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Abstract—This paper focuses on applications of Bayesian
approaches to speech recognition. Bayesian approaches have been
widely studied in statistics and machine learning fields, and one of
the advantages of the Bayesian approaches is to improve general-
ization ability compared to maximum likelihood approaches. The
effectiveness for speech recognition is shown experimentally in
speaker adaptation tasks by using Maximum A Posterior (MAP)
and model complexity control by using Bayesian Information
Criterion (BIC). This paper introduces the variational Bayesian
approaches, in addition to the MAP, BIC and other Bayesian
techniques, for speech recognition. VBEC (Variational Bayesian
Estimation and Clustering for speech recognition) is a fully
Bayesian speech recognition framework, and achieves robust
acoustic modeling and speech classification. This paper explains
the formulation and experimental effectiveness of these Bayesian
approaches for speech recognition.

I. I NTRODUCTION

Speech recognition, which converts speech information into
text information, is the core technology for allowing computers
to understand the human intent. The current successes in
speech recognition are based on pattern recognition, which
uses statistical learning theory. Maximum Likelihood (ML)
methods have become the standard techniques for constructing
acoustic and language models for speech recognition. ML
methods guarantee that ML estimates approach the true values
of the parameters. ML methods have been used in various as-
pects of statistical learning, and especially for acoustic model-
ing in speech recognition since the Expectation-Maximization
(EM) algorithm [1] is a practical way of obtaining the local
optimum solution for the training of latent variable models.
Therefore, acoustic modeling based on Hidden Markov Mod-
els (HMMs) and Gaussian Mixture Models (GMMs) have been
developed greatly by using the ML-EM approach [2]–[4]．

However, the performance of current speech recognition
systems is far from satisfactory. Specifically, the recognition
performance is much poorer than the human recognition
ability since speech recognition suffers from a distinct lack
of robustness to unknown conditions, which is crucial for
practical use. In a real environment, there are many fluctu-
ations originating from various factors such as the speaker,
context, speaking style and noise. In fact, the performance of
acoustic models trained using read speech decreases greatly
when the models are used to recognize spontaneous speech
due to the mismatch between the read and spontaneous speech
environments [5]. Therefore, most of the problems posed by
current speech recognition techniques result from a lack of
robustness. This lack of robustness is an obstacle to the deploy-
ment of commercial applications based on speech recognition

technology, and improving robustness has been a common
worldwide challenge in the field of acoustic and language
studies. Acoustic studies have taken mainly two directions:
the improvement of acoustic models beyond the conventional
HMM, and the improvement of the acoustic model learning
method beyond the conventional ML approach. This paper
addresses the challenge in terms of improving the learning
method by employingBayesianapproaches.

In Bayesian approaches, all the variables introduced when
models are parameterized, such as model parameters and latent
variables, are regarded as probabilistic variables, and their
posterior distributions are obtained based on the Bayes rule.
The difference between the Bayesian and ML approaches is
that the target of estimation is adistribution functionin the
Bayesian approach whereas it is aparameter valuein the
ML approach. Based on this posterior distribution estimation,
the Bayesian approach can generally achieve more robust
model construction and classification than an ML approach
[6], [7]. In fact, the Bayesian approach has the following three
advantages:

(A) Effective utilization of prior knowledge through prior
distributions (prior utilization)

(B) Model selection that obtains a model structure with the
highest probability of posterior distribution of model
structures (model selection)

(C) Robust classification by marginalizing model parameters
(robust classification)

In general, these advantages make a pattern recognition
method more robust than that based on the ML approaches.

However, the Bayesian approach requires complex integral
and expectation computations to obtain posterior distributions
when models have latent variables. The current acoustic model
in speech recognition has the latent variables included in an
HMM and a Gaussian Mixture Model (GMM). Therefore,
some approximated Bayesian techniques are applied to speech
recognition to avoid the computational problem. For example,
the Maximum A Posteriori based framework approximates
the posterior distribution of the parameter by using the MAP
approximation to utilize prior information [8], [9]. Bayesian
Information Criterion (BIC) [10]–[13]1 and Bayesian Predic-
tive Classification (BPC) [14], [15] based frameworks partially
realize Bayesian advantages for model selection and robust
classification, respectively, in speech recognition. These ap-

1BIC and Minimum Description Length (MDL) criterion have been inde-
pendently proposed, but they are practically the same. Therefore, they are
identified in this paper and referred to as BIC/MDL.
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proaches are simple and powerful frameworks to realize the
Bayesian advantages in speech recognition. However, these
approaches lose a part of the Bayesian advantages due to their
approximation, as shown in Table I.

