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Abstract— The visual quality assessment approaches and their 
classification are introduced.  Recent developments on both 
image and video quality metrics, as well as several publicly 
available databases for both images and videos, are reviewed.   
Then, we conduct experiments on image and video quality 
databases to compare the performance of some existing state-of-
the-art visual quality metrics.  It is shown that multi-metric 
fusion (MMF) and motion-based video integrity evaluation 
(MOVIE) are the best methods for image and video quality 
assessment, respectively.  Finally, future trends in visual quality 
assessment are discussed. 

I. INTRODUCTION 

In recent years, digital images and videos play more and more 
important roles in our work and life because of the availability 
and accessibility to the general public.  Thanks to the rapid 
advancement of new technology, people can easily have an 
image/video capturing device, such as a digital camera and 
camcorder, to capture what they see and what happen in daily 
life.  In addition, with the development of social network and 
mobile devices, photo and video sharing on the Internet 
becomes much popular and simpler than before.  Hence, the 
quality assessment and assurance for digital images and 
videos in an objective manner become an increasingly useful 
and interesting topic in the research community.  

Generally speaking, visual quality assessment can be 
divided into two categories.  One is subjective visual quality 
assessment, and the other is objective visual quality 
assessment.  As the name suggests, subjective quality 
assessment is done by humans.  It represents the most realistic 
opinion of humans towards an image or a video, and also the 
most reliable measure of visual quality among all available 
means (if the pool of subjects is sufficiently large and the 
nature of the circumstances allows such assessment). 

For subjective evaluation of visual quality, the tests can be 
performed with the methods defined in [1], [2]: (a) Pair 
Comparison (PC); (b) Absolute Category Rating (ACR); (c) 
Degradation Category Rating (DCR) (also called Double-
Stimulus Impairment Scale (DSIS)); (d) Double-Stimulus 
Continuous Quality Scale (DSCQS); (e) Single-Stimulus 
Continuous Quality Evaluation (SSCQE); (f) Simultaneous 
Double-Stimulus for Continuous Evaluation (SDSCE). We 
have presented these methods in Appendix for easy reference.  

In general, Methods (a) ~ (c) can be used in multimedia 
applications.  Television pictures can be evaluated with 
Methods (c) ~ (f).  In all these test methods, the visual quality 
ratings evaluated by the test subjects are then averaged to 

obtain the Mean Opinion Score (MOS).  In some cases, 
Difference Mean Opinion Score (DMOS) is used to represent 
the mean of differential subjective score instead of MOS. 

However, the subjective method is tedious, time-consuming, 
and not applicable for real-time processing since the test has 
to be performed with great care in order to obtain meaningful 
results.  Moreover, it is not feasible to have human 
intervention with in-loop and on-service processes (like video 
encoding, transmission, etc.). Hence, more and more research 
has been focused on automatic assessment of quality for an 
image or a video.  An objective visual quality metric can be 
standalone or embedded into algorithms, processes and 
systems that require it to boost the performance in terms of 
user (human) relevancy.  

This paper aims at an overview and discussion of the latest 
existing research in the area of objective quality evaluation of 
visual signal (both image and video), and is organized as 
follows.  In Section II, the classification of objective quality 
assessment methods will be presented.  Recent developments 
and publicly available databases in image quality assessment 
(IQA) will be introduced in Section III, while those in video 
quality assessment (VQA) are to be introduced in Section IV.  
Section V will present performance comparison for the recent 
popular visual quality metrics.  Then we will address several 
possible future trends for visual quality assessment in Section 
VI.  Finally, the conclusion will be drawn in Section VII.   

II. CLASSIFICATION OF OBJECTIVE VISUAL QUALITY 

ASSESSMENT METHODS 

There are several popular ways to classify the visual quality 
assessment methods [3], [4], [5].  In this section, we present 
two possibilities of classification to facilitate the presentation 
and understanding of the related problems, the existing 
solutions and the future trends in development.   

A. Classification Based upon the Availability of Reference  

The classification depends on the availability of original 
(reference) image/video.  If there is no reference signal 
available for the distorted (test) one to compare with, then a  
quality evaluation method is termed as a  no-reference (NR) 
one [6].  The current NR method does not perform well in 
general since it judges the quality solely based on the 
distorted medium and without any reference available. 
However, it can be used in wider scope of applications 
because of its suitability in both situations with and without 
reference information; the computational requirement is 
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usually less since there is no need to process the reference. 
Besides the traditional NR cases (like the relay site and 
receiving end of transmission), there are emerging NR 
applications (e.g., super-resolution construction, image and 
video retargeting/adaption, and computer graphics/animation).   

If the information of the reference medium is partially 
available, e.g., in the form of a set of extracted features, then 
this is the so-called reduced-reference (RR) method [7].  
Since the extracted partial reference information is much 
sparser than the whole reference, the RR approach can be 
used in a remote location (e.g., the relay site and receiving 
end of transmission) with reasonable bandwidth overheads to 
achieve better results than the NR method, or in a situation 
where the reference is available (such as a video encoder) to 
reduce computational requirement (especially in repeated 
manipulation and optimization). 

The last one is the full-reference (FR) method (e.g., [8]), 
as the opposite of the NR method. As the name suggests, an 
FR metric needs the complete reference medium to assess the 
distorted medium. Since it has the full information about 
original medium, it is expected to have the best quality 
prediction performance.  Most existing quality assessment 
schemes belong to this category.  We will discuss more in 
Sections III and IV. 

