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Abstract—This paper focuses on applications of Bayesian technology, and improving robustness has been a common
approaches to speech recognition. Bayesian approaches have beegoridwide challenge in the field of acoustic and language
widely studied in statistics and machine learning fields, and one of studies. Acoustic studies have taken mainly two directions:
the advantages of the Bayesian approaches is to improve general- . . .
ization ability compared to maximum likelihood approaches. The the |mprovemeqt of acoustic models beyon.d the Convent"_)nal
effectiveness for speech recognition is shown experimentally in HMM, and the improvement of the acoustic model learning
speaker adaptation tasks by using Maximum A Posterior (MAP) method beyond the conventional ML approach. This paper
and model complexity control by using Bayesian Information addresses the challenge in terms of improving the learning
Criterion (BIC). This paper introduces the variational Bayesian method by employingayesianapproaches.

approaches, in addition to the MAP, BIC and other Bayesian . . .
tepc[;miques, for speech recognition. VBEC (Variational Bayyesian In Bayesian approa.ches, all the variables introduced when
Estimation and Clustering for speech recognition) is a fully Models are parameterized, such as model parameters and latent
Bayesian speech recognition framework, and achieves robustvariables, are regarded as probabilistic variables, and their
acoustic modeling and speech classification. This paper explainsposterior distributions are obtained based on the Bayes rule.
the formulation and experimental effectiveness of these Bayesian 1o gifference between the Bayesian and ML approaches is
approaches for speech recognition. that the target of estimation is distribution functionin the
Bayesian approach whereas it isparameter valuein the
ML approach. Based on this posterior distribution estimation,
Speech recognition, which converts speech information infiee Bayesian approach can generally achieve more robust
text information, is the core technology for allowing computensiodel construction and classification than an ML approach
to understand the human intent. The current successesa] [7]. In fact, the Bayesian approach has the following three
speech recognition are based on pattern recognition, whigtivantages:

uses statistical learning theory. Maximum Likelihood (MLXA) Effective utilization of prior knowledge through prior
methods have become the standard techniques for constructing gistriputions (prior utilization)

acoustic and language models for speech recognition. MB) Model selection that obtains a model structure with the
methods guarantee that ML estimates approach the true values highest probability of posterior distribution of model
of the parameters. ML methods have been used in various as- gtryctures (model selection)

pects of statistical learning, and especially for acoustic mod%t) Robust classification by marginalizing model parameters
ing in speech recognition since the Expectation-Maximization (robust classification)

(EM) algorithm [1] is @ practical way of obtaining the IocalIn general, these advantages make a pattern recognition

optimum solution for the training of latent variable mOdeIS(r'Pethod more robust than that based on the ML approaches.

Therefore, acoustic modeling based on Hidden Markov Mo “However. the Bavesian approach requires comolex intearal
els (HMMs) and Gaussian Mixture Models (GMMs) have been ' Y PP q P 9

) and expectation computations to obtain posterior distributions
developed greatly by using the ML-EM approach [2]:54] when models have latent variables. The current acoustic model

Howevgr, the performance of C“”e.’?t speech recogqlt_l?rq speech recognition has the latent variables included in an
systems is far from satisfactory. Specifically, the recogniti MM and a Gaussian Mixture Model (GMM). Therefore

p(ta)_rlfct)rmgnce IS mECh poor_c;r thanﬁ thef humand_r?.cogt;nlm Bme approximated Bayesian techniques are applied to speech
ability since speech recognition sutiers from a distinct fag cognition to avoid the computational problem. For example,

of robustness to unknown conditions, which is crucial f%e Maximum A Posteriori based framework approximates
prgctlcal use. 'In a real environment, there are many fluc%-e posterior distribution of the parameter by using the MAP
ations originating from various factors such as the speaks

text Ki ! d noise. In fact. th f proximation to utilize prior information [8], [9]. Bayesian
context, speaking style and noise. In fact, the periormance G, \4iion Criterion (BIC) [10]-[13] and Bayesian Predic-

a(;]oust:rc] modglsl trained uzlr;g read speech detcreases 4R Classification (BPC) [14], [15] based frameworks partially
when the models are used o recognize spontaneous Sper%%lie Bayesian advantages for model selection and robust
f/&

I. INTRODUCTION

due' to the mismatch between the read and spontaneous SPe ification, respectively, in speech recognition. These ap-
environments [5]. Therefore, most of the problems posed b
current speech recognition techniques result from a lack of - o o _

bustness. This lack of robustness is an obstacle to the de BIC and Minimum Description Length (MDL) criterion have been inde-
robus : ‘ N p dently proposed, but they are practically the same. Therefore, they are
ment of commercial applications based on speech recognitigentified in this paper and referred to as BIC/MDL.