Therefore, this paper introduces a speech recognition frame-
work based on a fully Bayesian approach to overcome the lack
of robustness described above by utilizing the three Bayesian
advantages [16], [17]. Recently, aVariational Bayesian(VB)
approach was proposed in the learning theory field that
avoids complex computations by employing the variational
approximation technique [18]–[21]. With this VB approach,
approximate posterior distributions (VB posterior distribu-
tions) can be obtained effectively by iterative calculations
similar to the Expectation-Maximization algorithm used in the
ML approach, while the three advantages of the Bayesian
approaches are still retained. Therefore, the framework is
formulated using VB to replace the ML approaches with
the Bayesian approaches in speech recognition. The proposed
Variational Bayesian Estimation and Clustering for speech
recognition (VBEC) is afully Bayesian framework, where all
acoustic procedures for speech recognition (acoustic model
construction and speech classification) are based on the VB
posterior distribution. Consequently, VBEC includes the three
Bayesian advantages unlike the conventional Bayesian ap-
proaches, as shown in Table I. This paper also confirms exper-
imentally the effectiveness of the three Bayesian advantages,
prior utilization, model selection and robust classification, in
VBEC.

II. A PPROXIMATED BAYESIAN APPROACHES

In this section, we briefly review the Bayesian approach in
contrast with the ML approach, and introduce approximated
Bayesian approaches, which are widely used for speech recog-
nition.

A. Maximum A Posteriori (MAP) approaches

MAP approaches are introduced to speech recognition to
utilize the prior information of the Bayesian advantages [8],
[9]. The Bayesian approach is based on posterior distributions,
while the ML approach is based on distribution parameters.
Let O ∈ {ot ∈ RD|t = 1, · · · , T} be a given training data set
of D dimensional feature vectors andZ ∈ {zt|t = 1, · · · , T}
be a set of the corresponding latent variables. The posterior
distribution for a distribution parameterΘc of categoryc is
obtained by the famous Bayes theorem as follows:

p(Θc|O, m) =
∑
Z

∫
p(O,Z|Θ,m)p(Θ|m)

p(O|m)
dΘ−c, (1)

TABLE I
COMPARISON OFVBEC AND OTHER BAYESIAN FRAMEWORKS IN TERMS

OF BAYESIAN ADVANTAGES

Bayesian advantage VBEC MAP BIC/MDL BPC
(A) Prior utilization

√ √
– –

(B) Model selection
√

–
√

–
(C) Robust classification

√
– –

√

wherep(Θ|m) is a prior distribution for all distribution param-
etersΘ, andm denotes the model structure index, for example,
the number of Gaussian components or HMM states. Here,
−c represents the set of all categories withoutc. In this paper,
we regard the hyper-parameter setting as the model structure,
and include its variations in indexm. From Eq. (1), prior
information can be utilized via estimations of the posterior
distribution, which depends on prior distributions.

The calculation of Eq. (1) cannot be solved analytically due
to the summation over latent variables. To avoid the problem,
the MAP approaches approximate the distribution estimation
to the point estimation. Namely, instead of obtaining the
posterior distribution in Eq. (1), the MAP approach obtains
the following value

ΘMAP
c = argmax

Θc

p(Θc|O, m)

=
∑
Z

p(O,Z|Θc, m)p(Θc|m).
(2)

This estimation can be efficiently performed by using the
EM algorithm. The MAP approximation is first applied to
the estimation of single-Gaussian HMM parameters in [8]
and is extended to GMM-HMMs in [9]. The effectiveness of
the MAP approach can be shown in a speaker recognition
task where prior distributions are set by speaker-independent
HMMs.

B. Bayesian Information Criterion (BIC) approaches

BIC approaches are introduced to speech recognition to
perform model selection [10], [11], To deal with model struc-
ture in a Bayesian approach, we can consider the following
posterior distribution:

p(m|O) =
∑
Z

∫
p(O,Z|Θ,m)p(Θ|m)p(m)

p(O)
dΘ, (3)

wherep(m) denotes a prior distribution for model structurem.
However, similar to the MAP approach, the calculation of Eq.
(3) cannot be solved analytically due to the summation over
latent variables. The Bayesian Information Criterion (BIC)
only focuses on the model that does not have latent variables,
and can obtain the following equation based on the asymptotic
assumption (large amount of data assumption):

log p(m|O) ∝ log p(O|Θ,m) − #(Θ)
2

log T . (4)

The first term in the right hand side is a log-likelihood term
and the second term is a penalty term, which is proportional
to the number of model parameters (#(Θ)).

This criterion is widely used for speech processing (e.g.,
phonetic decision tree clustering [10], [11], speaker clustering
[12], and Gaussian pruning in acoustic models [13]).

C. Bayesian Predictive Classification (BPC) approaches

To perform robust classification, BPC approaches are used
in speech recognition [14], [15]. Once the posterior distribu-
tion p(Θc|O,m) is estimated for all categories, the category



for test datax is determined by:

c̄ = argmax
{c}

∫
p(x|Θ, c,m)p(Θ|c,O,m)dΘ. (5)

The parameters are integrated out in Eq. (5) so that the
effect of over-training is mitigated, and robust classification is
obtained. The approach that involves considering the integrals
and true posterior distributions in Eq. (5) is called the Bayesian
Predictive Classification (BPC) approach. In general, a true
posterior distributionp(Θ|cO,m) is difficult to obtain analyt-
ically. [14] and [15] uses posterior distributions, which have
mean parameters on point-estimated model parameters (e.g.
ML or MAP estimates) and variance parameters as control
parameters.