B. Classification Based upon Methodology for Assessment 

The first type in this classification is image/video fidelity 
metrics, which operate based only on the direct accumulation 
of physical errors and are therefore usually FR ones.  Mean-
squared error (MSE) and peak signal-to-noise ratio (PSNR) 
are two representatives in this category.  Although being the 
simplest and still widely used, such a metric is often not a 
good reflection of perceived visual quality if the distortion is 
not additive.    

The second type is the human visual system (HVS) model 
based metrics, which typically employ a frequency-based 
decomposition, and take into account various aspects of the 
HVS.  This can include modeling of contrast and orientation 
sensitivity, spatial and temporal masking effects, frequency 
selectivity and color perception.  Due to the complexity of the 
HVS, these metrics can become very complex and 
computationally expensive.  Examples of the work following 
this framework include the work in [9], Perceptual Distortion 
Metric (PDM) [10], the continuous video quality metric in 
[11] and the scalable wavelet based video distortion index 
[12]. 

Signal structure, information or feature extracted 
metrics are the third type of metrics.  Some of them quantify 
visual fidelity based on the assumption that a high-quality 
image or video is one whose structural content, such as object 
boundaries or regions of high entropy, most closely matches 
that of the original image or video [8], [13], [14]. Other 
metrics of this type are based on the idea that the HVS 
understands an image mainly through its low-level features.  
Hence, image degradations can be perceived by comparing 
the low-level features between the distorted and the reference 
images.  The latest work is called feature-similarity (FSIM) 

index [15].  We will discuss more details on this type of 
metric in Section III. 

The last type of metrics is the emerging learning-oriented 
metrics.  Some recent works are [16], [17], [18], [19], [20].  
Basically, it extracts the specific features from the image or 
video, and then uses the machine learning approach to obtain 
a trained model.  Finally, they use this trained model to 
predict the perceived quality of images/videos.  The obtained 
experimental results are quite promising, especially for multi-
metric fusion (MMF) approach [19] which uses the major 
existing metrics (including SSIM, MS-SSIM, VSNR, IFC, 
VIF, PSNR, and PSNR-HVS) as the components for the 
learnt model.  The MMF is expected to outperform all the 
existing metrics because it is the fusion-based approach and 
allows the combination of merits of each metric. 

III. RECENT DEVELOPMENTS IN IQA 

A. Image quality databases 

Databases with subjective data facilitate metric 
development and benchmarking. There are a number of 
publicly available image quality database, including LIVE 
[21], TID2008 [22], CSIQ [23], IVC [24], IVC-LAR [25], 
Toyoma [26], WIQ [27], A57 [28], and MMSP 3D Image 
[29].  We will give a brief introduction for each database 
below. 

LIVE Image Quality Database has 29 reference images 
(also called source reference circuits (SRC)), and 779 test 
images, including five distortion types - JPEG2000, JPEG, 
white noise in the RGB components, Gaussian blur, and 
transmission errors in the JPEG2000 bit stream using a fast-
fading Rayleigh channel model.  The subjective quality scores 
provided in this database are DMOS, ranging from 0 to 100. 

Tampere Image Database 2008 (TID2008) has 25 
reference images, and 1700 distorted images, including 17 
types of distortions and 4 different levels for each type of 
distortion.  Hence, there are 68 test conditions (also called 
hypothetical reference circuits (HRC)).  MOS is provided in 
this database, and the scores range from 0 to 9. 

Categorical Image Quality (CSIQ) Database contains 30 
reference images, and each image is distorted using 6 types of 
distortions - JPEG compression, JPEG2000 compression, 
global contrast decrements, additive Gaussian white noise, 
additive Gaussian pink noise, and Gaussian blurring - at 4 to 5 
different levels, resulting in 866 distorted images.  The score 
ratings (0 to 1) are reported in the form of DMOS. 

IVC Database has 10 original images, and 235 distorted 
images, including 4 types of distortions – JPEG, JPEG2000, 
locally adaptive resolution (LAR) coding, and blurring.  The 
subjective quality scores provided in this database are MOS, 
ranging from 1 to 5. 

IVC-LAR Database contains 8 original images (4 natural 
images, and 4 art images), and 120 distorted images, 
including three distortion types – JPEG, JPEG2000, and LAR 
coding.  The subjective quality scores provided in this 
database are MOS, ranging from 1 to 5. 



TABLE 1: COMPARISON OF IMAGE QUALITY DATABASES  
(notes: ‘-‘ means no information available; ‘Custom’ means the testing method is designed by the authors, not in [1] and [2].) 

 

Database Year 
SRC (# of 
reference 
images) 

HRC (# of 
test 
conditions) 

Total # 
of test 
images 

Subjective 
Testing 
Method 

Subjective Score 

IVC 2005 10 25 235 DSIS MOS (1 ~ 5) 
LIVE 2006 29 27 779 ACR DMOS (0 ~ 100) 
A57 2007 3 18 54 - DMOS (0 ~ 1) 
Toyoma 2008 14 12 168 ACR MOS (1 ~ 5) 
TID2008 2008 25 68 1700 Custom MOS (0 ~ 9) 
CSIQ 2009 30 29 866 Custom DMOS (0 ~ 1) 
IVC-LAR 2009 8 15 120 DSIS MOS (1 ~ 5) 
WIQ 2009 7 - 80 DSCQS DMOS (0 ~ 100) 
MMSP 3D Image 2009 9 6 54 SSCQE MOS (0 ~ 100) 

 

Toyoma Database has 14 original images, and 168 
distorted images, including two types of distortions – JPEG, 
and JPEG2000.  The subjective scores in this database are 
MOS, ranging from 1 to 5. 

Wireless Imaging Quality (WIQ) Database has 7 
reference images, and 80 distorted images.  The subjective 
quality scores used in this database are DMOS, ranging from 
0 to 100. 

