
Behavior Signal Processing for Vehicle Applications
Chiyomi Miyajima, Pongtep Angkititrakul, Kazuya Takeda

Nagoya University, Nagoya, Japan
E-mail: {miyajima, pongtep, takeda}@g.sp.m.is.nagoya-u.ac.jp Tel: +81-52-789-4432

Abstract—Within the past decade, analyzing and modeling
human behavior by processing large amounts of collected data
has become an active research topic in advanced human-machine
interaction systems. The research community strives to find
improved ways to explain and represent meaningful behavioral
characteristics of humans in order to develop efficient and
effective cooperative interactions between humans, machines, and
the environment. This paper provides a summary of progress
achieved to date of our research on behavior signal processing,
with a focus on the driver-vehicle-environment interaction. First,
we describe the method of data collection used to develop our
real-world driving corpus, which contains multimodal driv ing
signals capturing relevant information regarding driver, vehicle,
and environment. Then, the paper provides an overview of our
signal processing and data-driven approaches used to analyze
and model driver behavior for a wide range of practical vehicle
applications. We then perform experimental validation using
the realistic driving behavior of several drivers. In parti cular,
the vehicle applications include driver identification, behavior
prediction (i.e., car following and lane change), driver frustration
(emotion) detection, and driver education. We hope that this
paper will provide some insight to researchers who have interest
in this field, and help identify areas and applications where
further research is needed.

I. I NTRODUCTION

Human behavior plays an important role in any system
involving human-machine interaction. In regards to driv-
ing, when analyzing driver-vehicle-environment interactions
(Fig. 1), human errors contribute to more than 90% of fatal
traffic accidents. Understanding human/driver behavior can be
useful in preventing traffic collisions [21], as well as enhancing
effectiveness of the interaction between driver, vehicle,and en-
vironment. The study of driver behavior is a very challenging
task due to its stochastic nature with high degree of inter-
and intra-driver variability. To cope with these issues, over
the past decades data-centric approaches have gained much
attention in the research community [8], [14], [15], [18]. In this
research, we focused on the understanding of human behavior
from a signal processing perspective, and on developing a
methodology to analyze and model the extracted meaningful
behavioral information.

To analyze and model driver behavior, the first step is
to collect a reasonable amount of realistic multi-modal ob-
servations. Here, observations or driving signals represent
behavioral variables as a time series which possesses particular
dimensions of behavioral characteristics. We took extra care in
designing and developing our instrumented vehicle to collect a
broad range of driving signals which could represent relevant
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Fig. 1. Cyclic Interaction between driver, vehicle, and driving environment.

information regarding driver, vehicle, and environment. This
paper describes our data collection and driving corpus, which
is one of the largest realistic driving corpora with more than
550 participants at the time this article was written. Subse-
quently, we discuss the behavior processing and modeling
methods with practical vehicle applications.

Driver behavior conveys multiple layers of information
regarding a driver such as a driver’s mental, physical, and
cognitive states, driver intention, and driver identity. Therefore,
modeling driver behavior can be used to detect or predict
behaviors of interest during vehicle operation, or can be
used to investigate and assess driver behavior after vehicle
operation. In particular, we showed that driver models obtained
from driving signals could be used to recognize driver identity,
predict driver operation, detect driver frustration, and assess
recorded driving behavior.

We have developed a driver-behavior model based on a
probabilistic Gaussian mixture model (GMM) framework. The
GMM model was applied to capture relationships among
the related parameters of car-following behavior. We showed
that the GMM models representing the patterns of pedal
operation in the spectral domain could achieve an accuracy
rate of 89.6% in recognizing the identities of 276 drivers.
Furthermore, the GMM-based behavior modeling framework
was extended to predict driver behavior in terms of pedal
operation given observed driving signals such as following
distance and vehicle velocity. The modeling framework is also
capable of model adaptation which allows the adapted model
to better represent particular driving characteristics such as
individual driving style. The experimental results showedthat
the framework could achieve a prediction performance of 19
dB (signal-to-deviation ratio).

In addition, employing a Bayesian network (BN), driver
frustration could be detected at a true positive rate of 80% with
a 9% false positive rate. Finally, utilizing the automatically
detected hazardous situations, we developed a web-based
system for drivers to navigate and review each hazardous
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Fig. 2. Instrumented vehicle.

situation of their own recorded driving activity. The system
provides feedback on each risky driving behavior and suggests
how the users can appropriately respond to such situations in
a safe manner. The experimental evaluation showed that safe-
driving behavior improved significantly after using the pro-
posed system. In conclusion, in this paper we describe signal
processing approaches for collecting, analyzing, modeling, and
assessing human behavior, and demonstrate the advantages for
vehicle applications.

