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Abstract—In speech recognition systems, decoding or data
evaluation processes are sometimes performed as a part of
a model estimation process. For example, when unsupervised
adaptation is performed, parameters are adapted using decoding
hypotheses generated by an initial model. In these model estima-
tion frameworks, how to design dependency structures between
data and models is an important issue, since it significantly affects
recognition performance. This paper overviews model estimation
methods that have been proposed from this viewpoint. These
include efficient cross-validation (CV) based parameter tuning
and structure optimization, domain adaptation based on selecting
training subset, and iterative parameter estimation techniques
that integrate CV into the process.

I. INTRODUCTION

In speech recognition systems, large and structured statis-
tical models are used. These models need to be accurately
trained from a limited amount of training data. Sometimes,
there is a mismatch between domains of training and evalu-
ation data and recognition systems are required to be robust
for such discrepancies. In order to meet these requirements,
several model training and adaptation methods have been
proposed based on advanced use of data dependency control.
In this paper, these methods are categorized and reviewed.

The basic and simple discipline with statistical model evalu-
ation is that training and evaluation data must be independent.
If evaluation data is included in the training data, the evalua-
tion results will be positively biased. The same independence
requirement sometimes exists in model training itself. For
example, structure optimization needs an unbiased evaluation
score. As a general strategy for doing this, a development data
is used in addition to the training data. The development data
may be a randomly sampled held-out subset of the original
training data or may be a data set that are separately recorded
from the training data. In either case, the point is that there
is no overlap between the training data and the development
data, so that the tuning is independent from the model training.
An extension of the hold-out strategy is the K-fold Cross-
validation (K-fold CV), which can efficiently use limited
training data.

The organization of the rest of this paper is as follows.
In Section II, the hold-out and cross-validation methods are
briefly reviewed and their relationship in terms of expected
error is derived. In Section III, CV based model selection
and parameter tuning methods are described that efficiently
compare a large number of models or optimize continuous
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Fig. 1. K-fold CV. The data overlap between model parameter estimation and
evaluation is avoided.

variables. In Section IV, a domain adaptation framework and
its applications are described that are based on selecting a
subset of training data so as to directly maximize an evaluation
score on development data. In Section V, parameter estimation
techniques are described that integrate CV into an iterative
optimization procedure. Finally, summary and conclusion are
given in Section VI.

II. HOLD-OUT AND CROSS-VALIDATION (CV) METHODS

Hold-out method is used to tune some parameters or to
evaluate a model using only a training set. For this, a subset
of the training set is held out for evaluation and the rest of the
data is used for model training. A disadvantage of the hold-out
method is that significant amount of the original data need to
be used as the hold out subset for meaningful evaluation. This
problem is solved by using K-fold Cross-validation (K-fold
CV). It works by partitioning the original training data into K
subsets. Of the K subsets, a single subset is retained as the
validation data for evaluating the model, and the remaining
K − 1 subsets are used to estimate the model parameters.
The process is shown in Figure 1. The process is repeated
for K times changing the subset for the evaluation. The K
evaluation results are then averaged and used as the overall
evaluation score.

Since it makes the data exclusive for the model parameter
estimation and for the evaluation, the CV evaluation score is
mostly unbiased. The data fragmentation problem due to the
data partitioning is minimized by choosing large K since each
CV model is estimated using (K−1)

K of the original training
data. For example, if K = 10, 90% of the original training
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data is used to estimate each CV model. When K is equal to
the number of training samples, it is called leave-one-out CV.

Let T = {x1, x2, · · · , xN} be a training set consisting of
independently sampled N samples, M be a statistical model
with a specific model structure, ψM (x|T ) be a log likelihood
or more generally any kind of score for a data sample x by M
whose parameters are estimated from T . Then, expected error
ecv of a leave-one-out CV score 1

N

∑
xt∈T ψM (xt|T \ {xt})

with respect to a model score based on the true data distribu-
tion E

x

[ψM (x|T )] is expressed as Equation (1). By assuming

that eliminating up to two training samples from T does not
largely change the model score for x that is independent
from variables in T , i.e., ψM (x|T ) ≈ ψM (x|T \ {xi}) ≈
ψM (x|T \ {xi, xj}) for arbitrary xi and xj in T , Equation (1)
is re-written as Equation (2), which is equal to the expected
error edev of an evaluation score based on an independent de-
velopment set D = {x′1, x′2, · · · , x′N} as shown in Equations
(3) and (4). Therefore, leave-one-out CV has about the same
generalization ability in model evaluation as the evaluation
using a development set having the same size as the training
set. The advantage of the leave-one-out CV method is that it
does not actually require such extra data. Similar argument
holds for K-fold CV with large K .