A57 Database has 3 original images, and 54 distorted 
images, including six distortion types - quantization of the LH 
subbands of a 5-level DWT of the image using the 9/7 filters, 
additive Gaussian white noise, JPEG compression, JPEG2000 
compression, JPEG2000 compression with the Dynamic 
Contrast-Based Quantization (DCQ), and Gaussian blurring.  
The subjective quality scores used for this database are 
DOMS, ranging from 0 to 1. 

MMSP 3D Image Quality Assessment Database contains 
stereoscopic images with a resolution of 1920x1080 pixels. 
Various indoor and outdoor scenes with a large variety of 
colors, textures, and depth structures have been captured.  The 
database contains 10 scenes. Seventeen subjects participated 
in the test.  For each of the scenes, 6 different stimuli have 
been considered corresponding to different camera distances 
(10, 20, 30, 40, 50, 60 cm). 

To make a clear comparison among these databases, we list 
the important information for each database in Table 1.   

B. Major IQA metrics 

As mentioned earlier, the simplest and most widely used 
image quality metrics are MSE and PSNR since they are easy 
to calculate and are also mathematically convenient in the 
context of optimization.  However, they often correlate poorly 
with subjective visual quality [30]. 

Hence, researchers have done a lot of work to include the 
characteristics of the HVS to improve the performance of the 
quality prediction.  The noise quality measure (NQM) [31], 
PSNR-HVS-M [32], and the visual signal-to-noise ratio 
(VSNR) [33] are several representatives in this category. 

NQM (FR, HVS model based metric), which is based on 
Peli’s contrast pyramid [34], takes into account the following: 

1) variation in contrast sensitivity with distance, image   
dimensions, and spatial frequency; 

2) variation in the local luminance mean; 
3) contrast interaction between spatial frequencies; 

4) contrast masking effects. 
It has been demonstrated that the nonlinear NQM is a better 
measure of additive noise than PSNR and other linear quality 
measures [31]. 

PSNR-HVS-M (FR, HVS model based metric) is a still 
image quality metric which takes into account contrast 
sensitivity function (CSF) and between-coefficient contrast 
masking of DCT basis functions.  It has been shown that 
PSNR-HVS-M outperforms other well-known reference 
based quality metrics and demonstrated high correlation with 
the results of subjective experiments [32]. 

VSNR (FR, HVS model based metric) is a metric 
computed by a two-stage approach [33].  In the first stage, 
contrast thresholds for detection of distortions in the presence 
of natural images are computed via wavelet-based models of 
visual masking and visual summation in order to determine 
whether the distortions in the distorted image are visible.  If 
the distortions are below the threshold of detection, the 
distorted image is claimed to be of perfect visual quality.  If 
the distortions are higher than a threshold, a second stage is 
applied, which operates based on the visual property of 
perceived contrast and global precedence.  These two 
properties are modeled as Euclidean distances in distortion-
contrast space of a multi-scale wavelet decomposition, and 
final VSNR is obtained based on a simple linear summation 
of these distances. 

However, the HVS is a complex and highly nonlinear 
system, and most models so far are only based on linear or 
quasi-linear operators.  Hence, a different framework was 
introduced, based on the assumption that a measurement of 
structural information change should provide a good 
approximation to perceived image distortion.  Structural 
similarity (SSIM) index (FR, Signal structure extracted 
metric) [8] is the most well-known one in this category. 

Suppose two image signals x and y, and 

let 22 ,,, yxyx  and xy be the mean of x, the mean of y, the 

variance of x, the variance of y, and the covariance of x and y 
respectively.  Wang et al. [8] define the luminance, contrast 
and structure comparison measures as follows: 
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where the constants C1, C2,, C3 are included to avoid 

instabilities when 22
yx   , 22

yx   , and yx  are very 

close to zeroes.  Finally, they combine these three comparison 
measures and name the resulting similarity measure between 
image signals x and y as 

 )],([)],([)],([),(SSIM yxyxyxyx scl   

where 0 , 0  and 0  are the parameters used to 

adjust the relative importance of these three components.  In 
order to simplify the expression, they set 1   and 

2/23 CC  .  This results in a specific form of the SSIM index 

between image signals x and y: 
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However, SSIM is only a single-scale method.  To be able 
to incorporate image details at different resolutions, a multi-
scale SSIM (MS-SSIM) (FR, Signal structure extracted 
metric) [35] is adopted.  Taking the reference and distorted 
image signals as the input, the system iteratively applies a 
low-pass filter and down-samples the filtered image by a 
factor of two.  They index the original image as scale 1, and 
the highest scale as scale M, which is obtained after M - 1 
iterations.  At the j-th scale, the contrast comparison and the 
structure comparison are calculated and denoted as cj (x,y) 
and sj (x,y), respectively.  The luminance comparison is 
computed only at scale M and denoted as lM (x,y).  The overall 
SSIM evaluation is obtained by combining the measurement 
at different scales using 

MS- 
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Similarly, the exponents M , j  and j  are used to adjust 

the relative importance of different components.  To simplify 
parameter selection, they let jjj    for all j’s.  In 

addition, they also normalize the cross-scale settings such that 
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Since SSIM is sensitive to relative translations, rotations, 
and scalings of images [30], complex-wavelet SSIM (CW-
SSIM) [36] is developed.  The CW-SSIM is locally computed 
from each subband, and then averaged over space and 
subbands, yielding an overall CW-SSIM index between the 
original and the distorted images.  The CW-SSIM method is 
robust with respect to luminance changes, contrast changes 
and translations [36]. 