This paper is organized as follows. We first introduce our
driving corpus and the data collection in the next section. In
Sec. III, we describe the first application of driver modeling
in evaluating driver identification. Then, in Sec. IV, driver
behavior prediction is discussed for both car-following and
lane-change tasks. Sec. V describes our analysis of real-world
driver’s frustration using combination of speech signal and
pedal actuation signals. The last application regarding driver
education is discussed in Sec. VI. Finally, we summarize and
discuss the future work in Sec. VII.

II. D RIVING CORPUS

A data collection vehicle was designed for synchronously
recording audio with other multimedia data [10]. Various
sensors were mounted on a Toyota Hybrid Estima with 2,360
cc displacement and automatic transmission, as shown in
Fig. 2. Table II summaries all driving data recorded by the
system. Participants drove the instrumented vehicle on city
streets and expressways in the city of Nagoya, Japan. During
the experiment, drivers performed secondary tasks carefully
designed to provide activities that were most likely to occur
during everyday driving. Data collection vehicle, route, equip-
ments, and treatment conditions were the same for all drivers.
Drivers performed secondary tasks in the same order at very
similar locations, so data from different drivers can be readily
compared. An experimenter monitored the experiments from
the rear seat.

A. Collection Protocol

To develop a technique for quantifying the stress level of
drivers, driving data are recorded under various conditions
with four different tasks. The details of the tasks are described
as follows with examples of spoken sentences.
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Fig. 3. Examples of driving behavior signals.

• Signboard reading task Drivers read aloud words on
signboards such as names of shops and restaurants seen
from the driver seat while driving, e.g., 7-11 and Dennys.

• Navigation dialogue task Drivers are guided to an unfa-
miliar place by a navigator on a cell phone with a hands-
free headset. Drivers do not have maps, and only the
navigator knows the route to the destination.

• Alphanumeric reading task Drivers repeat random four-
letter strings consisting of alphabet a-z and digits 0-9,
e.g., UKZC, IHD3, and BJB8. The instruction of the four-
letter strings is heard by earphone.

• Music retrieval task Drivers retrieve and play music by
a spoken dialogue interface. Music can be retrieved by
artist name or song title, e.g., Beatles or Yesterday.

Each driver starts from Nagoya University and returns after
about 70 minutes of driving. Driving data are recorded under
the above four task conditions on city roads and two conditions
on an expressway. Driving data without any tasks are recorded
as references before, between, and after the tasks. Fig. 3
illustrates some samples of pre-processed driving signals.

After completing the route, the participant was also asked
to assess his/her subjective level of frustration by referring to
the front-view and facial videos as well as the corresponding
audio. A user interface for such assessment was designed so
that drivers used an intensity scale and slid a bar from zero
to thirty, i.e., from none to extremely frustrated. The interface
output was a continuous signal: the level of frustration was
recorded every 0.1 seconds.

B. Data Annotation

An effective annotation of multimedia information is crucial
for providing a more meaningful description of the situations
drivers experience. In this study, we proposed a data annotation
protocol that covers most of the factors that might affect



TABLE I
SUMMARIZATION OF DRIVING DATA ACQUISITION

Recording System Specification Channel Rate Unit Data Captured
Microphones Omni-directional condenser microphones 12 16 kHz Voltage Audio and speech

(SONY ECM-77B) and a closed-talk mic.
Video Cameras CCD cameras (SONY DXC-200A) 4 29.4118 fps images Driver’s face (left and right)

(pixels) and feet, front-view road
Pedal Sensors Pressure sensors 2 16 kHz N Gas and brake pedal pressure

(LPR-A-03KNS1 and LPR-R-05KNS1)
Steering sensor Potentiometer 1 16 kHz degree Steering angle

(COPAL M-22E10-050-50K)
Speed Sensor Pulse generator JIS5601 1 16 kHz m/s Vehicle velocity
Distance Sensors SICK DMT-51111 and MITSUBISHI MR3685 2 16 kHz m Distance to a lead vehicle
Physiological Sensors Chest belt POLAR S810i 1 100 Hz bpm Heart rate

Perspiration meter (SKINOS SKD-2000) 1 16 kHz mV Driver’s sweat
Electrodermal meter (SKIN SKSPA) 1 16 kHz mV Driver’s sweat

Accelerometers Crossbow CXL04LP3 3 16 kHz G Acceleration in x-y-z
Laser Scanners Front: RIEGL LMS-140i-80 1 20 Hz m Objects in front

Back: RIEGL LMS-Q120i 1 50 Hz m Objects behind
Omni-directional Camera Point Grey Ladybug 1 6x15 fps images Driving environment
GPS Navicom GPS-M1zz 1 1 Hz standard GPS information

drivers and the drivers responses. The annotation labels are
comprised of six major groups: drivers affective state (level
of irritation), driver actions (e.g. facial expression), drivers
secondary task, driving environment (e.g. type of road, traffic
density), vehicle status (e.g. turning, stopped), and speech /
background noise. The annotation protocol designed in this
research is comprehensive, and can be used in a wide range
of research elds. We are currently annotating data from all
drivers in our database [6].