While the idea of CV is intuitive, its theoretical aspect
does not necessarily well known. Some empirical as well as
theoretical results with CV is found in [1].

III. MODEL TRAININGS BASED ON CV OBJECTIVE

FUNCTION

In the application of CV for parameter tuning and model
selection, multiple models are made and evaluated changing
some parameters to find the best configuration. Therefore, it is
quite time consuming if many models are made from scratch.
However, there are some applications where the CV score
is efficiently maximized for a large number of possible con-
figurations or even continuous optimization is performed. In
the following, the Good-Turing smoothing, CV based decision
tree clustering, and CV based GMM structure optimization are
explained as such examples.

A. Ngram Smoothing

Ngrams are widely used as a language model in speech
recognition. Usually, the number of possible Ngrams are very
large and many Ngrams have no example in the training set.
These Ngrams get zero probability in maximum likelihood
estimation and cause a problem in evaluation. Ngram smooth-
ing is used to solve the problem by discounting probability
mass from observed Ngrams and re-distributing it to unseen
Ngrams. There are many variations regarding how to discount
the probability. Among them, Good-Turing smoothing devel-
oped by Good and Turing [2] is a widely known method.

Let’s consider Ngram samples in a training set that consist
of a word k following a fixed Ngram context c. Let r = N (k)
be the number of occurrences of a word k in the samples
with the Ngram context and nr be the number of kinds of

word k whose occurrence count is r. With the Good-Turing
smoothing, Ngram probabilities are estimated by Equation (5).

pr =
r

N

(r + 1)nr+1

rnr
. (5)

It has been shown that the Good-Turing smoothing can
be regarded as a result of leave-one-out CV based optimiza-
tion [3] optimizing continuous parameters. In the derivation,
it is assumed that all words k with the same occurrence count
r have the same Ngram probability pr = P (k|c). Because pr

is probability, it must satisfy
∑

r prnr = 1. When removing a
sample with a word k from the Ngram samples and using it as
a held-out sample, the occurrence count of k in the remaining
samples is one less than the original count. Thus, pr is used for
the word k that has counts r+1 in the original samples. Then,
the leave-one-out log likelihood is expressed as Equation (6).

LLleave one out =
∑

r

(r + 1)nr+1 log pr. (6)

By maximizing Equation (6) using the method of Lagrange
multipliers with the constraint

∑
r prnr = 1, Equation (5) is

obtained.

B. Decision Tree State Clustering

Context dependent HMM is widely used in large vocabulary
speech recognition systems as an acoustic model. Decision tree
HMM state clustering [4] is a top-down clustering method
to optimize the state tying structure of the context dependent
model for robust parameter estimation and for preparing phone
contexts that do not appear in the training set.

In decision tree state clustering, a leaf corresponds to a set
of HMM states to be tied. The tree growing process begins
with a root node that may have all HMM states, or all states
associated with a particular phone, etc. Then, a question is
selected that divides the set of states into two subsets assigned
respectively to two child nodes so that the corresponding new
HMM has the largest objective score. The tree is grown in
a greedy fashion, successively splitting nodes by selecting
questions.

Applying a question corresponds to try an HMM with a
specific tying structure. Therefore, a large number of HMM
are estimated and evaluated during the clustering, and the
computational cost is not practical if they are trained from
scratch. In the conventional approach based on maximum like-
lihood criterion [4], it is assumed to reduce the computational
cost that the state alignment does not change with different
tying configurations. In this case, the likelihood change due
to expanding the parameter set is simply given by the change
in observation likelihoods of the impacted states. The model
parameters and associated observation likelihoods can be com-
puted efficiently by using the pre-computed sufficient statistics
associated with each state in the model.

A limitation of the likelihood objective, however, is that it is
guaranteed to increase as parameters are added, e.g. new nodes
in the tree, since the splits are trained and evaluated using
the same training data. Hence, the tree can potentially grow



ecv (N) = E
T,|T |=N
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1

N

∑
xt∈T

ψM (xt|T \ {xt}) − E
x

[ψM (x|T )]
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x
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}2]]
, (3)

= edev (N,N) . (4)

until all states are untied. Furthermore, the decisions made in
tree growing are unreliable when there are a small number of
samples associated with a node. To deal with these problems,
empirical thresholds are required such as minimum likelihood
difference and minimum occupancy counts of a state [5].

These problems of the likelihood based method are due
to the lack of a mechanism of balancing the number of
parameters and accuracy of parameter estimation, which can
be solved by using CV. CV based decision tree clustering
was first proposed for semi-tied HMM [6], which has low
computational cost for the clustering since the HMM states
are expressed by a weight vector for a shared base Gaussians.
However, recognition performance by the semi-tied HMM is
limited.