Afterward, some researchers have tried to propose a new 
metric by modifying SSIM, such as 3-component weighted 
SSIM (3-SSIM) [37], and information content weighted SSIM 
(IW-SSIM) [38].  They are all based on the similar strategy to 
assign different weightings to the SSIM scores. 

Another metric based on the information theory to measure 
image fidelity is called information fidelity criterion (IFC) 
(FR, Signal information extracted metric) [13].  It was later 
extended to visual information fidelity (VIF) metric (FR, 
Signal information extracted metric) [14].  The VIF attempts 
to relate signal fidelity to the amount of information that is 
shared between two signals.  The shared information is 
quantified using the concept of mutual information.  The 
reference image is modeled by a wavelet domain Gaussian 
scale mixture (GSM), which has been shown to model the 
non-Gaussian marginal distributions of the wavelet 
coefficients of natural images effectively, and also capture the 
dependencies between the magnitudes of neighboring wavelet 
coefficients. Therefore, it brings good performance to the VIF 
index over a wide range of distortion types [39]. 

FSIM (FR, Signal feature extracted metric) [15] is a 
recently developed image quality metric, which compares the 
low-level feature sets between the reference image and the 
distorted image based on the fact that the HVS understands an 
image mainly according to its low-level features.  Phase 
congruency (PC) is the primary feature to be used in 
computing FSIM.  Gradient magnitude (GM) is the second 
feature to be added in FSIM metric because PC is contrast 
invariant and contrast information also affects the HVS’ 
perception of image quality.  Actually, in the FSIM index, the 
similarity measures for PC and GM all follow the same 
formula as in the SSIM metric. 

IV.  RECENT DEVELOPMENTS IN VQA 

A. Video quality databases 

To our knowledge, there are nine public video quality 
databases available, including VQEG FRTV-I [40], 
IRCCyN/IVC 1080i [41], IRCCyN/IVC SD RoI [42], EPFL-
PoliMI [43], LIVE [44], LIVE Wireless [45], MMSP 3D 
Video [46], MMSP SVD [47], VQEG HDTV [48].  We will 
briefly introduce them below. 

VQEG FR-TV Phase I Database is the oldest public 
database on video quality applied to MPEG-2 and H.263 
video with two formats: 525@60Hz and 625@50Hz in this 
database.  The resolution for video sequence 525@60Hz is 
720x486 pixels, and 720x576 pixels for 625@50Hz.  The 
video format is 4:2:2.  And the subjective quality scores 
provided are DMOS, ranging from 0 to 100. 

IRCCyN/IVC 1080i Database contains 24 contents.  For 
each content, there is one reference and seven different 
compression rates on H.264 video.  The resolution is 
1920x1080 pixels, the display mode is interleaving and the 
field display frequency is 50Hz.  The provided subjective 
quality scores are MOS, ranging from 1 to 5. 

IRCCyN/IVC SD RoI Database contains 6 reference 
videos and 14 HRCs (i.e., 84 videos in total).  The HRCs are 
H.264 coding with or without error transmission simulations.  
The contents of this database are SD videos.  The resolution is 
720x576 pixels, the display mode is interleaving and the field 
display frequency is 50Hz with MOS from 1 to 5. 

 



TABLE 2: COMPARISON OF VIDEO QUALITY DATABASES 
 

Database Year 
SRC (# of 
reference 
videos) 

HRC (# of 
test 
conditions) 

Total # 
of test 
videos 

Subjective 
Testing 
Method 

Subjective Score 

VQEG FR-TV-I 2000 20 16 320 DSCQS DMOS (0 ~ 100) 
IRCCyN/IVC 1080i 2008 24 7 192 ACR MOS (1 ~ 5) 
IRCCyN/IVC SD RoI 2009 6 14 84 ACR MOS (1 ~ 5) 
EPFL-PoliMI 2009 16 9 156 ACR MOS (0 ~ 5) 
LIVE 2009 10 15 150 ACR DMOS (0 ~ 100) 
LIVE Wireless 2009 10 16 160 SSCQE DMOS (0 ~ 100) 
MMSP 3D Video 2010 6 5 30 SSCQE MOS (0 ~ 100) 
MMSP SVD 2010 3 24 72 PC MOS (0 ~ 100) 
VQEG HDTV 2010 45 15 675 ACR MOS (0 ~ 5), DMOS (1 ~ 5) 

 

EPFL-PoliMI Video Quality Assessment Database 
contains 12 reference videos (6 in CIF, and 6 in 4CIF), and 
144 distorted videos, which are encoded with H.264/AVC and 
corrupted by simulating the packet loss due to transmission 
over an error-prone network.  For CIF, the resolution is 
352x288 pixels, and frame rate 30fps.  For 4CIF, the 
resolution is 704x576 pixels, and frame rate are 30fps and 
25fps.  For each of the 12 original H.264/AVC videos, they 
have generated a number of corrupted ones by dropping 
packets according to a given error pattern.  To simulate burst 
errors, the patterns have been generated at six different packet 
loss rates (PLR) and two channel realizations have been 
selected for each PLR. 

LIVE Video Quality Database includes 10 reference 
videos.  All videos are 10 seconds long, except for Blue Sky.  
The Blue Sky sequence is 8.68 seconds long.  The first seven 
sequences have a frame rate of 25 fps, while the remaining 
three (Mobile & Calendar, Park Run, and Shields) have a 
frame rate 50 fps.  There are 15 test sequences from each of 
the reference sequences using four different distortion 
processes – simulated transmission of H.264 compressed 
videos through error-prone wireless networks and through 
error-prone IP networks, H.264 compression, and MPEG-2 
compression.  All video files have planar YUV 4:2:0 formats 
and do not contain any headers.  The spatial resolution of all 
videos is 768x432 pixels. 

