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Abstract—Within the past decade, analyzing and modeling Driver
human behavior by processing large amounts of collected dat " .
d A . 1 H 2
has become an active research topic in advanced human-maciei ‘ ) Cognition O TIE L ‘

interaction systems. The research community strives to find
improved ways to explain and represent meaningful behavial
characteristics of humans in order to develop efficient and {4) PN }_[ 3) Vehicle status]
effective cooperative interactions between humans, maahes, and

the environment. This paper provides a summary of progress
achieved to date of our research on behavior signal processi,
with a focus on the driver-vehicle-environment interactian. First,
we describe the method of data collection used to develop our
real-world driving corpus, which contains multimodal driving
signals capturing relevant information regarding driver, vehicle, information regarding driver, vehicle, and environmentisT
and environment. Then, the paper provides an overview of our paper describes our data collection and driving corpusghvhi
signal processing and data-driven approaches used to anay g gne of the largest realistic driving corpora with morertha

and model driver behavior for a wide range of practical vehide - . . . .
applications. We then perform experimental validation usig 550 participants at the time this article was written. Subse

the realistic driving behavior of several drivers. In particular, duently, we discuss the behavior processing and modeling
the vehicle applications include driver identification, bénavior ~methods with practical vehicle applications.

prediction (i.e., car following and lane change), driver fustration Driver behavior conveys multiple layers of information
(emotion) detection, and driver education. We hope that ths regarding a driver such as a driver's mental, physical, and

ﬁ]ap;ﬁirsw;ille%roxgﬂg shoer:wpe ilg:lr%[ik;;tc;rree;s a;%réergpvgngagzxz '&f::e cognitive states, driver intention, and driver identitiefefore,

Fig. 1. Cyclic Interaction between driver, vehicle, andvihg environment.

further research is needed. modeling driver behavior can be used to detect or predict
behaviors of interest during vehicle operation, or can be
. INTRODUCTION used to investigate and assess driver behavior after eehicl

Human behavior plays an important role in any systewperation. In particular, we showed that driver models ioleiz
involving human-machine interaction. In regards to drivirom driving signals could be used to recognize driver idgnt
ing, when analyzing driver-vehicle-environment inteiae$ predict driver operation, detect driver frustration, ars$ess
(Fig. 1), human errors contribute to more than 90% of fataeécorded driving behavior.
traffic accidents. Understanding human/driver behaviorlma  We have developed a driver-behavior model based on a
useful in preventing traffic collisions [21], as well as enbimg  probabilistic Gaussian mixture model (GMM) framework. The
effectiveness of the interaction between driver, vehate] en- GMM model was applied to capture relationships among
vironment. The study of driver behavior is a very challemginthe related parameters of car-following behavior. We sttbwe
task due to its stochastic nature with high degree of intahat the GMM models representing the patterns of pedal
and intra-driver variability. To cope with these issuesemv operation in the spectral domain could achieve an accuracy
the past decades data-centric approaches have gained muth of 89.6% in recognizing the identities of 276 drivers.
attention in the research community [8], [14], [15], [18].this Furthermore, the GMM-based behavior modeling framework
research, we focused on the understanding of human behawas extended to predict driver behavior in terms of pedal
from a signal processing perspective, and on developingoperation given observed driving signals such as following
methodology to analyze and model the extracted meaningflistance and vehicle velocity. The modeling framework soal
behavioral information. capable of model adaptation which allows the adapted model

To analyze and model driver behavior, the first step & better represent particular driving characteristicehsas
to collect a reasonable amount of realistic multi-modal olndividual driving style. The experimental results shoviedt
servations. Here, observations or driving signals remtesehe framework could achieve a prediction performance of 19
behavioral variables as a time series which possessesuylarti dB (signal-to-deviation ratio).
dimensions of behavioral characteristics. We took extra®  In addition, employing a Bayesian network (BN), driver
designing and developing our instrumented vehicle to cole frustration could be detected at a true positive rate of 808 w
broad range of driving signals which could represent refevaa 9% false positive rate. Finally, utilizing the automallica
detected hazardous situations, we developed a web-based
Portions reprinted, with permission, from IEE@2007-2011 IEEE.  system for drivers to navigate and review each hazardous
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Fig. 2. Instrumented vehicle. (d) Gas pedal position

situation of their own recorded driving activity. The syste 5000y

provides feedback on each risky driving behavior and sugges . . . . .

how the users can appropriately respond to such situations i 50 o o 20 250 300
a safe manner. The experimental evaluation showed that safe () Brake pedal position

driving behavior improved significantly after using the pro
posed system. In conclusion, in this paper we describe lsigna
processing approaches for collecting, analyzing, modeénd
assessing human behavior, and demonstrate the advantages f
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Fig. 3. Examples of driving behavior signals.

vehicle applications. « Signboard reading task Drivers read aloud words on
This paper is organized as follows. We first introduce our signboards such as names of shops and restaurants seen

driving corpus and the data collection in the next section. | from the driver seat while driving, e.g., 7-11 and Dennys.