Thus, MAP, BIC, and BPC approaches can be practically
realized in speech recognition, having three Bayesian ad-
vantages, respectively. Next section, we introduce Variational
Bayesian Estimation and Clustering for speech recognition
(VBEC), which includes the three Bayesian advantages at the
same time unlike the MAP, BIC, and BPC approaches, as
shown in Table I.

III. VARIATIONAL BAYESIAN ESTIMATION AND

CLUSTERING FOR SPEECH RECOGNITION

A. Variational Bayesian approach

We briefly explain a variational Bayesian approach [18]–
[21]. To begin with, we assume that

q(Θ,Z|O, m) =
∏
c

q(Θc|Oc,m)q(Zc|Oc,m), (6)

whereq is an arbitrary posterior distribution. Then, the varia-
tional Bayes focuses on the following objective functional

Fm[q(Θ|O,m), q(Z|O,m)]

=
〈

log
p(O,Z|Θ,m)p(Θ|m)
q(Θ|O,m)q(Z|O,m)

〉
q(Θ|O,m),q(Z|O,m)

.
(7)

Here, the brackets⟨⟩ denote the expectation i.e.⟨g(y)⟩p(y) ≡∫
g(y)p(y)dy for a continuous variabley and ⟨g(n)⟩p(n) ≡∑
n g(n)p(n) for a discrete variablen. Eq. (7) is a lower

bound of marginalized log likelihood. Therefore, the optimal
posterior distribution can be obtained by a variational method,
which results in maximizing the functionalF , i.e.,

q̃(Θc|O,m) = argmax
q(Θc|O,m)

Fm[q(Θ|O,m), q(Z|O, m)].

q̃(Zc|O,m) = argmax
q(Zc|O,m)

Fm[q(Θ|O,m), q(Z|O,m)].

q̃(m|O) = argmax
q(m|O)

Fm[q(Θ|O,m), q(Z|O,m)].

(8)

By assuming thatp(m) is a uniform distribution, we obtain the
proportion relation betweeñq(m|O) andFm, and an optimal
model structure in a sense of maximum a posterior probability
can be selected as follows:

m̃ = arg max
{m}

q̃(m|O) = arg max
{m}

Fm. (9)

This indicates that by maximizing totalFm with respect to
not only q(Θ|O,m), q(Z|O,m), but alsom, we can obtain
the optimal parameter distributions and can select the optimal
model structure simultaneously [20], [21].

IV. A PPLYING A VB APPROACH TO ACOUSTIC MODELING

In this section, we apply the VB approach to a continuous
density HMM (left-to-right HMM with a GMM for each state)
[16], [17]. The continuous density HMM has been widely
used to represent a phoneme category in acoustic models for
speech recognition. We show concrete forms of the optimal
VB posterior distributions for model parameters and the VB
objective function. Since the formulations for the posterior
distributions are common to all phoneme categories, we omit
the category suffixc in this section to simplify the equation
forms.

A. Output distributionp(O,S,V|Θ,m) and prior distribution
p(Θ|m)

The output distribution of a continuous density HMM,
which represents a phoneme acoustic model, is expressed by

p(O,S,V|Θ,m) =
T∏

t=1

ast−1stwstvtbstvt(Ot), (10)

where S is a set of sequences of HMM states,V is a set
of sequences of Gaussian mixture components, andst and
vt denote the state and mixture components at a framet.
Here, S and V are sets of discrete hidden variables, which
are the concrete forms ofZ. The parameteraij denotes the
state transition probability from statei to statej, andwjk is
the k-th weight factor of the Gaussian mixture for statej. In
addition, bjk(Ot)(= N (Ot|µjk,Σjk)) denotes the Gaussian
with the mean vectorµjk and covariance matrixΣjk defined
as:

N (Ot|µjk,Σjk)

, CN |Σjk|−
1
2 exp

(
−1

2
(O

t − —jk)′Σ−1
jk (O

t − —jk)
)

= (2π)−
D
2 |Σjk|−

1
2 exp

(
−1

2
(O

t − —jk)′Σ−1
jk (O

t − —jk)
)

,

(11)

where | · | and ′ denote the determinant and the transpose of
the matrix, respectively, whileΘ = {aij , wjk, µjk, Σ−1

jk |i, j =
1, ..., J, k = 1, ..., L} is a set of output distribution parameters.
Here, J denotes the number of states in an HMM sequence
andL denotes the number of Gaussian components in a state.