proaches are simple and powerful frameworks to realize théherep(©|m) is a prior distribution for all distribution param-
Bayesian advantages in speech recognition. However, thesers®, andm denotes the model structure index, for example,
approaches lose a part of the Bayesian advantages due to theirnumber of Gaussian components or HMM states. Here,
approximation, as shown in Table I. —c represents the set of all categories withauin this paper,
Therefore, this paper introduces a speech recognition frame regard the hyper-parameter setting as the model structure,
work based on a fully Bayesian approach to overcome the lagkd include its variations in index:. From Eq. (1), prior
of robustness described above by utilizing the three Bayesiaformation can be utilized via estimations of the posterior
advantages [16], [17]. Recently \ariational BayesianVB) distribution, which depends on prior distributions.
approach was proposed in the learning theory field thatThe calculation of Eq. (1) cannot be solved analytically due
avoids complex computations by employing the variationg the summation over latent variables. To avoid the problem,
approximation technique [18]-[21]. With this VB approachthe MAP approaches approximate the distribution estimation
approximate posterior distributions (VB posterior distributo the point estimation. Namely, instead of obtaining the
tions) can be obtained effectively by iterative calculationsosterior distribution in Eqg. (1), the MAP approach obtains
similar to the Expectation-Maximization algorithm used in théhe following value
ML approach, while the three advantages of the Bayesian MAP
approaches are still retained. Therefore, the framework is ©
formulated using VB to replace the ML approaches with
the Bayesian approaches in speech recognition. The proposed = ZP(O’ Z|®c, m)p(Oc|m).
Variational Bayesian Estimation and Clustering for speech z
recognition (VBEC) is dully Bayesian framewotkwhere all This estimation can be efficiently performed by using the
acoustic procedures for speech recognition (acoustic mo&! algorithm. The MAP approximation is first applied to
construction and speech classification) are based on the @ estimation of single-Gaussian HMM parameters in [8]
posterior distribution. Consequently, VBEC includes the thr&#d is extended to GMM-HMMs in [9]. The effectiveness of
Bayesian advantages unlike the conventional Bayesian &fe MAP approach can be shown in a speaker recognition
proaches, as shown in Table I. This paper also confirms exp@sk where prior distributions are set by speaker-independent
imentally the effectiveness of the three Bayesian advantaggd/Ms.
S/%Oé(?_tmzatlon, model selection and robust classification, IB. Bayesian Information Criterion (BIC) approaches
BIC approaches are introduced to speech recognition to
perform model selection [10], [11], To deal with model struc-

In this section, we briefly review the Bayesian approach tyre in a Bayesian approach, we can consider the following
contrast with the ML approach, and introduce approximatgfbsterior distribution:

Bayesian approaches, which are widely used for speech recog-
nition. p(m|O) = Z/ p(0,Z|©,m)p §@|m) p(m) 1o o, 3)
A. Maximum A Posteriori (MAP) approaches

MAP approaches are introduced to speech recognition Wherep(m) denotes a prior distribution for model structure
utilize the prior information of the Bayesian advantages [gfiowever, similar to the MAP approach, the calculation of Eq.
[9]. The Bayesian approach is based on posterior distributiofd) cannot be solved analytically due to the summation over

while the ML approach is based on distribution parametefdtent variables. The Bayesian Information Criterion (BIC)
Let O € {o, € RP|t =1,--- , T} be a given training data setonly focuses on the model that does not have latent variables,

of D dimensional feature vectors atle {z|t=1,--- ,T} and can obtain the following equation based on the asymptotic
be a set of the corresponding latent variables. The posterﬂﬁsumpt'on (large amount of data assumption):

distribution for a distribution parametéd. of categoryc is #(0)

obtained by the famous Bayes theorem as follows: log p(m|O) o< log p(O|©, m) — ——log T.. 4

— argma(0./0, m)

c

@)

Il. APPROXIMATED BAYESIAN APPROACHES

Z p(O,Z|8,m)p(Olm) (1) The first term in the right hand side is a log-likelihood term
p(Olm) “ and the second term is a penalty term, which is proportional
to the number of model parametets(©)).
This criterion is widely used for speech processing (e.g.,

p(0.]0,m) =

TABLE | . o - :
COMPARISON OFVBEC AND OTHER BAYESIAN FRAMEWORKS IN TERMs ~ phonetic decision tree clustering [10], [11], speaker clustering
OF BAYESIAN ADVANTAGES [12], and Gaussian pruning in acoustic models [13]).
Bayesian advantage VBEC T MAP | BIC/MDL | BPC C. Bayesian Predictive Classification (BPC) approaches
(A) Prior utilization v, v - - To perform robust classification, BPC approaches are used
(B) Model selection V4 - V4 - . " . L
(C) Robust classificatior]  +/ _ z v in speech recognition [14], [15]. Once the posterior distribu-