Sec. lll, we describe the first application of driver modglin « Navigation dialogue task Drivers are guided to an unfa-

in evaluating driver identification. Then, in Sec. IV, dnive miliar place by a navigator on a cell phone with a hands-

behavior prediction is discussed for both car-followingdan free headset. Drivers do not have maps, and only the
lane-change tasks. Sec. V describes our analysis of reddtwo  navigator knows the route to the destination.
driver’s frustration using combination of speech signatlan « Alphanumeric reading task Drivers repeat random four-

pedal actuation signals. The last application regardiriggdr letter strings consisting of alphabet a-z and digits 0-9,
education is discussed in Sec. VI. Finally, we summarize and e.g., UKZC, IHD3, and BJBS. The instruction of the four-
discuss the future work in Sec. VII. letter strings is heard by earphone.

« Music retrieval task Drivers retrieve and play music by
a spoken dialogue interface. Music can be retrieved by
A data collection vehicle was designed for synchronously artist name or song title, e.g., Beatles or Yesterday.

recording audio with other multimedia data [10]. Various Each driver starts from Nagoya University and returns after
sensors were mounted on a Toyota Hybrid Estima with 2,3@@out 70 minutes of driving. Driving data are recorded under
cc displacement and automatic transmission, as showntfiig above four task conditions on city roads and two conutitio
Fig. 2. Table Il summaries all driving data recorded by thgn an expressway. Driving data without any tasks are redorde
system. Participants drove the instrumented vehicle on Clis references before, between, and after the tasks. Fig. 3
streets and expressways in the city of Nagoya, Japan. Duripgstrates some samples of pre-processed driving signals

the experiment, drivers performed secondary tasks céyeful After completing the route, the participant was also asked
designed to provide activities that were most likely to acclyp assess his/her subjective level of frustration by refgrto
during everyday driving. Data collection vehicle, routguid- the front-view and facial videos as well as the correspogdin
ments, and treatment conditions were the same for all drivejudio. A user interface for such assessment was designed so
Drivers performed secondary tasks in the same order at V@it drivers used an intensity scale and slid a bar from zero
similar locations, so data from different drivers can bediga to thirty, i.e., from none to extremely frustrated. The ifaee
compared. An experimenter monitored the experiments fragitput was a continuous signal: the level of frustration was
the rear seat. recorded every 0.1 seconds.

Il. DRIVING CORPUS

A. Collection Protocol B. Data Annotation

To develop a technique for quantifying the stress level of An effective annotation of multimedia information is craki
drivers, driving data are recorded under various conditiofor providing a more meaningful description of the situato
with four different tasks. The details of the tasks are dbsdr drivers experience. In this study, we proposed a data atioiota
as follows with examples of spoken sentences. protocol that covers most of the factors that might affect



TABLE |
SUMMARIZATION OF DRIVING DATA ACQUISITION

Recording System Specification Channel Rate Unit Data Captured
Microphones Omni-directional condenser microphones 12 16 kHz Voltage | Audio and speech
(SONY ECM-77B) and a closed-talk mic.
Video Cameras CCD cameras (SONY DXC-200A) 4 29.4118 fps| images | Driver’'s face (left and right)
(pixels) | and feet, front-view road
Pedal Sensors Pressure sensors 2 16 kHz N Gas and brake pedal pressure
(LPR-A-03KNS1 and LPR-R-05KNS1)
Steering sensor Potentiometer 1 16 kHz degree | Steering angle
(COPAL M-22E10-050-50K)
Speed Sensor Pulse generator JIS5601 1 16 kHz m/s Vehicle velocity
Distance Sensors SICK DMT-51111 and MITSUBISHI MR3685 2 16 kHz m Distance to a lead vehicle
Physiological Sensors Chest belt POLAR S810i 1 100 Hz bpm Heart rate
Perspiration meter (SKINOS SKD-2000) 1 16 kHz mV Driver's sweat
Electrodermal meter (SKIN SKSPA) 1 16 kHz mV Driver's sweat
Accelerometers Crossbow CXLO4LP3 3 16 kHz G Acceleration in x-y-z
Laser Scanners Front: RIEGL LMS-140i-80 1 20 Hz m Objects in front
Back: RIEGL LMS-Q120i 1 50 Hz m Objects behind
Omni-directional Camerg Point Grey Ladybug 1 6x15 fps images | Driving environment
GPS Navicom GPS-M1zz 1 1Hz standard| GPS information

10000

drivers and the drivers responses. The annotation labels ar s Driver 1 (Data 1)
comprised of six major groups: drivers affective state lev %«‘2 5000 H ﬁ_ﬂﬁ
of irritation), driver actions (e.g. facial expressionyjvers °% [l ﬂﬁq ] ﬂ HHFN
secondary task, driving environment (e.g. type of roadfitra PR e
density), vehicle status (e.g. turning, stopped), and dpée 22 5000
background noise. The annotation protocol designed in this ~ §2 . /M ﬂ Al mﬂ{m ﬂﬂﬂﬂ ﬂ
research is comprehensive, and can be used in a wide range 0 20 40 60 80 100 120 140
of research elds. We are currently annotating data from all Time (s
drivers in our database [6]. 5. % Divers Dam 1)
S= 5000
II_I. DRIVER |DENTIFICATION _ | e 0 AKLQM M AM W
Pedal operation patterns also differed among drivers.4ig. 10000
shows examples of gas pedal operation signals of 150 s  s¢ Driver 2 (Data 2)
P i ; - 22 5000
collected in the driving simulator for two drivers. They wer I 0 M /MMA iju\j\ﬂ
20 40 60 80 100 120 140

all recorded with the same moving pattern of a lead vehicle.
Pedal operation patterns are similar in the same driver but Time [s]
different between the two drivers.