LIVE Wireless Video Quality Assessment Database has 
10 reference videos, and 160 distorted videos, which focus on 
H.264/AVC compressed video transmission over wireless 
networks.  The video is YUV 4:2:0 formats with a resolution 
of 768x480 and a frame rate of 30 fps.  Four bit-rates and 4 
packet-loss rates are performed.  However, this database has 
been taken offline temporarily since it has limited video 
contents and a tendency to cluster at 0.95~0.96 correlation 
level for most objective metrics. 

MMSP 3D Video Quality Assessment Database contains 
stereoscopic videos with a resolution of 1920x1080 pixels and 
a frame rate of 25 fps.  Various indoor and outdoor scenes 
with a large variety of color, texture, motion, and depth 
structure have been captured.  The database contains 6 scenes, 
and 20 subjects participated in the test.  For each of the scenes, 
5 different stimuli have been considered corresponding to 
different camera distances (10, 20, 30, 40, 50 cm). 

MMSP Scalable Video Database is related to 2 scalable 
video codecs (SVC and wavelet-based codec), 3 HD contents, 

and bit-rates ranging between 300 kbps and 4 Mbps.  There 
are 3 spatial resolutions (320x180, 640x360, and 1280x720), 
and 4 temporal resolutions (6.25 fps, 12.5 fps, 25 fps and 50 
fps).  In total, 28 and 44 video sequences were considered for 
each codec, respectively.  The video data are in the YUV 
4:2:0 formats. 

 VQEG HDTV Database has 4 different video formats – 
1080p at 25 and 29.97fps, 1080i at 50 and 59.94fps.  The 
impairments are restricted to MPEG-2 and H.264, with both 
coding-only error and coding-plus-transmission error.  The 
video sequences are released progressively via the Consumer 
Digital Video Library (CDVL) [49]. 

We summarize and compare these video quality databases 
in Table 2 for the convenience of the readers.   

B. Major VQA metrics 

One obvious way to implement video quality metrics is to 
apply a still image quality assessment metric on a frame-by-
frame basis.  The quality of each frame is evaluated 
independently, and the global quality of the video sequence 
can be obtained by a simple time average. 

SSIM has been applied in video quality assessment as 
reported in [50].  The quality of the distorted video is 
measured in three levels: the local region level, the frame 
level, and the sequence level.  First, the SSIM indexing 
approach is applied to the Y, Cb and Cr color components 
independently and combined into a local quality measure 
using a weighted summation.  In the second level of quality 
evaluation, the local quality values are weighted to obtain a 
frame level quality index.  Finally in the third level, the 
overall quality of the video sequence is given by the weighted 
summation of the frame level quality index.  This approach is 
often called as V-SSIM (FR, Signal structure extracted 
metric), and has been demonstrated to perform better than 
KPN/Swisscom CT [51] (the best metric for the Video 
Quality Experts Group (VQEG) Phase I test data set [40]) in 
[50]. 

Wang and Li [52] proposed Speed-SSIM (FR, Signal 
structure extracted metric) that incorporated a model of the 
human visual speed perception by formulating the visual 
perception process in an information communication 
framework.  Consistent improvement over existing VQA 
algorithms has been observed in the validation with the 
VQEG Phase I test data set [40]. 



Watson et al. [53] developed a video quality metric, which 
they call digital video quality (DVQ) (FR, HVS model based 
metric).  The DVQ accepts a pair of video sequences, and 
computes a measure of the magnitude of the visible difference 
between them.  The first step consists of various sampling, 
cropping, and color transformations that serve to restrict 
processing to a region of interest and to express the sequence 
in a perceptual color space.  This stage also deals with de-
interlacing and de-gamma-correcting the input video.  The 
sequence is then subjected to a blocking and a DCT, and the 
results are transformed to local contrast.  The next steps are 
temporal and spatial filtering, and a contrast masking 
operation.  Finally, the masked differences are pooled over 
spatial temporal and chromatic dimensions to compute a 
quality measure. 

Video Quality Metric (VQM) (RR, HVS model based 
metric) [7] is developed by National Telecommunications and 
Information Administration (NTIA) to provide an objective 
measurement for perceived video quality.  The NTIA VQM 
provides several quality models, such as the Television Model, 
the General Model, and the Video Conferencing Model, based 
on the video sequence under consideration and with several 
calibration options prior to feature extraction in order to 
produce efficient quality ratings.  The General Model contains 
seven independent parameters.  Four parameters (si_loss, 
hv_loss, hv_gain, si_gain) are based on the features extracted 
from spatial gradients of Y luminance component, two 
parameters (chroma_spread, chroma_extreme) are based on 
the features extracted from the vector formed by the two (Cb, 
Cr) chrominance components, and one parameter 
(ct_ati_gain) is based on the product of features that measure 
contrast and motion, both of which are extracted from Y 
luminance component.  The VQM takes the original video 
and the processed video as inputs and is computed using the 
linear combination of these seven parameters.  Due to its 
performance in the VQEG Phase II validation tests, the VQM 
method was adopted as a national standard by the American 
National Standards Institute (ANSI) and as International 
Telecommunications Union Recommendations [54], [55]. 