tion p(6©.|0,m) is estimated for all categories, the category



for test datax is determined by: This indicates that by maximizing tota&#™ with respect to
not only ¢(©|0,m),q(Z|0,m), but alsom, we can obtain
c= argmax/p(x|97 ¢, m)p(Olc, 0, m)dO. (5) the optimal parameter distributions and can select the optimal
{c} model structure simultaneously [20], [21].
The parameters are integrated out in Eq. (5) so that the
effect of over-training is mitigated, and robust classification is
obtained. The approach that involves considering the integralg. APPLYING A VB APPROACH TO ACOUSTIC MODELING
and true posterior distributions in Eq. (5) is called the Bayesian
Predictive Classification (BPC) approach. In general, a true

posterior distributiorp(6|c0, m) i_s diff?cu!t to.obtain apalyt- density HMM (left-to-right HMM with a GMM for each state)
ically. [14] and [15] uses posterior distributions, which hav 6], [17]. The continuous density HMM has been widely

mﬁan pﬁf;netirs otn pomt(;estlmated model [zarameters t( d to represent a phoneme category in acoustic models for
or estimates) and variance parameters as cont eech recognition. We show concrete forms of the optimal

parameters. aalét? posterior distributions for model parameters and the VB

In this section, we apply the VB approach to a continuous

Tlhusd MAP’ BlCr'] and BP.C.: appr:oa_cheshcan ?38 practic jective function. Since the formulations for the posterior
realized in speech recognition, having three Bayesian tributions are common to all phoneme categories, we omit

vantages, respectively. Next section, we introduce Variatiormz category suffix: in this section to simplify the equation
Bayesian Estimation and Clustering for speech recogniti%l“,nS

(VBEC), which includes the three Bayesian advantages at the
same time unlike the MAP, BIC, and BPC approaches, as

h in Table I.
shown in Table A. Output distributiorp(O, S, V|©, m) and prior distribution

[1l. VARIATIONAL BAYESIAN ESTIMATION AND p(6©[m)

CLUSTERING FOR SPEECH RECOGNITION S _ _
The output distribution of a continuous density HMM,

which represents a phoneme acoustic model, is expressed by
We briefly explain a variational Bayesian approach [18]-
[21]. To begin with, we assume that

4(0,2[0,m) = [ 4(©c[0.,m)q(Zc|O.,m),  (6)

A. Variational Bayesian approach

T
p(0,8,V[0,m) = [ as-15wseprbyret (0Y), (10)
t=1

wheregq is an arbitrary posterior distribution. Then, the variaghere S is a set of sequences of HMM statéé, is a set
tional Bayes focuses on the following objective functional of sequences of Gaussian mixture components, gnénd
¢ .
F™ (0|0, m), ¢(Z|0,m)] v* denote the state and m|>_<ture cor_nponents.at a frame
Here,S and V are sets of discrete hidden variables, which
_ <10 p(0,2|0, m)p(©|m) 7)

> . are the concrete forms &. The parameten;; denotes the
4(010,m)q(Z|O,m) / 4(60,m) q(2]0.m) state transition probability from stateto statej, andw,y, is
Here, the bracket$) denote the expectation i.y(y)),,, the k-th welghttfactor of ihe Gaussian mixture for stgtein

[ g(y)p(y)dy for a continuous variable and (9(n)), agdltlon,bjk(o )(=N(O |ujk,2jk)) denotes. the Gaussian
S g(n)p(n) for a discrete variabler. Eq. (7) is a lower with the mean vectop and covariance matri¥x ;; defined
bound of marginalized log likelihood. Therefore, the optima”fsz

posterior distribution can be obtained by a variational method,

which results in maximizing the functiond, i.e., (O|pjrs Xj)

- m 1 1 _

(610 m) = argmax F7(4(610,m).aZ/Om). £ OISl e (50" B0 )
q(Oc¢ s

P — m _D _1 1 _

0(2:10,m) = argmax 7 a(Ol0,m).aZO L. (g)  — (2m)~# 2l oxp (50" ) E;O ).

g(m|O) = argmaxF™[¢(©|0,m), ¢(Z|0,m)]. (11)

q(m|O)

By assuming thap(m) is a uniform distribution, we obtain the where| - | and’ denote the determinant and the transpose of
proportion relation betweefi(m|O) and F™, and an optimal the matrix, respectively, whil® = {a;;, w;x, p,y, Ej‘,j|i7j =
model structure in a sense of maximum a posterior probability..., J,k = 1, ..., L} is a set of output distribution parameters.
can be selected as follows: Here, J denotes the number of states in an HMM sequence
and L denotes the number of Gaussian components in a state.

m=atg IP,%(Q(m'O) = arg I?,ﬁi(]: ' ©) Prior distribution is assumed to be a conjugate distribution



and is expressed as follows:
p(©[m)

J J L
=TT T I pass ¥ i lm)p({wjns o Im)p(bjilm)

i=1j=1k=1

= I1,,, DU =)D s 6)

D
N(u‘jkh/?k? (€)' %) H g(Ej_kl,d|7/0a R(;k,d),
a=1

(12)

Whel’e b]k = {ij’ E;kl}' @0
{0,060, 00 n° R} is a set of
and is assumed to be a constant. In Eq. (I2)denotes a

Dirichlet distribution andG denotes a gamma distribution. If

Here,

covariance matrix elements are off the diagonal, a Wisha
distribution is set as a prior distribution. The concrete form

of the distributions are defined as follows:

D({ai;}-11¢%) 2 Cp(¢°) [[(aiy)?"