III. D RIVER IDENTIFICATION

Pedal operation patterns also differed among drivers. Fig.4
shows examples of gas pedal operation signals of 150 s
collected in the driving simulator for two drivers. They were
all recorded with the same moving pattern of a lead vehicle.
Pedal operation patterns are similar in the same driver but
different between the two drivers.

We modeled the differences in the gas and brake pedal
operation patterns with GMMs using the following two kinds
of features [9].

A. Modeling Based on Raw Pedal Operation Signals

Pedal operation patterns can be visualized with histograms
of raw pedal operation signals. They significantly differ from
each other. Driver 1 has a symmetric distribution around 4,000,
whereas driver 2 has a peak around 2,000 and a wider spread
to the right than to the left. Driver 2 also has a sharp peak
near zero because he usually puts his foot on the gas pedal
evenwhen not accelerating. These distributions of raw pedal
operation signals were modeled with Gaussian mixture model
(GMMs).

GMM is a statistical model widely used in pattern recogni-
tion including speech and speaker recognition [17]. It is de-
fined as a mixture of multivariate Gaussian, and the probability
of D-dimensional observation vectoro for GMM λ is obtained
as follows:

b(o | λ) =
M
∑

i=1

wiNi(o), (1)
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Fig. 4. Examples of gas pedal operation patterns for two drivers (Top: Driver1,
Bottom:Driver2).

where M is the number of the Gaussians of the GMM
andNi(o) is theD-variate Gaussian distribution of thei-th
component defined with mean vectorµi and covariance matrix
Σi:

Ni(o) =
1

√

(2π)D |Σi|
exp

{

−
1

2
(o− µi)

′Σ−1
i (o − µi)

}

,

(2)
where (·)′ and (·)−1 denote transpose and inverse matrices,
respectively.wi is a mixture weight for thei-th component
and satisfies

∑M

i=1 wi = 1.

B. Modeling Based on Spectral Features of Pedal Operation
Signals

Cepstrum is the widely used spectral feature for speech
and speaker recognition [16], defined as the inverse Fourier
transform of the log power spectrum of the signal. As shown
in Fig. 5, cepstral analysis allows us to smooth the structure
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Fig. 5. Examples of spectral envelopes extract through spectral analysis using lower order cepstral coefficients c(0)-c(5) or c(0)-c(20)
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Fig. 6. General modeling of driving signal.

of the spectrum by keeping only the first several lower-order
cepstral coefficients and setting the remaining coefficients to
zero. Assuming that individual differences in pedal operation
patterns can be represented by the smoothed spectral envelope
of pedal operation signals, we modeled the pedal operation
patterns of each driver with lower-order cepstral coefficients.

As shown in Fig. 6, in driver modeling, we assume that
command signal for hitting a pedale(n) is filtered with driver
modelH(ejω) represented as the spectral envelope, and the
output of the system is observed as pedal signalx(n), e.g., in
gas pedal operation, a command signal is generated when a
driver decides to hit the gas pedal, andH(ejω) represents the
process of acceleration. This can be described in frequency
domain as follows:

X(ejω) = E(ejω)H(ejω), (3)

whereX(ejω) andE(ejω) are the Fourier transforms ofx(n)
and e(n), respectively. We focus on driver characteristics
represented as frequency responseH(ejω).

Assuming that the spectral envelope can capture the dif-
ferences between the characteristics of different drivers, we
focused on the differences in spectral envelopes represented
by cepstral coefficients (cepstrum), which were also modeled
with GMMs.

1) Dynamic Features of Driving Signals:Similar to speech
and speaker recognition, we found that the dynamic features
of the driving signals offer much information on driving
behaviors. Dynamic features are defined as the following linear

regression coefficients:

∆o(t) =

∑K

k=−K ko(t+ k)
∑K

k=−K k2
, (4)

where o(t) is a static feature of raw signals or cepstral
coefficients at timet and K is the half window size for
calculating the∆ coefficients. We determined the regression
window to be2K = 800ms from preliminary experiments
for both raw pedal signals and cepstral coefficients. Ifo(t) is
a D-dimensional vector,D dynamic coefficients are obtained
from the static coefficients, combined into a2D dimensional
vector, and modeled with GMMs.