CV based decision tree clustering for more general con-
tinuous Gaussian mixture HMM was proposed in [7]. The
extension was made possible by estimating a CV score using
a set of sufficient statistics similar to the technique used in [8].
Let D be a training set and Df be a subset for N-fold CV.
That is,

D =
N⋃

f=1

Df , Di

⋂
Dj = φ (i �= j) . (7)

For the f -th evaluation, D̄f =
⋃

f ′ �=f Df ′ is used to estimate
HMM parameters and Df is used to evaluate likelihood. Let S
be a set of states, s be a state, γs (t) be occupancy probability
of state s at time t, and xt = (x1 (t) , x2 (t) , · · · , xd (t))T be
d-dimensional feature vector at time t. Let A0

f (s), A1
f (s) and

A2
f (s) be the sufficient statistics of the observations aligned

to state s. For diagonal Gaussian distributions, these are:

A0
f (s) =

∑
t∈Df

γs (t) , (8)

A1
f (s) =

∑
t∈Df

xtγs (t) , (9)

A2
f (s) =

∑
t∈Df

x2
tγs (t) , (10)

where x2 =
(
x2

1, x
2
2, · · · , x2

d

)T
.

Using these statistics, the f -th ML estimates of a mean

vector µ and a variance vector v of a state s on D̄f are:

µf (s) =

∑
f ′ �=f A1

f ′ (s)∑
f ′ �=f A

0
f ′ (s)

, (11)

vf (s) =

∑
f ′ �=f A2

f ′ (s)∑
f ′ �=f A

0
f ′ (s)

− µf (s)2 . (12)

Let Lf be the log likelihood for f -th data fold using Gaussians
that have means µf (s) and variances vf (s), as shown in
equation (13), where Σ is a diagonal covariance matrix whose
main diagonal is v. By putting the summation over t inside
and utilizing the assumption that Σ is a diagonal matrix,
equation (13) can be efficiently evaluated using the pre-
computed statistics A0, A1, and A2 as shown in equation (14),
where v−1 =

(
v−1
1 , v−1

2 , · · · , v−1
d

)
. Finally, the CV likelihood

L is obtained by summing the likelihoods for each fold:

L =
N∑

f=1

Lf . (15)

Originally, the CV based decision tree algorithm was eval-
uated for speech recognition and it has been shown to out-
perform conventional maximum likelihood method deciding
the model size automatically [7]. It has also been applied for
speech synthesis and reported to give better performance than
MDL [9]. An extension to variational Bayes based clustering
is proposed in [10] and a combination with hierarchical priors
are proposed in [11].

C. Gaussian Mixture Optimization

The CV techniques based on the sufficient statistics used in
the decision tree clustering can be directly applied to Gaussian
mixture optimization. CV likelihood based Gaussian mixture
HMM optimization is proposed in [12]. A concern when
using CV in such structure optimization algorithms is that
the number of models subject to the comparison is much
larger than that in the traditional use of CV. While CV can
mostly remove the bias in likelihood estimation, the CV score
still has variance. Among the large number of models, there
will be a model that gives a higher CV score just by chance
irrespective of its true performance on new data. This effect
increases with the number of models and degrades the model
selection performance. To reduce the variance, aggregated
cross-validation (AgCV) that introduces a bagging-like [13]
idea to the cross-validation framework is proposed and applied



Lf =
∑
t∈Df

∑
s∈S

log

{
1√

(2π)d |Σf (s)|
exp

(
−1

2

(
xt − µf (s)

)T
Σf (s)−1

(
xt − µf (s)

))}
γs (t) (13)

= −1

2

∑
s∈S

{
log
(
(2π)d |Σf (s) |

)
A0

f (s) +
(
vf (s)−1

)T
A2

f − 2
(
Σf (s)−1 µf (s)

)T
A1

f +
(
vf (s)−1

)T
µf (s)2 A0

f

}
(14)

to Gaussian mixture HMM optimization [14]. It is reported
that AgCV based optimization gives better performance than
CV based optimization.

IV. DIRECT SELECTIVE ADAPTATION METHODS

In the application of speech recognition, sometimes it is
required to train a high performance model using a domain
independent large training data and a domain dependent small
adaptation data, which is a problem of adaptation or transfer
learning [15]. For example, in a deployment of speech recog-
nition systems, it is often required to train a high performance
model using an existing large domain independent data and a
small in-domain data. Other situation is that large amount of
noisy data is available on the Internet together with a small
amount of in-domain data.