Wwe _mOdeled the _diﬁerences in the gas an_d brake _pquﬂ_ 4. Examples of gas pedal operation patterns for tweedsiyTop: Driverl,
operation patterns with GMMs using the following two kind®ottom:Driver2).
of features [9].

o

A. Modeling Bz.ised on Raw Pedal O.pera.tlon S'Q”a'? where M is the number of the Gaussians of the GMM
Pedal operation patterns can be visualized with histograg}§q A/; (o) is the D-variate Gaussian distribution of theth

of raw pedal operation signals. They significantly diffeorfr o mponent defined with mean vecjer and covariance matrix
each other. Driver 1 has a symmetric distribution aroun@,0 y; .

whereas driver 2 has a peak around 2,000 and a wider spread ) )
to the right than to the left. Driver 2 also has a sharp pealy;(p) = —————exp {_(O — )’ o — Hi)}

near zero because he usually puts his foot on the gas pedal V(2m)P |5 2 '

evenwhen not accelerating. These distributions of raw Ipeda , . ] (2)_
operation signals were modeled with Gaussian mixture modéere (-)" and (-)~" denote transpose and inverse matrices,

(GMMs) respectively.w; is a mixture weight for the-th component
: - M

GMM is a statistical model widely used in pattern recogn@nd satisfie$ 5;~, w; = 1.

tion including speech and speaker recognition [17]. It is d
fined as a mixture of multivariate Gaussian, and the proibabil

of D-dimensional observation vectorfor GMM ) is obtained ] .
as follows: Cepstrum is the widely used spectral feature for speech

M and speaker recognition [16], defined as the inverse Fourier
blo| \) = ZwiM(0)7 (1) _tran_sform of the log power spectrum of the signal. As shown
= in Fig. 5, cepstral analysis allows us to smooth the strectur

8. Modeling Based on Spectral Features of Pedal Operation
Signals
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Fig. 5. Examples of spectral envelopes extract throughtspeanalysis using lower order cepstral coefficients ¢(@)- or ¢(0)-c(20)

Command signal Frequency response Observed B T .
for hitting pedal (Process of acceleration)  pedal signal regression coefficients:
K
s Yoo kot + k)
H(e" Ao(t) = 4
e(n) (e x(n) (t) ST (4)
k=—K
ﬂ M /e where o(t) is a static feature of raw signals or cepstral
Time Froquoncy Time coefficients at timet and K is the half window size for

calculating theA coefficients. We determined the regression
window to be2K = 800ms from preliminary experiments
for both raw pedal signals and cepstral coefficienta:(H) is

a D-dimensional vectorD dynamic coefficients are obtained

from the static coefficients, combined intc2® dimensional
of the spectrum by keeping only the first several lower-ordgector, and modeled with GMMs.

cepstral coefficients and setting the remaining coeffisi¢at
zero. Assuming that individual differences in pedal operat C. Driver Identification Experiments
patterns can be represented by the smoothed spectral pavelo 1) Experimental Conditions:The driving data of 276
of pedal operation signals, we modeled the pedal operatig@fivers collected on city roads in the data collection vihic
patterns of each driver with lower-order cepstral coeffitse were used, excluding data collected while not moving. Digvi

As shown in Fig. 6, in driver modeling, we assume thatignals of three minutes were used for GMM training and
command signal for hitting a pedaln) is filtered with driver another three minutes for testing. We used both brake and gas
model H (/) represented as the spectral envelope, and thedal signals in the real vehicle experiments becauserdrive
output of the system is observed as pedal sigiial, e.g., in use the brake pedal more often during city than expressway
gas pedal operation, a command signal is generated whedriging.
driver decides to hit the gas pedal, aAde’*) represents the  Cepstral coefficients obtained from the gas and brake pedal
process of acceleration. This can be described in frequersignals are modeled with two separated GMMs, and their log-

Fig. 6. General modeling of driving signal.

domain as follows: likelihood scores were linearly combined. In driver idéné-
tion, the unknown driver was identified as drivewho gave
X(e™) = E(*)H(eM), (3) the maximum weighted GMM log-likelihood over the gas and

brake pedals:

where X (¢/*) and E(e/*) are the Fourier transforms afn) l: = argmax{~log P(G | A¢.x)
and e(n), respectively. We focus on driver characteristics k
represented as frequency respofise’*). +(1=7)log P(B [ Apx)}, 0<vy<1, (5)

Assuming that the spectral envelope can capture the difhere G and B are the cepstral sequences of the gas and
ferences between the characteristics of different drivees prake pedals and¢ . and g, are thek-th driver models
focused on the differences in spectral envelopes repmserys the gas and brake pedals, respectivelyd < v < 1) is a
by cepstral coefficients (cepstrum), which were also matielgnear combination weight for the log-likelihood of gas jpéd
with GMMs. Signa's_

1) Dynamic Features of Driving SignalSimilar to speech  2) Experimental ResultsThe results for the 16-component
and speaker recognition, we found that the dynamic featu®MMs are summarized in Fig. 7. The identification perfor-
of the driving signals offer much information on drivingmance was rather low when using raw driving signals: the best
behaviors. Dynamic features are defined as the followireglin identification rate for raw signals was 47.5% with= 0.80.
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By applying cepstral analysis, however, the identificatiate
increased to 76.8% with = 0.76. Although the pedal sensors
were different from those of the driving simulator, similar
results were obtained. We thus conclude that cepstralriesatu
captured the individualities of driving behavior bettewith
raw driving signals and achieved better performance inedriv
identification.
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Driver behavior models can be employed to predict driver _ _ ' ' _
operation given the available observations at the prextictiFi9: 9. Car-following trajectory in parameter space (gragfted line) overlaid
. . . with 2-mixture GMM distribution.
time. Here, two driving tasks are considered: car follow-

ing [12], [1] and lane change [13].