J
£ Cp(¢”) H(wg‘k)wo_l
N(ij|’/?k-» (€")'Zjk) £ O
0
5 (b = 25) 255 (ke = V?k))
g<2;k1,d|7707 R?Ic,d)

D({wjk }i=1l¢°)

k
(€)1 2] 72
exp <—

n° 0
R CE)
where
Cp(¢°) £ T(J¢°)/(T(¢")”
Cp(") £ T(Le") /(T(")"
On(€0) 2 (€0 /2m) (1)
CQ(TIOvR?k, )= £ ( kd/2) /F(TI /2)

hyper-parameters,

hyper-parameter®® in Eq. (12) is replaced with a set of
posterior distribution paramete@ {6,0,&, D, n,R} in

Eq. (15). We adopt the conjugate prior distribution because
the posterior distribution joins the same function family as
the prior distribution theoretically and is obtained analytically,
which is the_characteristic of the exponential distribution
family. Here,® are defined as:

Pij = ?° + Vijs
Dk =" + Gk
Eiw =&+ G

T
Uik = (fOV?k + Z (ixO") /&
t=1
~ _ 0 g
njk =1 + Cjk

:R;derf( gkd*’/]kd JFZCth
=1

1
b ﬁ ~ 2
jk,d V]k,d)

B N (16)
where 75, (! ., and ¢;; are the sufficient statistics of a

continuous density HMM, and defined as follows:

?fj 24 =1,s" = j|O,m)
T
Vi = Z%
t=1
~ (17)
gt'k 2q(s' = =k|O,m)
T ~,
Gr= DG
t=1

Therefore, ® can be calculated fromd?, 7! 4; and Ce ko
enablingg(©|0,m) to be obtained.

C. Optimal VB posterior distribution for hidden variables
q(S, V|0, m)

From the output distribution and prior distribution in Sec-
tion IV-A, the optimal VB posterior distribution for hidden

The setting of these output and prior distributions is the sameriablesg(S, V|0, m) is represented as follows:

as in [9].

B. Optimal VB posterior distribution for output distribution
parameters;(©]0, m)

Since the prior distributions (Eq. (13)) are conjugate distri-
butions, we can analytically obtain the optimal VB posterior

distribution for output distribution parametef&|0, m) (see
[17] in detail), as follows:

(0|0, m)

= H D({asj Y1 {ig Y ) DHwi oo {Bim Yoo

N(N;k“’ﬂm(fﬂ@ k) H g(x k. d|njk’ jkyd)-
(15)

Note that Egs. (12) and (15) are represented in the sa

function family, and the only difference is that the set of

(S, V|0, m)
Lo (aog @545 0 a0}, o,m>)
p 3t =1

exp (<log Wgtqyt >;({U’jk/ }f’:l \O,m))
P (<10g st (Ot)>;(bjk‘o,’rn)) '

Therefore, the optimal VB posterior distribution for hidden
variablesg(S, V|O, m) is obtained by considering a normal-
ization constant as follows:

HtT:1 astflst{lv)stvtfgstvt (Ot)

ME(S, V|0, m i
| )= s ITi—y Gst—151Wst ot bst e (OF)

(18)




where define 7g' and 7g'y,, and represent™ as follows:

Agr1ge = exp(V(Pgr-140) — Z o Dy F™ ==Y "q(S,V|0,m)logg(S, V|O,m)

- S,V

Bytyr = exp(W(Barar) = V(Y %tvf/))v (0,8, V|0, m)p(©]m)

~ p ) ) 7m p m

7 D 1 7]5 vt + Zq(S7V|Oam) IOg ~ >

stot (OF) = — | —log2m — = v < 0|0,

byt (O°) exp( 5 ( og 2m - + 0 (== 5 )) sv q(©10,m) (©10.m)

1 f'\;,stvt7d (OZ — ﬂstvt7d)2ﬁstvt £ _fg,LV + ‘7:6”
B 2§(10g( 2 ) - ﬁs*v‘ d . (23)