C. Driver Identification Experiments

1) Experimental Conditions:The driving data of 276
drivers collected on city roads in the data collection vehicle
were used, excluding data collected while not moving. Driving
signals of three minutes were used for GMM training and
another three minutes for testing. We used both brake and gas
pedal signals in the real vehicle experiments because drivers
use the brake pedal more often during city than expressway
driving.

Cepstral coefficients obtained from the gas and brake pedal
signals are modeled with two separated GMMs, and their log-
likelihood scores were linearly combined. In driver identifica-
tion, the unknown driver was identified as driverk̂ who gave
the maximum weighted GMM log-likelihood over the gas and
brake pedals:

k̂ = argmax
k

{γ logP (G | λG,k)

+(1− γ) logP (B | λB,k)}, 0 ≤ γ ≤ 1, (5)

whereG and B are the cepstral sequences of the gas and
brake pedals andλG,k and λB,k are thek-th driver models
of the gas and brake pedals, respectively.γ (0 ≤ γ ≤ 1) is a
linear combination weight for the log-likelihood of gas pedal
signals.

2) Experimental Results:The results for the 16-component
GMMs are summarized in Fig. 7. The identification perfor-
mance was rather low when using raw driving signals: the best
identification rate for raw signals was 47.5% withα = 0.80.
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Fig. 7. Comparison of identification rates for raw pedal signals and cepstral
coefficients

By applying cepstral analysis, however, the identificationrate
increased to 76.8% withα = 0.76. Although the pedal sensors
were different from those of the driving simulator, similar
results were obtained. We thus conclude that cepstral features
captured the individualities of driving behavior better than
raw driving signals and achieved better performance in driver
identification.

IV. D RIVER BEHAVIOR PREDICTION

Driver behavior models can be employed to predict driver
operation given the available observations at the prediction
time. Here, two driving tasks are considered: car follow-
ing [12], [1] and lane change [13].

A. Car Following

Car following characterizes longitudinal behavior of a driver
while following another vehicle in front [2]. In this study,we
focus on car following in the sense of the way driver behavior
of the following vehicle is affected by the driving environment
(i.e., leading vehicle) and the own vehicle status. There are
several contributory factors in car-following behavior such
as relative position and velocity of following vehicle with
respect to lead vehicle, acceleration and deceleration of both
vehicles, and perception and reaction time of the followers.
Fig. 8 shows a basic diagram of car following and corre-
sponding parameters, wherevft , a

f
t , ft,x

f
t represent vehicle

velocity, acceleration/deceleration, distance between vehicles,
and observed feature vector at timet, respectively.

The GMM-based driver-behavior modeling representing the
patterns of pedal operation corresponding to the observed vehi-
cle velocity and following distance. The underlying motivation
of this modeling framework is that as a driver determines
gas and brake pedal operation in response to the stimulus of
vehicle velocity and following distance, accordingly, such pat-
terns can be modeled by the joint distribution of all correlated
parameters, as shown in Fig. 9.

1) Feature Extraction and Model Representation:To model
the pedal pattern, an observed feature vector at timet, xt,
consists of vehicle velocity, following distance, and pedal

Fig. 8. Car following with corresponding parameters.
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Fig. 9. Car-following trajectory in parameter space (gray dashed line) overlaid
with 2-mixture GMM distribution.

pattern (Gt) with their first- (∆) and second-order (∆2)
derivatives as

xt = [vft ,∆vft ,∆
2vft , ft,∆ft,∆

2ft, Gt,∆Gt,∆
2Gt]

T , (6)

where the∆(·) operator of a parameter is defined as

∆xt = xt −

∑

T

τ=1 τxt−τ
∑

T

τ=1 τ
, (7)

whereT is a window length (e.g., 0.8 s). Next, let us define
a set of augmented feature vectorsyt as

yt = [xT
t Gt+1]

T . (8)

Consequently, the joint density between the observed driving
signalsxt and the next pedal operationGt+1 can be modeled
by a GMMΦ, with a mean vectorµy

k and a covariance matrix
Σyy

k of the k − th mixture expressed as

µy
k =

[

µx

k

µG
k

]

andΣyy
k =

[

Σxx

k ΣxG
k

ΣGx

k ΣGG
k .

