)

Notice that the coarse grid velocity field is divergence free, so
the divergence on coarse grid is:

uc1 − uc0

m∆x
+

vc1 − vc0
m∆x

= 0 (12)

Therefore, equation (11) equals to zero, which means the
divergence on the fine grid is free.

V. RESULTS AND DISCUSSION

In this section, we have applied our method to create several
examples. The animation framework was implemented in C++
and rendered by PBRT. We have run all simulations including
the rendering on an Intel Xeon 2.80GHz CPU with 6GB of
memory.

First, we give a 2D example of smoke to demonstrate
our projection method is effective, as shown in Fig. 5. Fig.
5(a),(c),(e) are the standard simulation with different resolu-
tions and Fig. 5(b),(d) are our method reconstructed from Fig.
5(a) by scale 2 and 4, respectively. It shows that our method
can generates more details than the coarse grid simulation, by
comparing Figure Fig. 5(a) with Fig. 5(b),(d). It also supports
that our method can produce the same level of details as
the traditional high-resolution solver does, as shown in Fig.
5(b),(c) and Fig. 5(d),(e). Note that Fig. 5(f) manifests that
there are little differences in detail structure between our
method and traditional high-resolution grid method.

Fig. 5. 2D smoke example. (a) is a base simulation on a 32× 64 grid, (b) is
our method using a 64 × 128 grid and a 32 × 64 coarse grid, (c) is a base
simulation on a 64×128 grid, (d) is our method using a 128×256 fine grid
and a 32× 64 coarse grid, (e) is a base simulation on a 128× 256 grid, (f)
is difference between (d) and (e).

Fig. 6 is a 2D smoke animation with an inside solid circle
boundary which demonstrates that our modified coarse projec-
tion step is very effective and necessary, and it can generate
more natural details than standard coarse projection. Fig. 6(b)



is the result where only using standard coarse projection, and
this result is not natural and makes some artifacts. But in Fig.
6(c), using modified coarse projection, the flow passes around
the object smoothly, and is more natural than Fig. 6(b).

Fig. 6. 2D smoke with solid object.(a) is a base simulation on a 32×64 grid,
(b) is our method using a 128×256 fine grid and a 32×64 coarse grid with
standard coarse projection.(c) is our method using a 128× 256 fine grid and
a 32× 64 coarse grid with modified coarse projection.

As in Fig. 7, Fig. 8 and Fig. 9, we show uprising 3D
smoke examples interacting with both a static sphere and
a moving sphere, and water in a pool. These examples are
carried out with different scale of MLI-upsampling to illustrate
that our method achieved much higher simulation quality than
traditional solver.

Fig. 7. 3D smoke with a moving sphere. (a) is a base simulation on a 32×
64×32 grid, (b) is our method using a 64×128×64 grid and a 32×64×32
coarse grid, (c) is base simulation on a 64×128×64 grid, (d) is our method
using a 128× 256× 128 grid and a 32× 64× 32 coarse grid.

The timings for our simulations are shown in Table 1. We
compare our results by running a base simulation on the coarse
grid, and a base simulation on the fine grid. The table shows
our method runs approximately 152 times faster on the high-
resolution in uprising smoke example.

VI. CONCLUSIONS

In this paper we introduced a novel MLI-upsampling
method for fluid simulation. This upsampling method can
preserve the incompressibility of velocity field when mapping
from coarse grid to fine grid, without solving Poisson equa-
tion on the fine grid. Consequently, our method can provide
convincing fluid details while effectively reduces the amount

Fig. 8. 3D smoke with a static sphere. The four figures on the top is a base
simulation on a 32× 64× 32 grid with a standard simulation, while the four
figures on the bottom is our method with a 128× 256× 128 fine grid and a
32× 64× 32 coarse grid.

Fig. 9. water ball into a pool. left is a base simulation on a 60×60×60 grid,
right is our method with a 120 × 120 × 120 fine grid and a 60 × 60 × 60
coarse grid.

of computational time by one to two order of magnitude
comparing with traditional simulator on fine grid. Besides,
our technique is very simple to implement. We believe that
our method is ideal for CG application where visual detail
and speed are both essential.
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