) pattern () with their first- (A) and second-order/(?)
A. Car Following derivatives as
Car following characterizes longitudinal behavior of avdri
while foIIowingganother vehicle ingfront [2]. In this studwe = [wl, Aol A% fi, Afi, A2, G AGL A*GT, ()
focus on car following in the sense of the way driver behavigyhere theA(-) operator of a parameter is defined as
of the following vehicle is affected by the driving enviroent T
(i.e., leading vehicle) and the own vehicle status. Theee ar Azy = 74 — Doy TTt—r
several contributory factors in car-following behaviorcbu ZE:J
as relative position and velocity of following vehicle with ) _ i
respect to lead vehicle, acceleration and deceleratiorotsf bwhere’JI‘ is a window length (€.g., 0.8 s). Next, let us define
vehicles, and perception and reaction time of the followerd S€t of augmented feature vectgisas
Fig. 8. shows a basic diagram fof carf following and corre- yve = [xF Gpia]7. 8)
sponding parameters, wheté,at,ft,xt represent vehicle
velocity, acceleration/deceleration, distance betwesricles, Consequently, the joint density between the observedrdyivi
and observed feature vector at timeespectively. signalsx; and the next pedal operati@; can be modeled
The GMM-based driver-behavior modeling representing thy @ GMM @, with a mean vectoy:;, and a covariance matrix
patterns of pedal operation corresponding to the obsersieid v =;.” of the k — th mixture expressed as

; ()

cle velocity and following distance. The underlying motioa x yxx  yxG
of this modeling framework is that as a driver determines wy = [ “@ ] andXy = [ ng Ec’gG ] 9)
gas and brake pedal operation in response to the stimulus of Hi k L
vehicle velocity and following distance, accordingly, byzat- 2) Pedal Prediction:In this work, the predicted gas pedal
terns can be modeled by the joint distribution of all corteda patternG,; is computed by the weighted predictions result-
parameters, as shown in Fig. 9. ing from all mixture components of GMM, as

1) Feature Extraction and Model Representatidim: model K
the pedal pattern, an observed feature vector at time;, ét+1 _ th(Xt) i ég’i)l(Xt) (10)

consists of vehicle velocity, following distance, and pdeda 1



19.1

whereG®) (x¢) is a maximum a posteriori (MAP) prediction

t+1 i
of the observed parametexs given thek-th mixture compo- 19 BUniversal
nent which is given by 9 50n-ine Adapted
. 18.8
G (xi) = arg gliX{P(GtﬂlXu or)} z187  ODriver Adapted
t+1 °
T(NTT\— z - 186
= ug +57CEE) T e — pg) (A1) gms
()] o
The termhy(x;) is the posterior probability of the observed 184 .
parametetk; belonging to thek-th mixture component, given 183
by cup(oc|p) 1832
hi(xt) = cp——E— 1<k<K  (12) 181 ,
> i @ip(Xe|9F) 4 8 16

i i il Number of Mixt
where p(x;|¢?) is the marginal probability of the observed umber of Mixtures

parametetx; generated by théth Gaussian component, and
ay, is the prior probability of thek-th mixture component.

3) Model Adaptation:We applied Bayesian or Maximum-
A-Posterior (MAP) adaptation to reestimate the model paral
eters individually by shifting the original statistic (i,emean
vectors) toward the new adaptation data [17]. Theversal
driver-behavior models were first obtained from a pool
driving data of several drivers from the training set. Thg. Lane Change

universal driver models represent average or common drivin . o : . .
- ; . Since lane change activity consists of multiple states, (i.e
characteristics shared by several drivers. In this study, t

enhance the model capability, we took a further step to ad examining the safety of traffic environments, assessing the

apt ... . L
the parameters of the universal driver models in the folhgwi pf%)_smo_ns Of. qther vehicles, moving into the next lane, a_nd
WO Scenarios adjusting driving speed t(_) trafflt_: flow) [3], a §|pgle dynamic

Dri Ad. ion: Th ¢ dri d .. system cannot model vehicle trajectory. In addition, theriab
» Driver Adaptation: The aspect of driver adaptation IS 19,64 peyeen states cannot be observed from its trajectory

adapt the model parameters to better represent individuall.0 study lane-change behavior, a set of vehicle movement

driving characteristics. In this scenario, the dr'v'ngajatobservations was measured using a driving simulator. Relat

belong-mg to each partlculgr driver are usgd to ada gitudinal and lateral distances from the vehicle’s posi
the unlver_sal model to obtain the adapteq driver models, - starting the lane changes[n], v;[n], and the velocity
name_lydnver-de_pende_nbr personfillzed:lr!ver m(_)de_ls_,. of the vehicles,;[n],y;[n] , were recorded every 160 ms.
That is, each driver will be associated with an 'nd'V'dUHerei — 1,23 is an index for the location of surrounding

alized and unique driver model. vehicles (Fig. 11), andi[n], yo[n]) represents the position of