Assuming that the training data is partitioned to many
blocks by some means, a strategy for this problem is to select
or weight the blocks by measuring their usefulness based on
the adaptation data. Each block of the training data can be
a sentence, a document, or a speaker, etc. Here, we refer
such selective use of training data for adaptation as selective
adaptation. The overall framework of selective adaptation is
analogous to parameter tunings using a held-out set. Therefore,
some techniques for this problem are related to the ones
described in Section III as shown in the following.

With the selective adaptation, one way of selecting the
training data is to make a model using the adaptation data.
Each block is evaluated using the model and only blocks
with likelihood higher than a threshold are selected. Then,
a subset of the training data is formed gathering the selected
blocks and a model is estimated using the subset. An example
of this strategy is found in [16]. However, this strategy has
an essential problem that the most frequent pattern in the
adaptation data is excessively emphasized in the selected
training subset. In other words, the distribution of the events
in the selected subset does not match the distribution of the
ones in the adaptation data [17]. This problem is due to the
direction of model training and evaluation is opposite in the
block selection and the final model training.

Another way is to consider all or many combinations of the
blocks to enumerate possible subsets, estimate a model for
each subset, evaluate the models for the adaptation data, and
select the best model among all. In this strategy, a model that
gives the highest score for the adaptation data is selected. We
refer this strategy as direct selective adaptation.

Instances of this direct selective adaptation have been
proposed both for acoustic modeling [18] and for language
modeling [19]. A closely related method to [19] is the relative

entropy method [17] in which the selection is based on relative
entropy evaluated between language models trained on the
subset and on the adaptation data. An extension of [19] is
proposed in [20] introducing a weighting factor to compensate
for unseen Ngrams. In these strategies, a common problem is
that the number of subsets is very large. Therefore, it is not
always feasible to train and evaluate a model from scratch for
all the subsets. To reduce the computational cost, the HMM
sufficient statistics are used in [18] and the Ngram counts are
used in [20]. In [18], it is reported that the selective method
gave better performance than MLLR [21] and MAP [22]
adaptation. It is reported in [19], [17], [20] that these methods
tend to make very compact Ngram models with superior
performance than their baseline.

V. CV EVALUATION INSIDE OF ITERATIVE PARAMETER

ESTIMATION

CV is usually used to select models or to evaluate model
performance. However, some iterative parameter estimation
algorithms include the evaluation process as a subroutine.
There are some cases that it is useful to integrate CV into
the parameter estimation process to improve model estimation
performance. In this section, CV adaptation [23] and CV-
EM [24] are explained that integrate CV in their parameter
estimation process.

A. CV Adaptation

In speech recognition, unsupervised adaptation refers a
semi-supervised learning where model parameters are adapted
using unlabeled input speech utterances. Final recognition out-
put for the utterances is made using that adapted model. The
most popular way of doing this is the iterative unsupervised
batch-mode adaptation.

Figure 2 shows the procedure. The first step is to decode a
set of target utterances from a speaker using either an initial
model if it is the first iteration or otherwise using an adapted
model made in the previous step. By running a speech decoder,
a hypothesized transcript is obtained. The second step is to
perform model parameter updates based on the hypothesis.
The details of how to update the parameters depend on
underlying adaptation techniques, such as MLLR. For higher
performance, this process is iterated several times [25], [26].
The final recognition result is obtained by outputting the
hypothesis made in the last decoding step.

In this procedure, the over-fitting problem cannot be
avoided; once a model parameter is biased to a specific data
sample, the bias is reinforced in the subsequent adaptation
iterations since the same data is used in the decoding step
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Fig. 2. Batch-mode unsupervised adaptation. M is a model, T is a recognition
hypothesis, and D is an adaptation data. The hypothesis T is made from the
data D using the model M. Using that hypothesis, parameters of the model
M is updated. The updated model is used to recognize the same data in the
next iteration.

and the model update step. Moreover, it is unavoidable to
have recognition errors in the recognition hypothesis. These
errors are also reinforced during the iteration. These problems
decrease the efficiency of the adaptation.

The CV adaptation reduces the problems of the batch-
mode adaptation by effectively separating the data used in
the decoding step and in the model update step based on
the K-fold CV, as shown in Figure 3. In this procedure,
the target utterances are divided into K exclusive subsets
(D (1) , D (2) , · · · , D (K)) so that each subset has roughly
the same size. The first decoding step is basically the same as
the batch-mode adaptation and the K subsets are processed
using the same initial model. Then, given the K recog-
nition hypotheses (T (1) , T (2) · · · , T (K)), K CV models
(M (1) ,M (2) , · · · ,M(K)) are made by excluding one of
the recognition hypotheses, instead of making a single model.
As an initial model to estimate the k-th CV model, the k-th
CV model of the previous stage is used. Each model is used in
the next decoding step to make a new hypothesis for the data
subset that has been excluded from the parameter estimation
of that model. The decoding step and the model update step
are repeated as in the conventional batch-mode adaptation and
the final recognition hypothesis is obtained by gathering the
hypotheses of the K subsets made in the last decoding step.