By analyzing subjective scores of various video sequences, 
Lee et al. [56] found out that the HVS is sensitive to 
degradation around edges.  In other words, when edge areas 
of a video sequence are degraded, evaluators tend to give low 
quality scores to the video, even though the overall mean 
squared error is not large.  Based on this observation, they 
propose an objective video quality measurement method 
based on degradation around edges.  In the proposed method, 
they first apply an edge detection algorithm to videos and 
locate edge areas.  Then, they measure degradation of those 
edge areas by computing mean squared errors and use it as a 
video quality metric after some post-processing.  Experiments 
show that this proposed method EPSNR (FR, Video fidelity 
metric) outperforms the conventional PSNR.  This method 
was also evaluated by independent laboratory groups in the 
VQEG Phase II test.  As a result, it was included in 
international recommendations for objective video quality 
measurement [56]. 

More recently, an approach integrates both spatial and 
temporal aspects of distortion assessment, known as MOtion-
based Video Integrity Evaluation (MOVIE) index (FR, 
HVS model based metric) [57].  The MOVIE uses optical 
flow estimation to adaptively guide spatial-temporal filtering 
using three-dimensional (3-D) Gabor filterbanks.  The key 
difference of this method is that a subset of filters are selected 
adaptively at each location based on the direction and speed 
of motion, such that the major axis of the filter set is oriented 
along the direction of motion in the frequency domain.  The 
video quality evaluation process is carried out with 
coefficients computed from these selected filters only.  One 
component of the MOVIE framework, known as the Spatial 
MOVIE index, uses the output of the multi-scale 
decomposition of the reference and test videos to measure 
spatial distortions in the video.  The second component of the 
MOVIE index, known as the Temporal MOVIE index, 
captures temporal degradations in the video.  The Temporal 
MOVIE index computes and uses motion information from 
the reference video explicitly in quality measurement, and 
evaluates the quality of the test video along the motion 
trajectories of the reference video.  Finally, the Spatial 
MOVIE index and the Temporal MOVIE index are combined 
to obtain a single measure of video quality known as the 
MOVIE index.  The performance of MOVIE on the VQEG 
FRTV Phase I dataset is summarized in [57]. 

In addition, TetraVQM (FR, HVS model based metric) 
[58] has been proposed to utilize motion estimation within a 
VQA framework, where motion compensated errors are 
computed between the reference and distorted images.  Based 
on the motion vectors and the motion prediction error, the 
appearance of new image areas and the display time of objects 
are evaluated.  Additionally, degradations which happen to 
moving objects can be judged more exactly.  And in [59], 
Ninassi et al. tried to utilize models of visual attention and 
human eye movements to improve the VQA performance.  
The temporal variations of the spatial distortions are evaluated 
both at eye fixation level and on the whole video sequence.  
These two kinds of temporal variations are assimilated into a 
short-term temporal pooling and a long-term temporal pooling, 
respectively. 

V. PERFORMANCE COMPARISON 

We use the following three indexes to measure metric 
performance [51], [60].  The first index is the Pearson linear 
correlation coefficient (PLCC) between objective/subjective 
scores after non-linear regression analysis.  It provides an 
evaluation of prediction accuracy.  The second index is the 
Spearman rank order correlation coefficient (SROCC) 
between the objective/subjective scores.  It is considered as a 
measure of prediction monotonicity.  The third index is the 
root-mean-squared error (RMSE).  Before computing the first 
and second indices, we need to use the logistic function and 
the procedure outlined in [51] to fit the objective model scores 
to the MOS (or DMOS).  The monotonic logistic function 
used to fit the objective prediction scores to the subjective 
quality scores [51] is: 
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where x is the objective prediction score, f(x) is the fitted 
objective score, and the parameters j (j = 1,2,3,4) are chosen 
to minimize the least squares error between the subjective 
score and the fitted objective score. For an ideal match 
between the objective prediction scores and the subjective 
quality scores, PLCC=1, SROCC=1 and RMSE=0. 

A. Image quality metric benchmarking 

To examine the performance of existing popular image 
quality metrics in this work, we choose TID2008 to test image 
quality metrics since it includes the largest number of 
distorted images and also spans 17 distortion types, which 
covers most image distortion types that other publicly 
available image quality databases cannot provide.  The 
performance results are listed in Table 3 with the three indices 
given above.  The best performing metric is highlighted in 
bold.  Clearly, MMF (both CF-MMF and CD-MMF) [19] 
have the highest PLCCs, SROCCs and the smallest RMSEs 
among the twelve image quality metrics under comparison.  It 
demonstrates that the objective scores obtained by MMF have 
the highest correlation with human subjective scores. We will 
introduce more details about MMF in Section VI. 

 
TABLE 3: COMPARISON OF THE PERFORMANCE OF IQA MODELS 

 
                 Measure 

 
IQA Model 

PLCC SROCC RMSE 

MS-SSIM 0.8389 0.8528 0.7303 
SSIM 0.8069 0.8081 0.7926 
VIF 0.8055 0.7496 0.7953 

VSNR 0.6820 0.7046 0.9815 
VIFP [14] 0.7484 0.6546 0.8901 

NQM 0.6103 0.6243 1.0631 
UQI [61] 0.6605 0.6004 1.0075 

PSNR-HVS [62] 0.5977 0.5943 1.0759 
IFC 0.7186 0.5707 0.9332 

PSNR 0.5355 0.5245 1.1333 
CF-MMF (4 metrics) 0.9031 0.8923 0.5762 
CD-MMF (4 metrics) 0.9438 0.9436 0.4434 

B. Video quality metric benchmarking 

For the comparison of the state-of-the-art video quality 
metrics, LIVE Video Quality Database is adopted.  Although 
most people use VQEG-FRTV Phase I Database (built in 
2000) to test their metric performance previously, we decide 
to use LIVE Video Quality Database (released in 2009) as our 
test database since it is new and contains more distortion 
types, such as H.264 compression, simulated transmission of 
H.264 packetized streams through error prone wireless 
networks and error-prone IP networks, and MPEG-2 
compression.  The comparison results are summarized in 
Table 4.  Here, the image quality metrics (i.e., PSNR, VSNR, 
SSIM, and MS-SSIM) are used on a frame-by-frame basis for 
the video sequence, and then time-averaging the frame scores 
to obtain the video quality score. 