Prior distribution is assumed to be a conjugate distribution



and is expressed as follows:

p(Θ|m)

=
J∏

i=1

J∏
j=1

L∏
k=1

p({aij′}J
j′=1|m)p({wjk′}L

k′=1|m)p(bjk|m)

=
∏

i,j,k
D({aij′}J

j′=1|ϕ0)D({wjk′}L
k′=1|φ0)

N (µjk|ν0
jk, (ξ0)−1Σjk)

D∏
d=1

G(Σ−1
jk,d|η

0,R0
jk,d),

(12)

where bjk = {µjk,Σ−1
jk }. Here, Φ0 =

{ϕ0, φ0, ξ0, ν0, η0,R0} is a set of hyper-parameters,
and is assumed to be a constant. In Eq. (12),D denotes a
Dirichlet distribution andG denotes a gamma distribution. If
covariance matrix elements are off the diagonal, a Wishart
distribution is set as a prior distribution. The concrete forms
of the distributions are defined as follows:

D({aij}J
j=1|ϕ0) , CD(ϕ0)

∏
j

(aij)ϕ0−1

D({wjk}L
k=1|φ0) , CD(φ0)

∏
k

(wjk)φ0−1

N (µjk|ν0
jk, (ξ0)−1Σjk) , CN (ξ0)|Σjk|−

1
2

exp
(
−ξ0

2
(—jk − ‌

0
jk)′Σ−1

jk (—jk − ‌
0
jk)

)
G(Σ−1

jk,d|η
0,R0

jk,d)

, CG(η0,R0
jk,d)

(
Σ−1

jk,d

) η0

2 −1

exp

(
−

R0
jk,d

2Σjk,d

)
(13)

where 

CD(ϕ0) , Γ(Jϕ0)/(Γ(ϕ0))J

CD(φ0) , Γ(Lφ0)/(Γ(φ0))L

CN (ξ0) , (ξ0/2π)
D
2

CG(η0,R0
jk,d) ,

(
R0

jk,d/2
) η0

2 /Γ(η0/2)

. (14)

The setting of these output and prior distributions is the same
as in [9].

B. Optimal VB posterior distribution for output distribution
parameters̃q(Θ|O,m)

Since the prior distributions (Eq. (13)) are conjugate distri-
butions, we can analytically obtain the optimal VB posterior
distribution for output distribution parametersq̃(Θ|O,m) (see
[17] in detail), as follows:

q̃(Θ|O, m)

=
∏

i,j,k
D({aij′}J

j′=1|{ϕ̃ij′}J
j′=1)D({wjk′}L

k′=1|{φ̃jk′}L
k′=1)

N (µjk|ν̃jk, (ξ̃jk)−1Σjk)
∏

d
G(Σ−1

jk,d|η̃jk, R̃jk,d).
(15)

Note that Eqs. (12) and (15) are represented in the same
function family, and the only difference is that the set of

hyper-parametersΦ0 in Eq. (12) is replaced with a set of
posterior distribution parameters̃Φ ≡ {ϕ̃, φ̃, ξ̃, ν̃, η̃, R̃} in
Eq. (15). We adopt the conjugate prior distribution because
the posterior distribution joins the same function family as
the prior distribution theoretically and is obtained analytically,
which is the characteristic of the exponential distribution
family. Here,Φ̃ are defined as:

ϕ̃ij = ϕ0 + γ̃ij ,

φ̃jk = φ0 + ζ̃jk

ξ̃jk = ξ0 + ζ̃jk

ν̃jk =
(
ξ0ν0

jk +
T∑

t=1

ζ̃t
jkO

t
)
/ξ̃jk

η̃jk = η0 + ζ̃jk

R̃jk,d = R0
jk,d + ξ0(ν0

jk,d − ν̃jk,d)2 +
T∑

t=1

ζ̃t
jk(Ot

d − ν̃jk,d)2

(16)
where γ̃ij , ζ̃t

e,jk, and ζ̃jk are the sufficient statistics of a
continuous density HMM, and defined as follows:

γ̃t
ij , q̃(st−1 = i, st = j|O,m)

γ̃ij ,
T∑

t=1

γ̃t
ij

ζ̃t
jk , q̃(st = j, vt = k|O, m)

ζ̃jk ,
T∑

t=1

ζ̃t
jk

. (17)

Therefore, Φ̃ can be calculated fromΦ0, γ̃t
e,ij and ζ̃t

e,jk,
enablingq̃(Θ|O,m) to be obtained.

C. Optimal VB posterior distribution for hidden variables
q̃(S,V|O,m)

From the output distribution and prior distribution in Sec-
tion IV-A, the optimal VB posterior distribution for hidden
variablesq̃(S,V|O,m) is represented as follows:

q̃(S,V|O, m)

∝
∏

t

exp
(
⟨log ast−1st⟩

q̃({aij′}J
j′=1

|O,m)

)
exp

(
⟨log wstvt⟩

q̃({wjk′}L
k′=1

|O,m)

)
exp

(
⟨log bstvt(O

t)⟩
q̃(bjk|O,m)

)
.

Therefore, the optimal VB posterior distribution for hidden
variablesq̃(S,V|O,m) is obtained by considering a normal-
ization constant as follows:

q̃(S,V|O,m) =
∏T

t=1 ãst−1stw̃stvt b̃stvt(Ot)∑
S,V

∏T
t=1 ãst−1stw̃stvt b̃stvt(Ot)

(18)



where

ãst−1st = exp
(
Ψ(ϕ̃st−1st) − Ψ(

∑
st′

ϕ̃st−1st′ )
)
,

w̃stvt = exp
(
Ψ(φ̃stvt) − Ψ(

∑
vt′

φ̃stvt′ )
)
,

b̃stvt(Ot) = exp
(

D

2

(
− log 2π − 1

ξ̃stvt

+ Ψ
( η̃stvt

2
))

− 1
2

∑
d

(
log

(
R̃stvt,d

2

)
+

(Ot
d − ν̃stvt,d)2η̃stvt

R̃stvt,d

))
.