(19) &'y is an entropy value and is calculated at the E-step in the

_ _ _ _ VB EM algorithm. F%' is obtained as follows:
where ¥U(y) is a digamma function defined a&(y) =

d/dylogT'(y). - 1op LTI, T($iy)
From @;;, w;; and b;;,(O%), we can obtain the transition Z 08 (Z 2 ) T(g0)7
and occupation probabilitie3!; and gtk, which are required ‘ '
for the calculation ofg(©]0,m) in Section IV-B. From the Zl N IL T(@jw)
variational calculationy;; is obtained as follows: g Zk/ i) T(p)E
artag Y zﬂ-;{l;-k(ot)ﬁé 7’°D 26\ |0 %
= BRI g e ()72 (0 ()
! Zj/ 04}: + Z log ¢ (2m)” 2 il
fjk n0D 0 D~ nJTk
I 2% (1 (1)) )Rjk
wherea and 3 are VB forward and backward probabilities 2
defined as: (24)
St ai-! b (O This objective function is used as an optimization criterion
% (32857 i) 3o i Jkl( )t+1 (21) Wwith respect to model structure.
By = Xt (Zk- Wirbik (O )) Bi

E. Bayesian predictive classification using VB posterior dis-
=0 and 3¢=7 are initialized appropriately. Similarly,!, is tributions

obtained from the variational calculation as follows: After acoustic modeling, we obtain the optimal VB posterior
B (5, &t tay) @, b (003 distribu_ti_ons for_ the optimal model struc_tufﬁ@\q,ﬁz). In
= =it Y ~JT’“ gk i (22) recognition, an input speecti for a framet is classified as the
> optimal phoneme classusingp(c|x’, O, m) for the estimated

model structuren defined as follows:
Thus, “/u and Ctk are calculated efficiently by using a
probabilistic assignment via the familidorward-backward ¢ = arg maxp(c|x’, 0, ) = arg maxp(c)p(x'|c, O, ). (25)
{c} {e}

algorithm

Analogous to the forward-backward algorithm, thiterbi Here,p(c) is the class prior distribution obtained by language
algorithm is also derived by exchanging a summation ovend lexicon models, ang(x’|c, O, m) is the predictive pos-
1 for maximization over; in the calculation of VB forward terior distribution. When we approximate the true posterior
probability @} in Eq. (21). distribution p(®©|c(j), O, m) by using the estimated VB pos-

terior distributionsg(0|c(j), O, m), p(xt|c(j), O, m) can be

D. VB objective functiorF™ approximated as

In this section, we discuss VB objective functi@i’, which  p(x|c(j), O, m) ~ /d@p(xﬂc(j),@,m) q(8]c(4), 0, m). (26)
is a criterion for both posterior distribution estimation and
model structure optimization, and provide general calculatiaNe focus on the integral part. The integral ovey;, My, and
results. By substituting the VB posterior distribution obtaineg kl for a frame can be solved analytically and found to be a
in Sections IV-B and IV-C, we obtain analytical results fomixture Student-t distribution, as follows:
F™. Although we focus on one phoneme category in this
section, the totalF™ for all categories is obtained by simply [ p(x!|c(5), ©,m)q(O|c(5), O, m)dO
summing up theF™ results obtained in this section for all
categories, according to Eqg. (7). We can sepaféteinto two _ @ik
components: one is composed of oglys, V|0, m), whereas Z > Pk HT Xl n.a: (1 )Rl €5 Ty
the other is mainly composed @{©|O,m). Therefore, we (27)



- VBEC ML-BIC/MDL TABLE Il
Acoustic TRAINING AND TEST DATA AND LANGUAGE MODEL FOR JNAS

modeling Training data O Training data O
—  Posterior estimation (VB) Parameter estimation (ML) Training data JNAS 20,000 utterances, 34 hours (male)
Test data JNAS 100 utterances, 1,583 words (male)
l 4(©.]0,m) l 6., m Language model| Standard trigram (10 years of newspapers)
Calculation of F™ Calculation of log-likelihood Vocabulary size | 20,000
Convergence check Convergence check PerpIeX|ty 64.0
l 1 TABLE Il
'~ Model selection based on F™ Model selection based on BIC/MDL EXPERIMENTAL CONDITIONS
.3(6:0,m) L&
Acoustic score calculation Acoustic score calculation i i . .
based on VB-BPC N1 based on MLC Sampling rate 16 kHz (16-bit quantization)
Il Recognition I Feature vector 12 - order MFCC +A MFCC
Recognition | Sva(cle, 0,m) data Sur(clz, Oc, 1) (26 dimensions) + Energy +A Energy
Window Hamming
Frame size/shift 25/10 ms
Fig. 1. Total speech recognition frameworks based on VBEC andNumber of HMM states 3 (Left to right)
ML-BIC/MDL. Sy p(c|x,0,m) represents the VB-BPC score and Number of phoneme categories 43

Snr(clx, ©¢,m) represents the Maximum Likelihood based Classification
(MLC) score of a phoneme categoegyfor recognition datax.