]

(9)

2) Pedal Prediction:In this work, the predicted gas pedal
patternĜt+1 is computed by the weighted predictions result-
ing from all mixture components of GMM, as

Ĝt+1 =

K
∑

k=1

hk(xt) · Ĝ
(k)
t+1(xt) (10)



whereĜ(k)
t+1(xt) is a maximum a posteriori (MAP) prediction

of the observed parametersxt given thek-th mixture compo-
nent which is given by

Ĝ
(k)
t+1(xt) = argmax

Gt+1

{p(Gt+1|xt, φk)}

= µG
k +ΣGx

k (Σxx
k )−1(xt − µx

k) (11)

The termhk(xt) is the posterior probability of the observed
parameterxt belonging to thek-th mixture component, given
by

hk(xt) =
αkp(xt|φx

k)
∑K

i=1 αip(xt|φx
i )

, 1 ≤ k ≤ K (12)

where p(xt|φx
i ) is the marginal probability of the observed

parameterxt generated by thei-th Gaussian component, and
αk is the prior probability of thek-th mixture component.

3) Model Adaptation:We applied Bayesian or Maximum-
A-Posterior (MAP) adaptation to reestimate the model param-
eters individually by shifting the original statistic (i.e., mean
vectors) toward the new adaptation data [17]. Theuniversal
driver-behavior models were first obtained from a pool of
driving data of several drivers from the training set. The
universal driver models represent average or common driving
characteristics shared by several drivers. In this study, to
enhance the model capability, we took a further step to adapt
the parameters of the universal driver models in the following
two scenarios.

• Driver Adaptation: The aspect of driver adaptation is to
adapt the model parameters to better represent individual
driving characteristics. In this scenario, the driving data
belonging to each particular driver are used to adapt
the universal model to obtain the adapted driver models,
namelydriver-dependentor personalizeddriver models.
That is, each driver will be associated with an individu-
alized and unique driver model.

• On-line Adaptation: The driving data at the beginning
of each car-following event were used to adapt the
universal model, and subsequently, the on-line adapted
driver model was used to represent driving behavior for
the rest of that car-following event. The objective of the
on-line adaptation is to capture the overall unique car-
following characteristics of such event (e.g., driver and
environment) that deviates from the average characteris-
tics of the universal models.

4) Experimental Evaluation:The evaluation is performed
using approximately 300 minutes worth of clean and realistic
car-following data from 68 drivers. Manual annotation is
exploited to verify that only concrete car-following events with
legitimate driving signals that last more than 10 seconds are
considered. Fig. 10 compares the prediction performance of
the universal, driver-adapted, and on-line-adapted (using 30
sec of driving data) driver models with 4, 8, 16, 32 Gaussian
components in terms of Signal-to Deviation Ratio (SDR).

The Signal-to-Deviation Ratio (SDR) is defined as follows

SDR = 10 log10

∑T

t=1 G
2(t)

∑T

t=1(G(t) − Ĝ(t))2
[dB], (13)

Fig. 10. Comparison of prediction performance

whereT is the length of signal,G(t) is the actually observed
signal, andĜ(t) is the predicted signal. The driver-adapted
models showed the best performance.

B. Lane Change

Since lane change activity consists of multiple states (i.e.,
examining the safety of traffic environments, assessing the
positions of other vehicles, moving into the next lane, and
adjusting driving speed to traffic flow) [3], a single dynamic
system cannot model vehicle trajectory. In addition, the bound-
aries between states cannot be observed from its trajectory.

To study lane-change behavior, a set of vehicle movement
observations was measured using a driving simulator. Relative
longitudinal and lateral distances from the vehicle’s position
when starting the lane change,xi[n], yi[n], and the velocity
of the vehicles,ẋi[n], ẏi[n] , were recorded every 160 ms.
Here i = 1, 2, 3 is an index for the location of surrounding
vehicles (Fig. 11), and (x0[n], y0[n]) represents the position of
the drivers own vehicle. The duration of lane-change activity,
n = 1, 2, ..., N , starts whenV 0 (drivers own vehicle) and
V 2 are at the same longitudinal position and ends whenV 0’s
lateral position reaches the local minimum as shown in Fig. 11.

1) Modeling Trajectory using HMM:We used a three-state
HMM to describe the three different stages of a lane change:
preparation, shifting, and adjusting. In the proposed model,
each state is characterized by a joint distribution of eight
variables:

v = [ẋ0, y0,∆ẋ0,∆ẏ0,∆
2ẋ0,∆

2ẏ0, ẋ1, ẋ2]
T . (14)

In general, longitudinal distance,x0, monotonically increases
in time and cannot be modeled by an i.i.d. process. Therefore,
we use longitudinal speeḋx0, as a variable to characterize
the trajectory. Finally, after training the HMM using a set
of recorded trajectories, the mean vectorµj and covariance
matrix Σj of the trajectory variablev are estimated for each
statej = 1, 2, 3. The distribution of durationN is modeled
using a Gaussian distribution.