(19)

where Ψ(y) is a digamma function defined asΨ(y) ≡
∂/∂y log Γ(y).

From ãij , w̃jk and b̃jk(Ot
e), we can obtain the transition

and occupation probabilities̃γt
ij and ζ̃t

jk, which are required
for the calculation of̃q(Θ|O,m) in Section IV-B. From the
variational calculation,̃γt

ij is obtained as follows:

γ̃t
ij =

α̃t−1
i ãij

∑
k w̃jk b̃jk(Ot)β̃t

j∑
j′ α̃T

j′
, (20)

where α̃ and β̃ are VB forward and backward probabilities
defined as:{

α̃t
j ≡

(∑
i α̃t−1

i ãij

)∑
k w̃jk b̃jk(Ot)

β̃t
j ≡

∑
i ãji

(∑
k w̃ik b̃ik(Ot+1)

)
β̃t+1

i

. (21)

α̃t=0
j and β̃t=T

j are initialized appropriately. Similarly,̃ζt
jk is

obtained from the variational calculation as follows:

ζ̃t
jk =

(∑
i α̃t−1

i ãij

)
w̃jk b̃jk(Ot)β̃t

j∑
i α̃T

i

. (22)

Thus, γ̃t
ij and ζ̃t

jk are calculated efficiently by using a
probabilistic assignment via the familiarforward-backward
algorithm.

Analogous to the forward-backward algorithm, theViterbi
algorithm is also derived by exchanging a summation over
i for maximization overi in the calculation of VB forward
probability α̃t

j in Eq. (21).

D. VB objective functionFm

In this section, we discuss VB objective functionFm, which
is a criterion for both posterior distribution estimation and
model structure optimization, and provide general calculation
results. By substituting the VB posterior distribution obtained
in Sections IV-B and IV-C, we obtain analytical results for
Fm. Although we focus on one phoneme category in this
section, the totalFm for all categories is obtained by simply
summing up theFm results obtained in this section for all
categories, according to Eq. (7). We can separateFm into two
components: one is composed of onlyq̃(S, V |O,m), whereas
the other is mainly composed of̃q(Θ|O,m). Therefore, we

defineFm
Θ andFm

S,V, and representFm as follows:

Fm = −
∑
S,V

q̃(S,V|O, m) log q̃(S,V|O,m)

+

〈∑
S,V

q̃(S,V|O,m) log
p(O,S,V|Θ, m)p(Θ|m)

q̃(Θ|O,m)

〉
q̃(Θ|O,m)

, −Fm
S,V + Fm

Θ .
(23)

Fm
S,V is an entropy value and is calculated at the E-step in the

VB EM algorithm.Fm
Θ is obtained as follows:

Fm
Θ =

∑
i

log
Γ

(
Jϕ0

) ∏
j′ Γ(ϕ̃ij′)

Γ
(∑

j′ ϕ̃ij′

)
Γ(ϕ0)J

+
∑

j

log
Γ

(
Lφ0

) ∏
k′ Γ(φ̃jk′)

Γ (
∑

k′ φ̃jk′) Γ(φ0)L

+
∑
j,k

log

(2π)−
ζ̃jkD

2

(
ξ0

ξ̃jk

)D
2 2

η̃jkD

2

(
Γ

(
η̃jk

2

))D ∣∣∣R0
jk

∣∣∣ η0

2

2
η0D

2

(
Γ

(
η0

2

))D ∣∣∣R̃jk

∣∣∣ η̃jk
2

 .

(24)

This objective function is used as an optimization criterion
with respect to model structurem.

E. Bayesian predictive classification using VB posterior dis-
tributions

After acoustic modeling, we obtain the optimal VB posterior
distributions for the optimal model structurẽq(Θ|O, m̃). In
recognition, an input speechxt for a framet is classified as the
optimal phoneme class̄c usingp(c|xt,O, m̃) for the estimated
model structurẽm defined as follows:

c̄ = arg max
{c}

p(c|xt,O, m̃) ≡ arg max
{c}

p(c)p(xt|c,O, m̃). (25)

Here,p(c) is the class prior distribution obtained by language
and lexicon models, andp(xt|c,O, m̃) is the predictive pos-
terior distribution. When we approximate the true posterior
distributionp(Θ|c(j),O, m̃) by using the estimated VB pos-
terior distributionsq̃(Θ|c(j),O, m̃), p(xt|c(j),O, m̃) can be
approximated as

p(xt|c(j),O, m̃) ≈
∫

dΘp(xt|c(j), Θ, m̃)q̃(Θ|c(j),O, m̃). (26)

We focus on the integral part. The integral overwjk, µjk and
Σ−1

jk for a frame can be solved analytically and found to be a
mixture Student-t distribution, as follows:∫

p(xt|c(j), Θ, m̃)q̃(Θ|c(j),O, m̃)dΘ

=
∑

k

φ̃jk∑
k′ φ̃jk′

∏
d

T (xt
d|ν̃jk,d, (1 + ξ̃jk)R̃jk,dη̃jk/ξ̃jk, η̃jk).