. . . . . . Effective utilization of prior knowledge
The indexc is removed in Eqg. (27) to avoid a compllcatedA P g

equation. Student-t distribution is defined as follows: We employed Japanese Newspaper Article Sentences
. - o~ o~ (JNAS) for the experiment. The quantitative features of the
T (xqlVjk,as (L + &) Ryj,anljn /e, Mjk) training and test sets are summarized in Tables Il. Other
o T((e + 1)/2) i 1/2 experimental conditions are summarized in Table II1.
S T /2T(1/2) ( = ) The left side of Figure 2 shows a comparison of VBEC and
ik (14 &r)Rjr.a (28)  ML-BIC/MDL with varying amounts of data and an enlarged

— 2 (X side. VBEC performed as well as or better than ML-BIC/MDL
(1+&r)Rjk.a with every amount of data. In particular, VBEC significantly
Therefore, input speech can be classified by using the pgaitperformed the ML-BIC/MDL approaches for various tuning
dictive score obtained from Eq. (27). We call this approadparameters (frooh = 1 to A = 4) when the amounts
Bayesian Predictive Classification using VB posterior distrpf training data were small. Consequently, VBEC exhibited
butions (VB-BPC). considerable superiority especially with small amounts of
VB-BPC accomplishes the VBEC to be a fully Bayesia#raining data (less than 1,000 utterances), which solves the
framework for speech recognition that possesses a consis@gr-training problem.
concept whereby all procedures (acoustic modeling and speec
classification) are carried out based on posterior distributio%,
as shown in Figure 1. Figure 1 shows the VBEC framework Based on the model selection function by using the VB
compared with a conventional approach, ML-BIC/MDL: thebjective function, we can perform VBEC-based efficient
model parameter estimation, model selection and speech clasdel search algorithm and GMM-based decision tree cluster-
sification are based on ML, BIC/MDL and Maximum Like-ing utilizing the acoustic model characteristics [23]. In these
lihood based Classification (MLC), respectively. The VBE@xperiments, the availability of VBEC automatic determination
mitigates the “over-training problem” by using the full powas examined experimentally using various speech data. This
tential of the Bayesian approach that is drawn out by the
consistent concept, and there, the VB-BPC contributes greatly
as one of the components. %

( §~ —(min+1)/2 view for more than 1,000 utterances is shown in the right
Jk ( ~ . 2
d~ Vijkd) >

h
Automatic determination of acoustic model topologies

80
70

V. EXPERIMENTS gg r
//g‘ -« ML-BIC/MDL

We conducted experiments to prove the effectiveness &f i 7 T ined MLBIG/MDL |
. . . Lo 8 ‘ ‘ :
VBEC and other Bayesian gpproach_es in effective u.t|I|zat|on 0. 1 L0 1000 1g000 1000 10000 100000
of prior knowledge, automatic determination of acoustic model Nimber of Utterances Number of ufterances
topologies, and marginalization effect. All the experiments ilg 5 The left side f o B i o
- : . 2. e left side figure shows recognition rates according to the amounts
this paper were performed using the SOLON speech recog(l;ﬁltraining data based on VBEC, ML-BIC/MDL and tuned ML-BIC/MDL.

tion toolkit [22] developed by NTT Communication Sciencerne right side figure shows an enlarged view of the left side figure for more
Laboratories. than 1,000 utterances The horizontal axis is scaled logarithmically.

R
Do
»
N

ccuracy

/A
. ¥ - ML-BIC/MDL

-e-VBEC

rd accuracy
® o o
83

Wol
o
8




experimental section provides three subsections to confirm Recognition rate (%)

the robustness with respect to different speaking styles a#c
languages, which are representative of speech variations, af °
of different test data by recognizing question utterances farg 40
a question answering system using an acoustic model traing( s
by the Japanese read speech data set, whose conditions @ ,,
mismatched with those of test data set. §
1) Speaking style variationFirst, we focused on speaking

0

10

98 97 96

style variation of the training data set by preparing an isolated
word speech (100 city nhames provided by JEIDA), LVCSR
based on Japanese read speech (JNAS: Japanese Newspaper
Article Sentences) and LVCSR based on Japanese lecture

F

500 1000 1500 2000 2500 3000 3500 4000
Number of states

ig. 3.100 city name.

Number of components

] WACC 929190 89 88

91.7

<3

1 .
129

500 1000
Number of states

3000 8000

Fig. 4. JNAS.

speech (CSJ: Corpus of Spontaneous Japanese). Speaking style petermined model topologies and their word accuracies

greatly influences acoustic features, and acoustic models need
to be constructeadnanuallydepending on the style when the

ML method is used. However, VBEC determination could
allow us to replace manual construction with automatic con- 750
struction for various speaking styles. Therefore, we examined ;‘;g
the robustness of VBEC determination for various speaking ;,,
styles. The configuration of feature extraction was 12-ordes 71.0

915
91.0
90.5
90.0
89.5
89.0

WACC

88.5
88.0
875

MFCC + A MFCC (24 dim.) for 100 city names, 12-order %9
MFCC + A MFCC + Energy +A Energy (26 dim.) for INAS

68.0

and 12-order MFCC A MFCC + A Energy (25 dim.) + CMN §&s & §ss 3
for CSJ. The sampling rate was 16 kHz, the frame size was Vo e e Numbor of statos N
25 ms and the frame shift was 10 ms. For JNAS and CSJ, we "™ of stetes
used standard trigram models with vocabularies of 20,000 and ) ]
Fig. 5.CSJ. Fig. 6. WSJ.