The shape of a trajectory is controlled by the HMM and the
duration of the lane change activity. When the driver performs
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Fig. 11. Lane change trajectory and geometric positions of surrounding
vehicles.

a lane change in a shorter time, this results in a sharper tra-
jectory. We generate a set of probable lane-change trajectories
by determining state durationsdj using uniform resampling.
Once a set of state durations is determined, we applied the
maximum likelihood HMM signal synthesis algorithm (ML
method) [20] or the sampling algorithm to generate the most
probable trajectory. Simply repeating this process will produce
a set of probable vehicle trajectories which characterize a
trained drivers typical lane-change behavior

2) Trajectory Selection:Although various natural driving
trajectories may exist, the number of lane-change trajectories
that can be realized under given traffic circumstances is
limited. Furthermore, the selection criteria of the trajectory,
based on the traffic context, differs among drivers, e.g., some
drivers are more sensitive to the position of the front vehicle
than that of the side vehicle. Therefore, we model the selection
criterion of each driver with a scoring function for lane-change
trajectories based on vehicular contexts, i.e., relative distances
to the surrounding vehicles.

In the proposed method, a hazard map functionM is defined
in a stochastic domain based on the histograms of the relative
positions of the surrounding vehiclesri = [xi − x0, yi − y0]

t.
To model sensitivity to surrounding vehicles, we calculated
covariance matrixRi for each of three distances,ri, i = 1, 2, 3,
using training data. Since the distance varies more widely at
less sensitive distances, we use the quadratic form of inverse
covariance matricesRi as a metric of the cognitive distance.
Then we calculate hazard map functionMi for surrounding
vehicleVi as follows:

Mi =
1

1 + exp{αi(rtiR
−1
i ri − βi)}

(15)

whereαi is a parameter of the minimum safe distance defined
so that the minimum value of cognitive distancertiR

−1
i ri of

the training data corresponds to the lower 5% distribution
values, andβi is the mean value ofrtiR

−1
i ri.

Hazard mapMi can be regarded as an a posteriori probabil-
ity of being in the safe driving condition under range distances
Pr(safe|ri), when the likelihood is given as a exponential
quadratic form. Therefore, integrating the hazard maps for
all surrounding vehicles can be done simply by interpolating
three probabilities with weightsλi into an integrated mapM .
Once the positions of the surrounding vehicles at timen,
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Fig. 12. Hazard maps for two drivers when the same positions of surrounding
vehicles were given.

ri[n], are determined,Mi can be calculated for each point
in time, and by averaging the value over the lane-change
duration we can compare the possible trajectories. Then the
optimal trajectory that has the lowest value is selected from
the possible trajectories.

3) Experimental Evaluation:Thirty lane-change trials were
recorded for two drivers using a driving simulator which
simulated a two-lane urban expressway where the traffic was
moderately dense. The drivers were instructed to pass the lead
vehicle once during each trial, when they were able to. The
trained hazard mapsM for the two drivers shown in Fig. 12
depicts differences in sensitivity to surrounding vehicles.

We generated possible lane-change vehicle trajectories over
a 20-second period using two methods as mentioned, and
then selected the optimal trajectory. For quantitative evalua-
tion, we calculated the difference between the predicted and
actual trajectories based on dynamic time warping (DTW),
using the normalized square difference as a local distance,
and measured it in terms of SDR. Average SDRs of the
best trajectory hypothesis (best) and all trajectory hypotheses
(mean) using the maximum likelihood method (left) and the
sampling method (right) are shown in Fig. 13. The sampling
method was better at generating vehicle trajectories similar
to actual driver trajectories than the ML method. Fig. 13
also shows the SDRs when driver A’s model was used for
predicting driver B’s trajectory and vice versa. The SDR
decreased by 2.2 dB when the other driver’s model was used to
make the prediction. This result confirmed the effectiveness of
the proposed model for capturing individual characteristics of
lane-change behavior. We also tested our method using the
actual lane-change duration, i.e.,I = J . When the actual
lane-change durationN is given, the root mean square error
(RMSE) between the predicted and actual trajectories can be
calculated. The average RMSE for 60 tests was 17.6 m, which
was a good result for predicting vehicle trajectories over a
distance of about 600 m (i.e., for a 20-second time period).