« On-line Adaptation: The driving data at the begmnmgne drivers own vehicle. The duration of lane-change agtivi

of each car-following event were used to adapt thﬁ = 1,2,..., N, starts whenVV0 (drivers own vehicle) and

universal model, and subsequently, the on-line adapt% are at the same longitudinal position and ends w¥iéis

driver model was used to represent dnvmg be_hawor teral position reaches the local minimum as shown in Fig. 1
the _rest of that .car-.followmg event. The objectl\{e of the 1) Modeling Trajectory using HMMWe used a three-state
on-line adaptation is to capture the overall unique CaEMM to describe the three different stages of a lane change:

Fig. 10. Comparison of prediction performance

WhereT is the length of signal¢z(t) is the actually observed
signal, andG(t) is the predicted signal. The driver-adapted
0rpodels showed the best performance.

foIIo_wmg charactenstps of such event (e.g., driver an reparation, shifting, and adjusting. In the proposed rhode
environment) that deviates from the average characterjs-

i £ th . | model &ich state is characterized by a joint distribution of eight
ics of the universal models. o variables:
4) Experimental EvaluationThe evaluation is performed
using approximately 300 minutes worth of clean and realisti v = [Z0, Yo, Ao, Ago, A%dg, A%, @1, 2] . (14)
car-following data from 68 drivers. Manual annotation is o ) ) .
exploited to verify that only concrete car-following evemtith ' 9eneral, longitudinal distance,, monotonically increases
legitimate driving signals that last more than 10 seconds dp time and cgnnpt be modgled by an "."d' process. Thergfore
considered. Fig. 10 compares the prediction performamce"l’)‘iE use Iongltud_mal speed, as a variable to chgracterlze
the universal, driver-adapted, and on-line-adapted ¢80 the trajectory. Flnally, after training the HMM using a set
sec of driving data) driver models with 4, 8, 16, 32 Gaussidll récorded trajectories, the mean vecior and covariance
components in terms of Signal-to Deviation Ratio (SDR). matrix X; of the trajectory variabler are estimated for each

The Signal-to-Deviation Ratio (SDR) is defined as followS@t€J = 1,2,3. The distribution of durationV is modeled
using a Gaussian distribution.

T
SDR = 10log,y —= 2oi-1 GQ({) [dB], (13) Th_e shape of a trajectory is c_o_ntrolled by the I—_|MM and the
Y1 (G(t) = G(1))? duration of the lane change activity. When the driver perfor
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vehicles. Fig. 12. Hazard maps for two drivers when the same positiissimounding
vehicles were given.

a lane change in a shorter time, this results in a sharper tra#), are determined); can be calculated for each point
jectory. We generate a set of probable lane-change trajestoin time, and by averaging the value over the lane-change
by determining state durationg using uniform resampling. duration we can compare the possible trajectories. Then the
Once a set of state durations is determined, we applied ®ietimal trajectory that has the lowest value is selectednhfro
maximum likelihood HMM signal synthesis algorithm (MLthe possible trajectories.
method) [20] or the sampling algorithm to generate the most3) Experimental EvaluationThirty lane-change trials were
probable trajectory. Simply repeating this process witiqarce  recorded for two drivers using a driving simulator which
a set of probable vehicle trajectories which characterizesanulated a two-lane urban expressway where the traffic was
trained drivers typical lane-change behavior moderately dense. The drivers were instructed to pass #de le

2) Trajectory Selection:Although various natural driving vehicle once during each trial, when they were able to. The
trajectories may exist, the number of lane-change trajsto trained hazard mapa/ for the two drivers shown in Fig. 12
that can be realized under given traffic circumstances depicts differences in sensitivity to surrounding vefscle
limited. Furthermore, the selection criteria of the trégey, We generated possible lane-change vehicle trajectories ov
based on the traffic context, differs among drivers, e.gneso @ 20-second period using two methods as mentioned, and
drivers are more sensitive to the position of the front viehicthen selected the optimal trajectory. For quantitativelueva
than that of the side vehicle. Therefore, we model the sekect tion, we calculated the difference between the predictetl an
criterion of each driver with a scoring function for laneaciye actual trajectories based on dynamic time warping (DTW),
trajectories based on vehicular contexts, i.e., relatigtadces using the normalized square difference as a local distance,
to the surrounding vehicles. and measured it in terms of SDR. Average SDRs of the

In the proposed method, a hazard map funcfiéiis defined best trajectory hypothesis (best) and all trajectory hiypsés
in a stochastic domain based on the histograms of the relattthean) using the maximum likelihood method (left) and the
positions of the surrounding vehicles = [x; — zo, y; — yo]?. Sampling method (right) are shown in Fig. 13. The sampling
To model sensitivity to surrounding vehicles, we calcudlatenethod was better at generating vehicle trajectories aimil
covariance matrix?; for each of three distances, i = 1,2,3, to actual driver trajectories than the ML method. Fig. 13
using training data. Since the distance varies more widely 2lso shows the SDRs when driver As model was used for
less sensitive distances, we use the quadratic form ofsavepredicting driver B's trajectory and vice versa. The SDR
covariance matrice®; as a metric of the cognitive distancedecreased by 2.2 dB when the other driver's model was used to
Then we calculate hazard map functidf; for surrounding Mmake the prediction. This result confirmed the effectivertds
vehicleV; as follows: the proposed model for capturing individual charactersstf