30,000, respectively. For the 100 city name task, the training Dete
data consisted of about 3,000 Japanese sentences (4.1 hours)
spoken by 30 males and the recognition data consisted of 100
Japanese city names spoken by 25 males (a total of 2,400
words). For the JNAS task, the training data consisted of about
20,000 Japanese sentences (34 hours) spoken by 122 mgp@sitaneous lecture speech.
and the recognition data consisted of 100 Japanese sentenc@p Language variation:In our second set of experiments,
spoken by 10 males (a total of about 2,000 words). For thee focused on the effect on VBEC determination of language
CSJ task, the training data consisted of about 800 Japanesgation. The acoustic feature depends strongly on the lan-
lectures (190 hours) spoken by 200 males and the recognit@guages, and the appropriate model topology will be changed
data consisted of 10 Japanese lectures spoken by 10 maledefzending on the language. Therefore, we must examine how
total of about 27,000 words). VBEC determination works even for a different language task.
First, we examined the recognition performance of coWe used English read speech (WSJ: Wall Street Journal) as
ventional ML-based acoustic models with manually varied different language task from Japanese tasks. The feature
model topologies for a number of clustered states and GM@ktraction configuration is 12-order MFCCA MFCC + AA
components per state, which we use as baselines with whidRCC + Energy +A Energy +AA Energy (39 dim.) + CMN.
to compare the performance of the automatically determinétie other configuration was the same as that in Section V-B1.
model topology. The contour maps in Figures 3 and 4, aiWde used a standard trigram model that had a vocabulary of
the white bar in Figure 5 show the recognition performané,000. The training data consisted of about 20,000 English
obtained with the ML method. Then, we provided the mode$entences (36 hours) spoken by 143 males and the recognition
whose topologies were determined by VBEC, with recognitiothata consisted of 100 English sentences spoken by 5 males (a
performance. For all the tasks, the resultant combinationstofal of about 2,000 words).
the numbers of states and components per state, determined lds in Section V-B1, we prepared the recognition per-
VBEC, were included in the high performance area in Figurésrmance of conventional ML-based acoustic models with
3, 4 and 5. In addition, the recognition performance (97.9 %manually varied model topologies for a number of clustered
91.7 WACC and 74.5 WACC) of all the tasks reached thetates and GMM components per state. The white bar in Figure
highest performance (98.0 %, 91.4 WACC and 74.2 WAC®) shows the recognition performance obtained by the ML
obtained with ML methods. Consequently, we confirmed thatethod and the black bar represents the VBEC determined
VBEC determination is effective for various speaking stylesnpodel with the recognition performance. Although the deter-
namely isolated word speech, continuous read speech amided model topology with 2,504 states and 32 components

rmined model topologies and their word accuracies



TABLE IV
was far from the best ML results of 7,000 states and 32 EXPERIMENTAL CONDITIONS FOR SPEAKER ADAPTATION

components, its performance (91.3 WACC) matched the best
ML performance (91.3 WACC), and we can say that VBEC Sampling rate/quantization || 16 kHz / 16 bit

determination is effective even for a different language task peature vector 12 order MFCC with energy
such as English rather than Japanese. In addition, the VBEC(39 dimensions) +A+AA
determined model exhibited the best ML performance with Window . Hamming
less than half the total number of Gaussians, which reducedrame size/shift 25/10 ms _
Num. of states 3 (Left to right)

the decoding time to less than half (8.29 RFF2.35RTF). Num. of phoneme categories 43

Num. of phonetic questions || 144

C. Marginalization effect Num. of mixture componenty 16

We examine the eﬁ‘ec'uvenes; of VB_B,PC, for supervised Initial training data || ASJ: 10,709 utterances, 10.2 hours (44 males)
speaker adaptation as a practical application of the VB- adaptation data CSJ: 1st-half lectures (10 males)
BPC, which shows its superiority for solving the sparse data Test data CSJ: 2nd-half lectures (10 males)
problem. We compare the improvement in the adaptation—Tanguage model| Standard frigram (made by CSJ transcription)
accuracy using VB-BPC, VB-BPC-MEAN, UBPC (Uniform Vocabulary size || 30, 000
posterior based BPC [14]) aniBPC(corresponding to MAP ~ Perplexity 82.2

. . . OOV rate 21%

adaptation [9]), each of which belongs to the direct HMM
parameter adaptation scheme. Table IV summarizes the ex-
perimental conditions. The initial (prior) acoustic model was
constructed by read sentences and we adapted this model using PRIOR PATRAA‘?ALEET;/R erTnG
10 lectures spoken by 10 males and their labels [24]. In this
task, the mismatch between training and adaptation data is