V. DRIVER FRUSTRATION

In this section, we propose a method for estimating a
driver’s frustration that integrates features of a different nature.
The designed model is based on the assumption that emotions
are the result of an interaction with the environment and
are usually accompanied by physiological changes, facial



2
8

.2
 

2
8

.7
 

3
5

.6
 

3
8

.0
 

16

24

32

40

Maximum likelihood Monte Carlo

S
D

R
 [d

B
]

mean

best

2
6

.1
 

2
3

.9
 

22

24

26

28

Driver-dependent model- Swapped model

S
D

R
 [d

B
]

Fig. 13. Average SDRs of lane trajectory. Top: the best and mean trajectories
using ML method (left) versus sampling method (right). Bottom: using a
driver’s own model (left) versus using the other driver’s models (right).

expressions, or actions [7].

A. Analysis

A method for combining all of the different features and
annotation results in an efficient language was needed, and a
Bayesian network (BN) [11] was the natural choice to deal
with such a task. One of the important characteristics of a BN
is the capability to infer the state of an unobserved variable,
given the state of observed ones. In our case, we wanted to
infer a participant’s frustration given the driving environment,
speech recognition errors (communication environment), and
the participant’s responses measured through his/her physio-
logical state, overall face, and pedal actuation.

The graph structure proposed to integrate all of the available
information is shown in Fig. 14. This model was based on
the following assumptions: (1) environmental factors thatmay
have an impact on goal-directed behavior (traffic density, stops
at red-light signals, obstructions, turn or curve, and speech
recognition errors) may also have a direct effect on frustration;
(2) a frustrated driver is likely to present changes in his/her
facial expression, physiological state, and gas- and brake-pedal
actuation. In Fig. 14, squares represent discrete (tabular) nodes
and the circle represents a continuous (Gaussian) node. The
number inside each node represents the number of mutually
exclusive states that the node can assume. Random variables
were identified by a label outside each node: ”F” for frustra-
tion, ”E” for environment, and ”R” for responses.

In addition to the graph structure, it is necessary to specify
the parameters of the model, obtained here using a training
set. During parameterization, we calculate the Conditional
Probability Distribution (CPD) at each node. If the variables
are discrete, this can be represented as a table (CPT), which
lists the probability that the child node takes on each of its
different values for each combination of values of its parents.
On the other hand, if the variable is continuous, the CPD is as-
sumed as a Gaussian distribution. For example, the continuous
nodePedal actuation, which has only one binary parent, was
represented by two different multivariate Gaussians, one for
each emotional state: frustrated and not frustrated. For each
observed environment (driving and communication) and the
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Fig. 14. Proposed BN structure. Squares represent discrete(tabular) nodes,
and the circle represents a continuous (Gaussian) mode. Thenumber inside
each node represents the number of mutually exclusive states that the node
can assume. Labels outside nodes identify random variable.

corresponding driver responses, we can use Bayes’ rule to
compute the posterior probability of frustration, as:

P (F |E1, E2, E3, E4, E5, R1, R2, R3, R4) =

P (F |E1, E2, E3, E4, E5) ·

P (R1|F ) · P (R2|F ) · P (R3|F ) · P (R4|F )

P (E1, E2, E3, E4, E5, R1, R2, R3, R4)
. (16)

The denominator was calculated by summing (marginaliz-
ing) outF . In addition, in this study we set a uniform Dirichlet
prior to every discrete node in the network. This was done in
order to avoid over-fitted results due to the Maximum Likeli-
hood approach used for calculating the conditional probability
tables. Without a prior, patterns that were not observed in the
training set would be assigned zero probability, compromising
the estimation.

The network input data are all of the available data—pedal
actuation, skin potential and other binary signals. At a given
time stept, frames of sizesL and M were used to extract
features from the skin potential and pedal actuation signals,
respectively. Results served as network inputs. The value of
each binary label at the current time step was directly entered
in the network without further processing. Frame shift was
kept fixed at 0.5 seconds. For two consecutive frames, the
value of, for example, current traffic density has an effect on
future skin potential and pedal actuation signals in order to
account for delayed physiological and behavioral reactions.
In addition, frustration was estimated continuously, i.e., we
did not pre-select segments where we were certain about
frustration or neutrality and then ignore ambiguous regions.