With this procedure, the data used for the decoding and for
the model parameter estimation are effectively separated mini-
mizing the undesired effect of reinforcing the bias. Because the
utterances used for a model estimation are not decoded by that
model, it is unlikely that the same recognition error is repeated
by that model. The data fragmentation problem is minimal
for large K , since (K − 1) /K of the data is used for the
parameter estimation of each CV model. Optionally, a global
CV model (M (0)) can be made in the update step together
with the CV models by using all recognition hypothesis. The
global CV model is useful when a single adapted model is
required as an output of the adaptation process. It is reported
in [23] that CV adaptation gives significantly better recognition
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Fig. 3. Unsupervised CV adaptation. M is a model and D is a target data.
M(k) is a k-th CV model, D(k) is a k-th exclusive data subset, and T (k)
is a recognition hypothesis of that subset using M(k). The data used for the
decoding step and for the model update step are separated. M(0) denotes a
global CV model and T (0) denotes a hypothesis by M(0).

performance than the conventional batch mode adaptation.
If K = 2, CV-adaptation is similar to the cross-

adaptation [27]. The difference is that CV-adaptation is
performed on a single recognition system whereas cross-
adaptation requires two. While cross-adaptation uses tran-
scripts from two systems representing different views of
the same data based on different features and/or decoding
algorithms etc, CV-adaptation uses the different data of the
same view.

CV-adaptation is also similar to the co-training [28]. It
requires two views of the same data as in the cross-adaptation,
and it first learns a separate classifier for each view using
labeled examples. The most confident predictions of each
classifier on the unlabeled data are then added as part of
the labeled data with the automatic classification results. This
process is iterated several times. Co-EM [29] is a variation of
Co-training where all the predictions are used with weightings.
Actually, cross-adaptation might be regarded as a kind of
variation of Co-training/Co-EM. However, there is a difference
in motivation. Co-training/Co-EM are used when there are
only small amounts of labeled data and large amounts of
unlabeled data. On the other hand, cross-adaptation is used
with a general model trained on large database and recognition
data that is not necessarily very large. In cross-adaptation, the
recognition data is also used as adaptation data.

B. CV-EM

Expectation Maximization (EM) algorithm [30] is an itera-
tive maximum likelihood parameter estimation algorithm that
is widely used when a model contains hidden variables. It
consists of Expectation step (E-step) and Maximization step
(M-step) that are repeated reciprocally. The expectation step is
based on probabilistic inference on the hidden variables given
observations. Therefore, it is roughly speaking a decoding
process. CV-EM is an algorithm that integrates CV in the
framework of EM to reinforce the decoding process in the
E-steps [24].



The CV adaptation can be regarded as an special case of
CV-EM with some constraints to variables and with Viterbi-
training [31] like approximation. The procedure of CV-EM is
similar to a MMI training algorithm that incorporates cross-
validation [32]. The difference is that while Gradients are
estimated using CV in the MMI training, sufficient statistics
are estimated in CV-EM. CV-EM has been applied to speech
recognition in [24] and it has been shown to be very robust
for over-fitting and gives higher recognition accuracy than
conventional EM. Some theoretical analyses on CV-EM can
be found in [33] about how CV-EM prevents the overfitting.

VI. CONCLUSIONS

Controlling data dependency is an important principle in
statistical model training and evaluation. In order to correctly
evaluate model performance and to tune some type of model
parameters, a data set that is independent from the training
data is needed. For this purpose, a separate development data
or hold-out/CV methods are widely used.

In this paper, model training methods are reviewed that
integrate the hold-out or the CV methods in an advanced
manner. These include the Good-Turing smoothing, CV based
decision-tree HMM state clustering, CV based Gaussian mix-
ture optimization, CV adaptation, and CV-EM. It has also been
shown that the selective adaptation methods that select a subset
of training data based on a development set share a similar
framework as the hold-out method and thus they share some
techniques used in the CV methods. These methods are effec-
tive to improve speech recognition performance. Future works
include application of these techniques to other problems such
as speaker recognition and model based feature extraction.
Theoretical analysis of these methods will be useful to further
improve the recognition performance.
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