 

TABLE 4: COMPARISON OF THE PERFORMANCE OF VQA 
MODELS 

 
Measure 

 
 
VQA 
Model 

PLCC SROCC RMSE 

PSNR 0.5465 0.5205 9.1929 
VSNR 0.6880 0.6714 7.9666 
SSIM 0.5413 0.5233 9.2301 
MS-

SSIM 
0.7551 0.7479 7.1963 

V-SSIM 0.6058 0.5924 8.7337 
VQM 0.7695 0.7529 7.0111 

MOVIE 0.8116 0.7890 6.4130 

From Table 4, we can conclude MOVIE is the best metric 
(which is highlighted in bold) for LIVE Video Quality 
Database, and VQM and MS-SSIM rank the second and third, 
respectively.  It means that MOVIE correlates better with 
subjective results than other approaches under comparison.   
The MS-SSIM does not utilize any temporal information, and 
can still achieve reasonable good results.  In general, the 
consideration of temporal structure and information, as well 
as the interaction of spatial and temporal features [63], can 
improve the video quality prediction performance. 

VI. DISCUSSION ON FUTURE TRENDS 

Although many visual quality assessment metrics have 
been developed for both image and video during the past 
decade, there are still great technological challenges ahead 
and much space for improvement, toward effective, reliable, 
efficient and widely accepted replacement for MSE/PSNR, 
for both standalone and embedded applications.  We will 
discuss the possible directions in this section. 

A. PSNR or SSIM-modified metrics 

PSNR has always been criticized its poor correlation with 
human subjective evaluations.  However, according to our 
observations [19], PSNR sometimes still can work very well 
on some specific distortion types, such as additive and 
quantization noise.  Hence, a lot of metrics have been 
developed or derived from PSNR, such as PSNR-HVS-M 
[32], EPSNR [56], and SPHVSM [64].  They either 
incorporate some related HVS characteristics into PSNR or 
include some experimental observations to modify PSNR to 
improve the correlation.  Promising results can be achieved in 
this way of modification.  Among the quality metrics we just 
mentioned above, only the EPSNR is developed to use on 
video quality assessment.  

As a single metric, the SSIM is considered the well-
performed metric among all visual quality evaluation metrics, 
in terms of consistency.  Thus, researchers in the field have 
managed to transform it by changing its pooling method or 
using other image features.  Several examples of the former 
are V-SSIM [50], Speed-SSIM [52], 3-SSIM [37], and IW-
SSIM [38], while FSIM index [15] is an example of the latter.  
They are all proven quite useful in improving the quality 
prediction performance, especially FSIM, which shows 



superior performance in several image quality databases, 
including TID2008, CSIQ, LIVE, and IVC. 

Building new metrics based upon more mature metrics (like 
PSNR and SSIM) is expected to continue, especially in new 
application scenarios (e.g., for 3D scenes, mobile media, 
medical imaging, image/video retargeting, computer graphics, 
and so on).   

B. Multiple strategies or Multi-Metric Fusion approaches 

In [65], Larson and Chandler suggested that a single 
strategy may not be sufficient to determine the image quality.  
They presented a quality assessment method, called most 
apparent distortion (MAD), which can model two different 
strategies.  First, they used local luminance and contrast 
masking to estimate the detection-based perceived distortions 
in high quality images.  Then changes in the local statistics of 
spatial-frequency components are used to estimate the 
appearance-based perceived distortions in low quality images.  
In the end, the authors showed that combining these two 
strategies can predict subjective ratings of image quality well. 

More recently, we proposed a multi-metric fusion (MMF) 
approach for visual quality assessment [19].  This method is 
motivated by the observation that no single metric can give 
the best performance scores in all situations.  To achieve 
MMF, a regression approach is adopted.  First, we collected a 
large number of image samples, each of which has a score 
labeled by human observers and scores associated with 
different metrics.  The new MMF score is set to be the 
nonlinear combination of scores obtained by multiple existing 
metrics (including SSIM, MS-SSIM, VSNR, IFC, VIF, PSNR, 
and PSNR-HVS) with suitable weights via a training process.  
We also call it as context-free MMF (CF-MMF) since it does 
not depend on image contexts.  Furthermore, we divide image 
distortions into several groups and perform regression within 
each group, which is called context-dependent MMF (CD-
MMF).  One task in CD-MMF is to determine the context 
automatically, which is achieved by a machine learning 
approach.  It is shown by experimental results that the 
proposed MMF metric outperforms all existing metrics by a 
significant margin. 

Appropriate fusion of existing metrics opens the chances to 
build on the strength of each participating metric and the 
resultant framework can be even used when new, good 
metrics emerge.  More careful and in-depth investigation is 
needed for this topic. 

C. Migration from IQA to VQA 

Up to now, more research has been performed for IQA.  As 
mentioned before, video quality evaluation can be done by 
using image quality metrics on a frame-by-frame basis, and 
then averaging to obtain a final video quality score.  However, 
this only works well when video contents do not have large 
motion in temporal domain.  When there exist a large motion, 
we need to find out the temporal structure and temporal 
features.   