B. Experimental Evaluation

Within the data used in experiments, 129 scenes of frustra-
tion (segments with original scale above 0) were found. On
average, participants got frustrated 6.5 times while driving.
The mean strength of frustration scenes was 10.5, and the
mean duration was 11.8 seconds.
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Fig. 15 shows estimation results for individual drivers
arranged side by side: actual frustration from all 20 partici-
pants (top); the posterior probability of the frustration node
calculated using theFull network (center); and quantized
posterior probability using a threshold of 0.5 (bottom). The
quantized probability of each driver was further median-
filtered to remove spikes. The overall result was achieved with
a true positive (TP) rate of 80% and a false positive (FP) rate
of 9% (i.e., the system correctly estimate 80% of the frustrated
and, when drivers were not frustrated, made mistakes 9% of
the time). Furthermore, the results suggest that information on
the driving and communication environment, as well as pedal
actuation, was effective in improving the model accuracy.

VI. D RIVER EDUCATION

Employing driver-behavior modeling, we developed a next-
generation Event Data Recorder (EDR), which is capable of
detecting a wide range of potentially hazardous situationsthat
would not be captured by conventional EDR [4], for enhancing
safe driving behavior. Our automated diagnosis and self-review
system was developed on a server computer as a web applica-
tion using CGI for easy access via networks from PCs or smart
phones such as the iPhone [19]. The system automatically
detects nine types of potentially hazardous situations from the
driver’s own recorded historical driving data as:

1) Sudden deceleration
2) Sudden acceleration
3) Risky steering
4) Excessive speed
5) Ignoring traffic light
6) Ignoring stop sign
7) Insufficient following distance
8) Potentially risky obstacle avoidance
9) Potentially risky behavior at poor-visibility intersection

The current version will display up to five of the most haz-
ardous scenes of each hazard type by automatically gauging
the hazard level using the magnitude of the difference from
the pre-defined thresholds (for hazard types 1-7), or from the

Fig. 16. Interface summarizes hazardous situations on a driving map.

magnitude of the likelihood ratio between the risky and safe
driving models (for hazard types 8-9)1. The system allows
users to browse through each detected hazardous situation,
represented by a balloon icon, on an actual driving map.
Each balloon represents one hazardous situation with different
colors corresponding to different hazard types, as shown in
Fig. 16. The system also provides statistic of all the hazardous
situations the driver encountered from all recorded data using
a pie chart (e.g., the number of occurrences of each hazard
type). Therefore, the system could identify a tendency toward
risky driving behavior, or other personality traits possessed by
an individual driver.

After clicking on the balloons on the driving map, the
corresponding video and driving signals are displayed, along
with instructions on how the user can improve their driving
safety. The user can also examine different kinds of driving
signals related to that particular driving scene. The safety
instructions were prepared in advance for each type of detected
hazardous situations, based on the above-mentioned manual.
In general, the system will inform the user the reason why
a particular driving behavior in that situation is considered
unsafe, and then tell the user how they can improve their
driving behavior. Fig. 17 shows an example of the interface
diagnosing a hazardous situation at an intersection. The system
notifies the user that the user did not stop at the stop sign and
crossed the intersection at a speed of 17km/h. Then, the
system suggests that in this driving situation the driver should
completely stop at the stop sign, and confirm that it is safe to
cross the intersection before taking action.

A. Experimental Evaluation

In order to validate the effectiveness of our developed
system in reducing the number of detected hazardous situ-
ations, we recruited 35 drivers, including 6 expert drivers,
to participate in our experiment. The subjects were asked to
drive the instrumented vehicle three times on three different
days, following the same route, which takes approximately one
and a half hour to complete. We used data from the second
and the third sessions for our analysis, because we wanted

1Here, two GMM-based driver-behavior models were used to represent
safe driving behavior and risky driving behavior. Risky driving behavior could
be determined by performing a hypothesis test of the observations against a
pre-defined threshold [5]
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Fig. 18. Comparison of number of hazardous situations before and after using
the system.

to allow the subjects to get familiar with the vehicle during
the first session. After the second session, the subjects used
the driving diagnosis browser and received feedback before
taking part in the third session. We compared the number
of hazardous situations detected during the second and third
sessions. Fig. 18 compares the number of detected hazardous
situations for five drivers before and after using the system.
The number of hazardous scenes detected for the non-expert
drivers decreased by 50% after using the system.

VII. SUMMARY AND FUTURE WORK

We have presented the behavior signal processing and
modeling approaches with a focus on the interaction between
driver, vehicle, and environment. The experimental evaluations
using realistic driving behavior have shown promising out-
comes with a wide range of vehicle applications such as rec-
ognizing driver identity, predicting driver maneuver, detecting
driver state, and assessing driving behavior. Our future work

will focus on identify variations within and between drivers
(e.g., between different countries).
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