(27)
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Fig. 1. Total speech recognition frameworks based on VBEC and
ML-BIC/MDL. SV B(c|x,O, m̃) represents the VB-BPC score and
SML(c|x, Θ̂c, m̂) represents the Maximum Likelihood based Classification
(MLC) score of a phoneme categoryc for recognition datax.

The indexc is removed in Eq. (27) to avoid a complicated
equation. Student-t distribution is defined as follows:

T (xt
d|ν̃jk,d, (1 + ξ̃jk)R̃jk,dη̃jk/ξ̃jk, η̃jk)

, Γ((η̃jk + 1)/2)
Γ(η̃jk/2)Γ(1/2)

(
ξ̃jk

(1 + ξ̃jk)R̃jk,d

)1/2

(
1 +

ξ̃jk

(1 + ξ̃jk)R̃jk,d

(xt
d − ν̃jk,d)2

)−(η̃jk+1)/2

.

(28)

Therefore, input speech can be classified by using the pre-
dictive score obtained from Eq. (27). We call this approach
Bayesian Predictive Classification using VB posterior distri-
butions (VB-BPC).

VB-BPC accomplishes the VBEC to be a fully Bayesian
framework for speech recognition that possesses a consistent
concept whereby all procedures (acoustic modeling and speech
classification) are carried out based on posterior distributions,
as shown in Figure 1. Figure 1 shows the VBEC framework
compared with a conventional approach, ML-BIC/MDL: the
model parameter estimation, model selection and speech clas-
sification are based on ML, BIC/MDL and Maximum Like-
lihood based Classification (MLC), respectively. The VBEC
mitigates the “over-training problem” by using the full po-
tential of the Bayesian approach that is drawn out by the
consistent concept, and there, the VB-BPC contributes greatly
as one of the components.

V. EXPERIMENTS

We conducted experiments to prove the effectiveness of
VBEC and other Bayesian approaches in effective utilization
of prior knowledge, automatic determination of acoustic model
topologies, and marginalization effect. All the experiments in
this paper were performed using the SOLON speech recogni-
tion toolkit [22] developed by NTT Communication Science
Laboratories.

TABLE II
TRAINING AND TEST DATA AND LANGUAGE MODEL FOR JNAS

Training data JNAS 20,000 utterances, 34 hours (male)
Test data JNAS 100 utterances, 1,583 words (male)
Language model Standard trigram (10 years of newspapers)
Vocabulary size 20,000
Perplexity 64.0

TABLE III
EXPERIMENTAL CONDITIONS

Sampling rate 16 kHz (16-bit quantization)
Feature vector 12 - order MFCC +∆ MFCC
(26 dimensions) + Energy +∆ Energy
Window Hamming
Frame size/shift 25/10 ms
Number of HMM states 3 (Left to right)
Number of phoneme categories 43

A. Effective utilization of prior knowledge

We employed Japanese Newspaper Article Sentences
(JNAS) for the experiment. The quantitative features of the
training and test sets are summarized in Tables II. Other
experimental conditions are summarized in Table III.

The left side of Figure 2 shows a comparison of VBEC and
ML-BIC/MDL with varying amounts of data and an enlarged
view for more than 1,000 utterances is shown in the right
side. VBEC performed as well as or better than ML-BIC/MDL
with every amount of data. In particular, VBEC significantly
outperformed the ML-BIC/MDL approaches for various tuning
parameters (fromλ = 1 to λ = 4) when the amounts
of training data were small. Consequently, VBEC exhibited
considerable superiority especially with small amounts of
training data (less than 1,000 utterances), which solves the
over-training problem.

B. Automatic determination of acoustic model topologies

Based on the model selection function by using the VB
objective function, we can perform VBEC-based efficient
model search algorithm and GMM-based decision tree cluster-
ing utilizing the acoustic model characteristics [23]. In these
experiments, the availability of VBEC automatic determination
was examined experimentally using various speech data. This
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Fig. 2. The left side figure shows recognition rates according to the amounts
of training data based on VBEC, ML-BIC/MDL and tuned ML-BIC/MDL.
The right side figure shows an enlarged view of the left side figure for more
than 1,000 utterances The horizontal axis is scaled logarithmically.



experimental section provides three subsections to confirm
the robustness with respect to different speaking styles and
languages, which are representative of speech variations, and
of different test data by recognizing question utterances for
a question answering system using an acoustic model trained
by the Japanese read speech data set, whose conditions are
mismatched with those of test data set.