1 lane-change behavior. We also tested our method using the

= py— (15) actual lane-change duration, i.d.,= J. When the actual

Lt explai(riR; " ri — Bi)} lane-change duratio®V is given, the root mean square error
whereq; is a parameter of the minimum safe distance definéBMSE) between the predicted and actual trajectories can be
so that the minimum value of cognitive distanx:;eR;lri of calculated. The average RMSE for 60 tests was 17.6 m, which

the training data corresponds to the lower 5% distributioMas @ good result for predicting vehicle trajectories over a
values, and3; is the mean value O,f;,fR;ln_ distance of about 600 m (i.e., for a 20-second time period).
Hazard mapV/; can be regarded as an a posteriori probabil-
ity of being in the safe driving condition under range disis
Pr(safe|r;), when the likelihood is given as a exponential In this section, we propose a method for estimating a
quadratic form. Therefore, integrating the hazard maps fdriver’s frustration that integrates features of a diffeneature.
all surrounding vehicles can be done simply by interpotatinThe designed model is based on the assumption that emotions
three probabilities with weight; into an integrated map/. are the result of an interaction with the environment and
Once the positions of the surrounding vehicles at time are usually accompanied by physiological changes, facial

%

V. DRIVER FRUSTRATION
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using ML method (left) versus sampling method (right). Boit using a

driver’s own model (left) versus using the other driver'sdats (right). Fig. 14. Proposed BN structure. Squares represent disgmtialar) nodes

and the circle represents a continuous (Gaussian) modeniinder inside
each node represents the number of mutually exclusivesstat¢ the node
expressions, or actions [7]. can assume. Labels outside nodes identify random variable.

A. Analysis

A method for combining all of the different features an@orresponding driver responses, we can use Bayes’ rule to
annotation results in an efficient language was needed, andompute the posterior probability of frustration, as:
Bayesian network (BN) [11] was the natural choice to deal
with such a task. One of the important characteristics of a BN P(F|E1, E2, E3, E4, E5, R1, Ro, R3, Ry) =
is the capability to infer the state of an unobserved vagiabl P(F|Ey, Ey, E3, Ey, Ex) -
given the state of, observeq ones. In our case, we wanted to P(Ry|F) - P(Ro|F) - P(Rs|F) - P(R4|F)
infer a participant’s frustration given the driving enviraent, P(Er. By, Fs, Fs, Fs. Ry, o, R, )
speech recognition errors (communication environmemt), a 1 =2, 53, 2y 5, AL AR2, 2135 T
the participant’s responses measured through his/herigghys The denominator was calculated by summing (marginaliz-
logical state, overall face, and pedal actuation. ing) out F'. In addition, in this study we set a uniform Dirichlet

The graph structure proposed to integrate all of the aviailalprior to every discrete node in the network. This was done in
information is shown in Fig. 14. This model was based oorder to avoid over-fitted results due to the Maximum Likeli-
the following assumptions: (1) environmental factors thaty hood approach used for calculating the conditional prdibabi
have an impact on goal-directed behavior (traffic densiops tables. Without a prior, patterns that were not observethén t
at red-light signals, obstructions, turn or curve, and speetraining set would be assigned zero probability, compromgis
recognition errors) may also have a direct effect on frtistna the estimation.

(2) a frustrated driver is likely to present changes in les/h The network input data are all of the available data—pedal
facial expression, physiological state, and gas- and bpakial actuation, skin potential and other binary signals. At aegiv
actuation. In Fig. 14, squares represent discrete (talutales time stept, frames of sizes. and M were used to extract
and the circle represents a continuous (Gaussian) node. Témtures from the skin potential and pedal actuation sgynal
number inside each node represents the number of mutuaflgpectively. Results served as network inputs. The vafue o
exclusive states that the node can assume. Random variablsh binary label at the current time step was directly edter
were identified by a label outside each node: "F” for frustran the network without further processing. Frame shift was
tion, "E” for environment, and "R” for responses. kept fixed at 0.5 seconds. For two consecutive frames, the

In addition to the graph structure, it is necessary to specifalue of, for example, current traffic density has an effett o
the parameters of the model, obtained here using a trainifugure skin potential and pedal actuation signals in order t
set. During parameterization, we calculate the Conditionaccount for delayed physiological and behavioral reastion
Probability Distribution (CPD) at each node. If the varibl In addition, frustration was estimated continuously,, ivee
are discrete, this can be represented as a table (CPT), whiagh not pre-select segments where we were certain about
lists the probability that the child node takes on each of ifsustration or neutrality and then ignore ambiguous region
different values for each combination of values of its p&sen ) )

On the other hand, if the variable is continuous, the CPD-is 45 EXPerimental Evaluation

sumed as a Gaussian distribution. For example, the conthuo Within the data used in experiments, 129 scenes of frustra-
nodePedal actuationwhich has only one binary parent, wadion (segments with original scale above 0) were found. On
represented by two different multivariate Gaussians, are faverage, participants got frustrated 6.5 times while dgvi
each emotional state: frustrated and not frustrated. Fon e&’he mean strength of frustration scenes was 10.5, and the
observed environment (driving and communication) and tmeean duration was 11.8 seconds.