CSJ: Corpus of Spontaneous Japanese

caused not only by the speakers, but also by the difference ¥« 10
in speaking styles between read speech and a lecture. Thn%’c 5 : ;L% i State
total training data for the initial models consisted of 10,709 ';g;’“ mean vector 010 aussianin state;
initi el Lik
Japanese utterances spoken by 44 males. In the initial model=5% ST covariance matrix of Gaussidnin statej X1z

training, we constructed a speaker-independent model based—*
on 1,000 context-dependent HMM states, using a phonetic
decision tree method. The output distribution in each state
was represented by a 16-component mixture distribution, and
the model parameters were trained based on conventional Mibrd accuracy). First, we focus on the effectiveness of the
estimation. Each lecture was divided in half based on timearginalization of the model parameters in BPCs for the
utterance units, and the first half of the lecture was used sarse data problem. Namely, we compared the results of VB-
adaptation data and the second half was used as recogni®C, VB-BPC-MEAN and UBPC with that i BPC(MAP),
data. The total adaptation data consisted of more than W8ich does not marginalize the model parameters at all. From
utterances for each male, and 1, 2, 4, 8, 16, 32, 40, Bgure 7, we found that for a small amount of adaptation
and 60 utterances were used as adaptation data. As a reslalta (fewer than 8 adaptation utterances), VB-BPC, VB-
about 9 sets of adapted acoustic models for several amouBPC-MEAN and UBPC were better thaBPC(MAP), which
of adaptation data were prepared for each male. The prinfirms the effectiveness of the marginalization of the model
parameter settings are shown in Table V, and were usedp@rameters. By examining the results in this region in further
estimate the MAP parametersiBPC(MAP) and UBPC, and detail, VB-BPC was better than UBPC by 0+71.5 points, and
also to estimate the VB posteriors in VB-BPC-MEAN and VBVB-BPC-MEAN and UBPC behaved similarly. This suggests
BPC. When setting the UBPC hyper-parameters, we optimizéte effectiveness of the wide tail property of the Student's
the hyper-parameters in advance by trying eight kinds ofistribution, which is obtained by the marginalization of
combinations ofC = 2,3,4 and5 andp = 0.7 and 0.9 with  the variance parameters in addition to the mean parameters.
reference to the result in [14], and adopted a combination $&cond, for any given amount of adaptation data, VB-BPC
{C = 3,p = 0.9}, which provided the best average wordaind VB-BPC-MEAN achieved comparable or better perfor-
accuracy. Throughout this experiment we used a beam seamdmnce than UBPC, which required hyper-parameterafd
algorithm with sufficient beam width and a sufficient numbes) optimization. Therefore, we can say that VB-BPC and VB-
of hypotheses to avoid search errors in decoding. The langu&fC-MEAN could determine the shapes of their distributions
model weight used in this experiment was optimized by theutomatically and appropriately from the adaptation data with-
word accuracy of each result. out tuning the hyper-parameters. Finally, VB-BPC was the best
Figure 7 compares the recognition results obtained with VEoar almost all amounts of adaptation data. VB-BPC approached
BPC, VB-BPC-MEAN, UBPC andBPC(MAP) for several thedBPC(MAP) performance asymptotically, and provided the
amounts of adaptation data with the baseline performantighest score of 72.9 percent word accuracy for this task (the
for the non-adapted speaker independent model (62.9 perdegmchmark score obtained by the speaker independent acoustic

Sl: Speaker Independent
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Fig. 7. Word accuracy for various amounts of adaptation data. The horizontgi;]
axis is scaled logarithmically.

[9]
model trained by using lectures is about 72.0 percent word
accuracy in [24]). This confirms the steady improvement in
the performance obtained using VB-BPC. [10]

Thus, we show the effectiveness of marginalization using
the VB-BPC-based Student’s t-distribution for the sparse dem]
problem.

VI. SUMMARY AND RELATED WORK [12]

This paper introduces applications of Bayesian approaches
to speech recognition, especially for Variational Bayesian
Estimation and Clustering for speech recognition (VBEC),,
The experiments proved the effectiveness of VBEC compared
to the other Bayesian approaches for efficient utilization of
prior knowledge, automatic determination of acoustic modEP
topologies, and marginalization effect.

Currently, VB becomes a common technique in speett]
processing. Table VI summarizes the technical trend in VB-
applied speech information processing. Note that VB has beggf
widely applied to speech recognition and other forms of speech
processing. Given such a trend, VBEC plays an important
role in pioneering the main formulation and implementation
of VB based speech recognition, which is a core technology

in this field. In addition, other Bayesian approaches than VPECHNICAL TREND OF SPEEC

are effectively applied to speech recognition, e.g., on-line
Bayesian adaptation [25], [26], structural Bayes [27], [28],
guasi-Bayes [29]-[31], and evidence framework [32]. The
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