1) Speaking style variation:First, we focused on speaking
style variation of the training data set by preparing an isolated
word speech (100 city names provided by JEIDA), LVCSR
based on Japanese read speech (JNAS: Japanese Newspaper
Article Sentences) and LVCSR based on Japanese lecture
speech (CSJ: Corpus of Spontaneous Japanese). Speaking style
greatly influences acoustic features, and acoustic models need
to be constructedmanuallydepending on the style when the
ML method is used. However, VBEC determination could
allow us to replace manual construction with automatic con-
struction for various speaking styles. Therefore, we examined
the robustness of VBEC determination for various speaking
styles. The configuration of feature extraction was 12-order
MFCC + ∆ MFCC (24 dim.) for 100 city names, 12-order
MFCC + ∆ MFCC + Energy +∆ Energy (26 dim.) for JNAS
and 12-order MFCC +∆ MFCC +∆ Energy (25 dim.) + CMN
for CSJ. The sampling rate was 16 kHz, the frame size was
25 ms and the frame shift was 10 ms. For JNAS and CSJ, we
used standard trigram models with vocabularies of 20,000 and
30,000, respectively. For the 100 city name task, the training
data consisted of about 3,000 Japanese sentences (4.1 hours)
spoken by 30 males and the recognition data consisted of 100
Japanese city names spoken by 25 males (a total of 2,400
words). For the JNAS task, the training data consisted of about
20,000 Japanese sentences (34 hours) spoken by 122 males
and the recognition data consisted of 100 Japanese sentences
spoken by 10 males (a total of about 2,000 words). For the
CSJ task, the training data consisted of about 800 Japanese
lectures (190 hours) spoken by 200 males and the recognition
data consisted of 10 Japanese lectures spoken by 10 males (a
total of about 27,000 words).

First, we examined the recognition performance of con-
ventional ML-based acoustic models with manually varied
model topologies for a number of clustered states and GMM
components per state, which we use as baselines with which
to compare the performance of the automatically determined
model topology. The contour maps in Figures 3 and 4, and
the white bar in Figure 5 show the recognition performance
obtained with the ML method. Then, we provided the model,
whose topologies were determined by VBEC, with recognition
performance. For all the tasks, the resultant combinations of
the numbers of states and components per state, determined by
VBEC, were included in the high performance area in Figures
3, 4 and 5. In addition, the recognition performance (97.9 %,
91.7 WACC and 74.5 WACC) of all the tasks reached the
highest performance (98.0 %, 91.4 WACC and 74.2 WACC)
obtained with ML methods. Consequently, we confirmed that
VBEC determination is effective for various speaking styles,
namely isolated word speech, continuous read speech and
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spontaneous lecture speech.
2) Language variation:In our second set of experiments,

we focused on the effect on VBEC determination of language
variation. The acoustic feature depends strongly on the lan-
guages, and the appropriate model topology will be changed
depending on the language. Therefore, we must examine how
VBEC determination works even for a different language task.
We used English read speech (WSJ: Wall Street Journal) as
a different language task from Japanese tasks. The feature
extraction configuration is 12-order MFCC +∆ MFCC + ∆∆
MFCC + Energy +∆ Energy +∆∆ Energy (39 dim.) + CMN.
The other configuration was the same as that in Section V-B1.
We used a standard trigram model that had a vocabulary of
20,000. The training data consisted of about 20,000 English
sentences (36 hours) spoken by 143 males and the recognition
data consisted of 100 English sentences spoken by 5 males (a
total of about 2,000 words).

As in Section V-B1, we prepared the recognition per-
formance of conventional ML-based acoustic models with
manually varied model topologies for a number of clustered
states and GMM components per state. The white bar in Figure
6 shows the recognition performance obtained by the ML
method and the black bar represents the VBEC determined
model with the recognition performance. Although the deter-
mined model topology with 2,504 states and 32 components



was far from the best ML results of 7,000 states and 32
components, its performance (91.3 WACC) matched the best
ML performance (91.3 WACC), and we can say that VBEC
determination is effective even for a different language task
such as English rather than Japanese. In addition, the VBEC
determined model exhibited the best ML performance with
less than half the total number of Gaussians, which reduced
the decoding time to less than half (8.29 RTF→ 2.35RTF).

C. Marginalization effect

We examine the effectiveness of VB-BPC for supervised
speaker adaptation as a practical application of the VB-
BPC, which shows its superiority for solving the sparse data
problem. We compare the improvement in the adaptation
accuracy using VB-BPC, VB-BPC-MEAN, UBPC (Uniform
posterior based BPC [14]) andδBPC(corresponding to MAP
adaptation [9]), each of which belongs to the direct HMM
parameter adaptation scheme. Table IV summarizes the ex-
perimental conditions. The initial (prior) acoustic model was
constructed by read sentences and we adapted this model using
10 lectures spoken by 10 males and their labels [24]. In this
task, the mismatch between training and adaptation data is
caused not only by the speakers, but also by the difference
in speaking styles between read speech and a lecture. The
total training data for the initial models consisted of 10,709
Japanese utterances spoken by 44 males. In the initial model
training, we constructed a speaker-independent model based
on 1,000 context-dependent HMM states, using a phonetic
decision tree method. The output distribution in each state
was represented by a 16-component mixture distribution, and
the model parameters were trained based on conventional ML
estimation. Each lecture was divided in half based on the
utterance units, and the first half of the lecture was used as
adaptation data and the second half was used as recognition
data. The total adaptation data consisted of more than 60
utterances for each male, and 1, 2, 4, 8, 16, 32, 40, 48
and 60 utterances were used as adaptation data. As a result,
about 9 sets of adapted acoustic models for several amounts
of adaptation data were prepared for each male. The prior
parameter settings are shown in Table V, and were used to
estimate the MAP parameters inδBPC(MAP) and UBPC, and
also to estimate the VB posteriors in VB-BPC-MEAN and VB-
BPC. When setting the UBPC hyper-parameters, we optimized
the hyper-parameters in advance by trying eight kinds of
combinations ofC = 2, 3, 4 and5 andρ = 0.7 and0.9 with
reference to the result in [14], and adopted a combination of
{C = 3, ρ = 0.9}, which provided the best average word
accuracy. Throughout this experiment we used a beam search
algorithm with sufficient beam width and a sufficient number
of hypotheses to avoid search errors in decoding. The language
model weight used in this experiment was optimized by the
word accuracy of each result.