(16)
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Fig. 15. Results for individual drivers (arranged side bglejicalculated magnitude of the likelihood ratio between the risky and safe

using the Full network. Comparison between (top) actuastfation from i 1
all drivers, (center) posterior probability of the frusivma node, and (bottom) drlvmg models (for hazard types 819)The system allows

its quantized version using a threshold of 0.5. users to browse through each detected hazardous situation,
represented by a balloon icon, on an actual driving map.
Each balloon represents one hazardous situation withreliffe

Fig. 15 shows estimation results for individual driver i _ .
arranged side by side: actual frustration from all 20 p'articC(_)Iors corresponding to different hazard types, as shown in

pants (top); the posterior probability of the frustrationde F.|g. 1-6. The sysyem also provides statistic of all the hmd
calculated using therull network (center); and quantizeds't”f"‘t'ons the driver encountered from all recorded daitagus
posterior probability using a threshold of 0.5 (bottom).eTh@ Pi€ chart (e.g., the number of occurrences of each hazard
guantized probability of each driver was further mediar{ype)' T_h_erefore, the system could |den_t|fy a_tendency tdwa
filtered to remove spikes. The overall result was achievend wifisky driving behavior, or other personality traits possesby

a true positive (TP) rate of 80% and a false positive (FP) raf® i][]dividlgalt(l.driver. he bal he drivi A
of 9% (i.e., the system correctly estimate 80% of the frastta _ A\Tter clicking on the balloons on the driving map, the
and, when drivers were not frustrated, made mistakes 9% S €sPonding video and driving signals are displayeciglo

the time). Furthermore, the results suggest that infomat with instructions on how the user can improve their driving

the driving and communication environment, as well as peosﬂfew‘ The user can also examine different kinds of driving

actuation, was effective in improving the model accuracy. ;ignals_related to that particular driving scene. The gafet
instructions were prepared in advance for each type of thatec
VI. DRIVER EDUCATION hazardous situations, based on the above-mentioned manual
kn general, the system will inform the user the reason why

Employing driver-behavior modeling, we developed a nex : - o LT .
generation Event Data Recorder (EDR), which is capable %fpartlcular driving behavior in that situation is consgter

detecting a wide range of potentially hazardous situattbat unsafe, and then tell the user how they can improve their
g g P y . driving behavior. Fig. 17 shows an example of the interface

would not be captured by conventional EDR [4], for enhancin : o X .
. . . . agnosing a hazardous situation at an intersection. Tétesy
safe driving behavior. Our automated diagnosis and seiéne o . .
notifies the user that the user did not stop at the stop sign and

system was developed on a server computer as a web appl(':%?)_ssed the intersection at a speed of &l#/h. Then, the

tion using CGl for easy access via networks from PCs or sma o L ;
phones such as the iPhone [19]. The system automatical stem suggests that in this driving situation the driverusth

. . A mpletel h ign, an nfirm that it i f
detects nine types of potentially hazardous situations filoe cemplete y stop at.t e stop sig » & d co that it is safe to
e S . . cross the intersection before taking action.
driver's own recorded historical driving data as:

1) Sudden deceleration A. Experimental Evaluation

2) Sudden acceleration In order to validate the effectiveness of our developed
3) Risky steering system in reducing the number of detected hazardous situ-
4) Excessive speed ations, we recruited 35 drivers, including 6 expert driyers
5) Ignoring traffic light to participate in our experiment. The subjects were asked to
6) Ignoring stop sign drive the instrumented vehicle three times on three differe
7) Insufficient following distance days, following the same route, which takes approximately o

8) Potentially risky obstacle avoidance and a half hour to complete. We used data from the second

9) Potentially risky behavior at poor-visibility interdemn and the third sessions for our analysis, because we wanted

The current version will display up to five of the most haz-
. . 1 . .
ardous scenes of each hazard type by automatlcally gauQsIQ% Here, two GMM-based driver-behavior models were used toessmt

. . . driving behavior and risky driving behavior. Riskyvirg behavior could
the hazard level using the magnitude of the difference frogg determined by performing a hypothesis test of the obSengaagainst a

the pre-defined thresholds (for hazard types 1-7), or froen thre-defined threshold [5]




lgnore stop scene (9506A,st2) 03082010 (TUE) will focus on identify variations within and between driger

Stop and confirm the traffic at the unclear {Q} (e.g.’ betWeen diffel’ent COUntrieS).

crossroad.
. " - 'Yagoto-street,
....... e Chikusa-ku

EEEE ACKNOWLEDGMENT

Lateral acseleration This work was supported by the Strategic Information and

Soering ante Communication R&D Promotion Programme (SCOPE) of

% Ministry of Internal Affairs and Communications of Japanga

Srake. podal by the Core Research for E_valuatlonal Science and Techyolog
Gas podal IN] (CREST) of the Japan Science and Technology Agency. We
Acceleration [G]

are also grateful to the members and collaborators of these
projects for their valuable contribution and comments.

Velocity [km/h]

w“ . REFERENCES
) Speed limit
[1] P. Angkititrakul, C. Miyajima, K. Takeda, "Modeling anddaptation of
mr_O . Stochastic Driver-Behavior Model with Application to Capllowing,” in
Brake pedal froe. V'?/i‘:m;‘:nf}gp sign IEEE IV, pp.814-819, Baden-Baden, Germany, June 2011.