The most common method is to use the motion estimation 
to find out the motion vectors and measure the variations in 
temporal domain.  One simple realization of this idea is in 

[66].  The authors extended one existing image quality 
assessment metric to a video quality metric by considering 
temporal information and converted it into a compensation 
factor to correct the video quality score obtained in the spatial 
domain.  There are also other video quality metrics that utilize 
motion estimation to detect the temporal variations, such as 
Speed-SSIM [52], MOVIE [57], and TetraVQM [58].  All the 
above approaches improve the correlation between 
predictions and subjective quality scores more or less.  This 
demonstrates that the temporal variation is indeed an 
important factor we need to consider for VQA. 

Similarly, we can also use the MMF strategy on video 
quality assessment, via fusing the scores obtained from all 
available video quality metrics.  A possible problem of this 
approach is the high complexity since multiple metrics and 
video data are involved.  One solution to realize efficient 
MMF for video is to pick up the best features used in all 
metrics, including both spatial and temporal features, instead 
of using all participating metrics as they are.  Moreover, this 
solution gives a chance to eliminate the repetition in feature 
detection among different metrics, and proper machine 
learning techniques will be customized for this purpose.  In 
addition, visual attention modeling [67] may play a more 
active role in VQA than IQA.   

D. Audiovisual Quality Assessment for 3G Networks 

During the recent years, the term Quality of Experience 
(QoE) has been used and defined as the users’ perceived 
Quality of Service (QoS).  More often than not in multimedia 
applications, the quality assessment has to be performed with 
audio and video (images) being presented together.  It is an 
important but less investigated research topic, in spite of some 
early work in this area [68-70].   

It has been proposed that a better QoE can be achieved 
when the QoS is considered both in the network and 
application layers as a whole [71].  In the application layer, 
QoS is affected by the factors such as resolution, frame rate, 
sampling rate, number of channels, color, video codec type, 
audio codec type, and layering strategy.  The network layer 
introduces impairment parameters such as packet loss, jitter, 
network delay, burstiness, and decreased throughput, etc.  
These are all the key factors that affect the overall audiovisual 
QoE.  Hence, to investigate into the quality assessment 
methods for both audio and video is also important and 
meaningful since video chats and video conferences over 3G 
networks may be frequently used by the general public in the 
near future.  

Currently there is no public database for joint audiovisual 
quality and experience evaluation.  The establishment of such 
databases will facilitate the research and promote the 
advancement in this field.  

VII. CONCLUSION 

In this paper, we have reviewed the existing visual quality 
assessment methods and their classification.  Then we 
introduced the recent developments in image quality 
assessment (IQA), including the popular public image quality 



databases that play an important role in boosting the research 
activities in this field and several well-performed image 
quality metrics.  Similarly, we also discussed the recent 
developments for video quality assessment (VQA) in general, 
the publicly available video quality databases and several 
state-of-the-art VQA metrics.  In addition, we have compared 
the major existing IQA and VQA metrics, and the 
experimental results showed that the MMF and the MOVIE 
outperform other metrics in the most comprehensive image 
and video quality databases respectively.  In the end, we have 
presented several possible directions for future visual signal 
quality assessment, such as PSNR or SSIM-modified metrics, 
multiple strategy approaches, migration of IQA to VQA, and 
joint audiovisual assessment, with reasoning.   

Appendix. Standard subjective testing methods [1], [2]. 

(a) Pair Comparison (PC) 
The method of Pair Comparisons implies that the test 
sequences are presented in pairs, consisting of the same 
sequence being presented first through one system under 
test and then through another system. 

(b) Absolute Category Rating (ACR) 
The Absolute Category Rating method is a category 
judgment where the test sequences are presented one at a 
time and are rated independently on a discrete five-level 
scale from ‘bad’ to ‘excellent’. This method is also called 
Single Stimulus Method. 

(c) Degradation Category Rating (DCR) (also called the 
Double-Stimulus Impairment Scale (DSIS)) 
The reference picture (sequence) and the test picture 
(sequence) are presented only once or twice.  The 
reference is always shown before the test sequence, and 
neither is repeated.  Subjects rate the amount of 
impairment in the test sequence on a discrete five-level 
scale from ‘very annoying’ to ‘imperceptible’. 

(d) Double-Stimulus Continuous Quality Scale (DSCQS) 
The reference and test sequences are presented twice in 
alternating fashion, in the order of the two chosen 
randomly for each trial. Subjects are not informed which 
one is the reference and which one is the test sequence. 
They rate each of the two separately on a continuous 
quality scale ranging from ‘bad’ to ‘excellent’. Analysis 
is based on the difference in rating for each pair, which is 
calculated from an equivalent numerical scale from 0 to 
100. 

(e) Single-Stimulus Continuous Quality Evaluation (SSCQE) 
Instead of seeing separate short sequence pairs, subjects 
watch a program of 20~30 minutes duration which has 
been processed by the system under test.  The reference is 
not shown.  The subjects continuously rate the perceived 
quality on the continuous scale from ‘bad’ to ‘excellent’ 
using a slider. 

(f) Simultaneous Double-Stimulus for Continuous 
Evaluation (SDSCE) 
The subjects watch two sequences at the same time.  One 
is the reference sequence, and the other one is the test 
sequence.  If the format of the sequences is the standard 

image format (SIF) or smaller, the two sequences can be 
displayed side by side on the same monitor; otherwise 
two aligned monitors should be used.  Subjects are 
requested to check the differences between the two 
sequences and to judge the fidelity of the video by 
moving the slider.  When the fidelity is perfect, the slider 
should be at the top of the scale range (coded 100); when 
the fidelity is the worst, the slider should be at the bottom 
of the scale (coded 0).  Subjects are aware of which one 
is the reference and they are requested to express their 
opinion while they view the sequences throughout the 
whole duration. 
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