Figure 7 compares the recognition results obtained with VB-
BPC, VB-BPC-MEAN, UBPC andδBPC(MAP) for several
amounts of adaptation data with the baseline performance
for the non-adapted speaker independent model (62.9 percent

TABLE IV
EXPERIMENTAL CONDITIONS FOR SPEAKER ADAPTATION

Sampling rate/quantization 16 kHz / 16 bit
Feature vector 12 order MFCC with energy
(39 dimensions) +∆+∆∆
Window Hamming
Frame size/shift 25/10 ms
Num. of states 3 (Left to right)
Num. of phoneme categories 43
Num. of phonetic questions 144
Num. of mixture components 16

Initial training data ASJ: 10,709 utterances, 10.2 hours (44 males)
Adaptation data CSJ: 1st-half lectures (10 males)
Test data CSJ: 2nd-half lectures (10 males)

Language model Standard trigram (made by CSJ transcription)
Vocabulary size 30, 000
Perplexity 82.2
OOV rate 2.1 %

CSJ: Corpus of Spontaneous Japanese

TABLE V
PRIOR PARAMETER SETTING

φ0
jk 10

ξ0
jk 10

‌0
jk SI mean vector of Gaussiank in statej

η0
jk 10

R0
jk SI covariance matrix of Gaussiank in statej ×η0

jk

SI: Speaker Independent

word accuracy). First, we focus on the effectiveness of the
marginalization of the model parameters in BPCs for the
sparse data problem. Namely, we compared the results of VB-
BPC, VB-BPC-MEAN and UBPC with that ofδBPC(MAP),
which does not marginalize the model parameters at all. From
Figure 7, we found that for a small amount of adaptation
data (fewer than 8 adaptation utterances), VB-BPC, VB-
BPC-MEAN and UBPC were better thanδBPC(MAP), which
confirms the effectiveness of the marginalization of the model
parameters. By examining the results in this region in further
detail, VB-BPC was better than UBPC by 0.7∼ 1.5 points, and
VB-BPC-MEAN and UBPC behaved similarly. This suggests
the effectiveness of the wide tail property of the Student’s
t-distribution, which is obtained by the marginalization of
the variance parameters in addition to the mean parameters.
Second, for any given amount of adaptation data, VB-BPC
and VB-BPC-MEAN achieved comparable or better perfor-
mance than UBPC, which required hyper-parameter (C and
ρ) optimization. Therefore, we can say that VB-BPC and VB-
BPC-MEAN could determine the shapes of their distributions
automatically and appropriately from the adaptation data with-
out tuning the hyper-parameters. Finally, VB-BPC was the best
for almost all amounts of adaptation data. VB-BPC approached
theδBPC(MAP) performance asymptotically, and provided the
highest score of 72.9 percent word accuracy for this task (the
benchmark score obtained by the speaker independent acoustic
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model trained by using lectures is about 72.0 percent word
accuracy in [24]). This confirms the steady improvement in
the performance obtained using VB-BPC.

Thus, we show the effectiveness of marginalization using
the VB-BPC-based Student’s t-distribution for the sparse data
problem.

VI. SUMMARY AND RELATED WORK

This paper introduces applications of Bayesian approaches
to speech recognition, especially for Variational Bayesian
Estimation and Clustering for speech recognition (VBEC).
The experiments proved the effectiveness of VBEC compared
to the other Bayesian approaches for efficient utilization of
prior knowledge, automatic determination of acoustic model
topologies, and marginalization effect.

Currently, VB becomes a common technique in speech
processing. Table VI summarizes the technical trend in VB-
applied speech information processing. Note that VB has been
widely applied to speech recognition and other forms of speech
processing. Given such a trend, VBEC plays an important
role in pioneering the main formulation and implementation
of VB based speech recognition, which is a core technology
in this field. In addition, other Bayesian approaches than VB
are effectively applied to speech recognition, e.g., on-line
Bayesian adaptation [25], [26], structural Bayes [27], [28],
quasi-Bayes [29]–[31], and evidence framework [32]. The
variational techniques used in VB are also applied to some
speech recognition approaches [33], [34]. These approaches
are associated with the progress of Bayesian approaches in
statistics and machine learning fields, and speech recognition
based on Bayesian approaches will advance further using the
recent progress in these fields (e.g., Markov chain Monte
Carlo, non-parametric Bayes).
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