[2] M. Brackstone and M. McDonald, "Car-following: A hisical review,”

N Transportation Respt. F, vol. 2, no. 4, pp. 181-196, Dec. 1999.
[3] W. Chee and M. Tomizuka, "Vehicle lane change maneuveamdto-
p—— mated highway systemsPATH Project Report: UCB-ITS-PRR,94-22,
Gas pedal force [N] UC Berkeley, 1994.
[4] H.C. Gabor, J.A. Hinch, J. SteineEvent Data Recorder: A Decade of
° Innovation, SAE International, Warrendale, PA, 2008.
[5] Y. Kuroyanagi, C. Miyajima, N. Kitaoka, and K. Takeda, fialysis and
detection of potentially hazardous situations in realld/adriving,” in
ICICIC, vol. 2, no. 3, pp. 621-626, June, 2011.
. . . . . . . [6] L. Malta, P. Angkititrakul, C. Miyajima, and K. TakedaMulti-modal
Fig. 17. Example of interface diagnosing hazardous sanat an intersection real-world driving data collection, transcription, andegration using

Bayesian Network,” inEEE-IV, pp. 150-155, 2008.

TIME [s]

“ [7] L. Malta, C. Miyajima, N. Kitaoka, and K. Takeda, "Analgsof Real-
3 — World Driver’s Frustration,'EEE ITS,vol. 12(1), pp. 109-118, Mar. 2011.
0 M N _ [8] J.C. McCall and M.M. Trivedi, "Driver Behavior and Sittian Aware
v S e, Brake Assistance for Intelligent VehiclesEEE ITS vol. 95(2), pp. 374-
57 tinsuficient Distance 387, 2007.
9 Ignoring Traffic Light [9] C. Miyajima, Y. Nishiwaki, K. Ozawa, T. Wakita, K. Itou, KTakeda,
£, B = iidvions and F. Itakura, "Driver Modeling Based on Driving Behavior Driver
§ rSudden Acceleration Identification,” Proceedings of the IEEE/ol. 95, no. 2, Feb. 2007.

Sudden Braking

=

[10] C. Miyajima, T. Kusakawa, N. Kitaoka, K. Itou, and K. Teda, "On-
- going Data Collection for Driver Behavior Signal,” DSPINCARS2007.

e

. | [11] K.P. Murphy, "Dynamic Bayesian Networks: Representat Inference,
mG501A mSB02A f9505A FS0GA mIOTA  m9SOIB G028 (95058 FUSD6B mOSOTB and Learning,"PhD Dissertation Univ. of California at Berkeley, 2002.
Before After [12] Y. Nishiwaki, C. Miyajima, H. Kitaoka, K. Itou, K. Takea "Generation

. . o . of Pedal Operation Patterns of Individual Drivers in Calidwing for
Fig. 18. Comparison of number of hazardous situations bedod after using Personalized Cruise Control,” #EEE-IV, pp. 823-827, Taiwan, 2007.
the system. [13] Y. Nishiwaki, C. Miyajima, H. Kitaoka, K. Takeda, "Stbastic modeling
of vehicle trajectory during lane-changing,” IEEE-ICASSPpp. 1377-
. - . . . 1380, Taiwan, 2009.
to allow the subjects to get familiar with the vehicle durm@m] N. Oliver and N.P. Pentland, "Driver behavior recogmitand prediction
the first session. After the second session, the subjects use in a SmartCar” ifProc. SPIE Aerosense, Enhanced and Synthetic Vision,

the driving diagnosis browser and received feedback before vol- 4023, pp. 2280-290, Apr. 2000. o .
takin art in the third session. We compared the numt 1?] A. Pentland and A. Liu, "Modeling and prediction of humbehavior,
aking p : p Neural Comput.vol. 11, pp. 229-242, 1999.

of hazardous situations detected during the second andl this] L. Rabiner and B. Juandgundamentals of Speech Recogniti@ngle-

sessions. Fig. 18 compares the number of detected hazardoy#ood Cliffs, NJ: Prentice-Hall, Apr. 1993. y _
ituations for five drivers before and after using the svste 17] D.A. Reynolds, T.F. Quatieri, R.B. Dunn, "Speaker ¥iedtion using
situa g Yy Adapted Gaussian Mixture Model€igital Signal Processingvol. 10(1),

The number of hazardous scenes detected for the non-experpp. 19-41, 2000.

drivers decreased by 50% after using the system. [18] D.D. Salvucci, E.P. Boer, and A. Liu, "Toward an Intetgeh Model of
Driver Behavior in a Cognitive Architecture,Transportation Research
Record 2001.
VII. SUMMARY AND FUTURE WORK [19] K. Takeda, C. Miyajima, T. Suzuki, K. Kurumida, Y. Kuragagi,
We have presented the behavior signal processing andH.Ishikawa, P. Angkititrakul, R. Terashima, M. Oikawa, aridkomada,
. . . . "Improving Driving Behavior by Allowing Drivers to Browsefleir Own
modeling approaches with a focus on the interaction between recorded Driving Data,” ifEEE-ITSG Washington, Oct. 2011.

driver, vehicle, and environment. The experimental ewadna [20] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, andKitamura,

: ‘o - ; e _ "Speech parameter generation algorithms for HMM-baseddpsynthe-
using realistic driving behavior have shown promising out sis” in ICASSP pp. 1315-1318, June 2000.

comes with a wide range of vehicle applications such as rggt] p..J. wouters and J.M.J. Bos, "Traffic accident reuctoy monitor-
ognizing driver identity, predicting driver maneuver, efgitng ing driver behaviour with in-car data recordergtcident Anal. Prey.

driver state, and assessing driving behavior. Our futurekwo vol-32(5), pp. 643-650, 2000.



