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Abstract— This paper provides an overview of automatic 

speaker recognition technologies, with an emphasis on front-end 

features for robust speaker recognition. We categorize the front-

end features into low-level features and high-level features. We 

discussed in detail several selected low-level and high-level 

features including their motivations, mechanism, reported 

improvements, and limitations, etc. The goal of this paper is to 

help beginners in speaker recognition research area to catch the 

overall picture of current front-end features quickly.  

I. INTRODUCTION 

Speech, as the most natural way for human communication, 

conveys several types of information. From the speech 

production point of view, the speech signal conveys linguistic 

information (e.g., message and language information) and 

speaker information (e.g., emotional and physiological 

characteristics) etc. From the speech perception point of view, 

it conveys information about the environment in which the 

speech was produced and transmitted. Even though this wide 

range of information is encoded in a complex form, humans 

can effortlessly decode most of this information. This human 

ability has inspired researchers to understand speech 

production and perception for developing systems that 

automatically extract and process the richness of information 

in speech. Automatic speaker recognition is the process of 

recognizing a person’s identity from his or her voice [1, 2]. 

Speaker recognition technology has wide application areas. It 

enables systems to use a person’s voice to control the access 

to restricted services (automatic banking services), 

information (telephone access to financial transactions), or 

area (government or research facilities). It also allows 

detection of speakers, for example, voice-based information 

retrieval within audio archives, recognition of perpetrator in 

forensic analysis, and personalization of user devices. Speaker 

diarization [3] attempts to find speakers turn takings in a 

conversation. It is an extension of the “classical” speaker 

recognition technologies applied in multiparty conversations. 

There have been several very useful survey or tutorial 

papers for speaker recognition in the past, including Furui’s 

overview [1], Campbell’s tutorial [2], Bimbot et al’s tutorial 

[4], and the most recent overview by Kinnunen and Li [6]. 

This paper presents an overview of speaker recognition 

technologies with an emphasis on front-end features for 

speaker recognition, including a few representative features 

from low-level acoustic features to high-level super-

segmental features. The remaining of this paper is organized 

as follows. Section II provides a general overall overview of 

speaker recognition technologies. Section III and IV presents 

the low-level and high-level features for speaker recognition. 

Section V presents the conclusions.  

II. OVERVIEW OF SPEAKER RECOGNITION TECHNOLOGIES 

Speaker recognition can be categorized into three 

fundamental tasks [1-3]: speaker identification, speaker 

verification/detection, and speaker diarization. Speaker 

identification task determines who is speaking given a set of 

known voices. In this task, the system uses only the voice (no 

identity claim is required) to perform recognition of the 

unknown speaker. There are two modes of operation for 

speaker identification: in the closed-set mode, the system 

assumes that the unknown voice must come from the set of 

known voices; in open-set mode, the speakers that do not 

belong to the set of known voices are referred to as impostors. 

An important application of speaker identification technology 

is forensics, identifying the suspects among a set of known 

criminals. Speaker verification task is also known as voice 

verification or authentication, speaker authentication, talker 

verification or authentication, and speaker detection. 

Differently from the speaker identification task, the system 

also requires an identity claim together with the voice sample. 

This is an open-set task because it also involves rejecting 

impostors. This task can be used for security applications, 

such as, to control telephone access to banking services. 

Speaker diarization task is also known as “who spoken when” 

or speaker segmentation and clustering. Very differently from 

both speaker identification and speaker verification, this task 

applies to multi-party speaker conversation scenarios. The 

system identifies the speaker turn changes and clusters the 

segments that belong to the same speaker. This task can be 

used for spoken document indexing and retrieval, meta data 

generation etc.  

Automatic speaker recognition systems can be further 

classified according to the speech modality: text-dependent or 

text-independent. In text-dependent recognition, the user must 

speak a phrase known to the system, which can be fixed or 

prompted. The knowledge of a spoken phrase can provide 
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better recognition results. In text-independent recognition, the 

system does not know the phrase spoken by the user. Despite 

the unconstrained phrase selection, this makes the system to 

be more complex. However, text-independent speaker 

recognition systems have more applications than text-

dependent ones in real life.  

There are generally two phases [2] in building or using a 

speaker recognition system. The first phase is called 

enrollment or training phase, in which a user enrolls by 

providing voice samples to the system. The system extracts 

speaker-specific information from the voice samples to build 

a voice model of the enrolled speaker. The second phase is 

called the classification or recognition phase, in which a test 

voice sample is used by the system to measure the similarity 

of the user’s voice to the previously enrolled speaker models 

to make a decision. In a speaker identification task, the system 

measures the similarity of the test sample to all stored voice 

models. In speaker verification task, the similarity is 

measured only to the model of the claimed identity. The 

decision also differs across systems. For example, a closed-set 

identification task outputs the identity of the recognized user; 

besides the identity, an open-set identification task can also 

choose to reject the user in case the test sample do not belong 

to any of the stored voice models; a verification task chooses 

to accept or reject the identity claim.  
 

 

 

 

 

 

 

 

 

 

 
Fig. 1: A General Speaker Recognition System. 

 

Like most pattern recognition problems, a speaker 

recognition system can be partitioned into two modules: 

feature extraction and classification. The classification 

module has two components: pattern matching and decision 

engine. Fig. 1 shows a general speaker recognition system 

architecture. The feature extraction module estimates a set of 

features from the speech signal that represent some speaker-

specific information. An ideal feature would have the 

following characteristics [7, 8]:  

 occur naturally and frequently in normal speech,  

 be easily measurable,  

 have large between speaker variability and small 

within-speaker variability,  

 not change over time or be affected by the speaker’s 

health, 

 not be affected by reasonable background noise nor 

depend on specific transmission characteristics,  

 be robust to disguise or mimicry.  

In practice, not all of these criteria can be applied to the 

parameters used by the current systems. 

The pattern matching module is responsible for comparing 

the estimated features to models from the set of known 

speakers. The speaker models are trained and stored into the 

system database based on feature vectors extracted from the 

feature extraction module. There are many types of pattern 

matching methods and corresponding models used in speaker 

recognition. In text-dependent speaker recognition, the model 

is utterance-specific and it contains the temporal 

dependencies between the feature vectors. Therefore, text-

dependent speaker recognition and speech recognition shares 

similarities in their pattern matching processes and these can 

also be combined [9, 10]. In text-independent recognition, the 

training and test utterances are unrestricted; we often model 

the feature distribution, i.e. the shape of the “feature cluster” 

rather than the temporal dependencies. Researchers have 

proposed methods [11-13] to segment the speech signal into 

phones or broad phonetic classes as a pre-processing step and 

then do the modeling similarly as in the text-dependent mode. 

People also use data-driven units instead of the strictly 

linguistic phonemes as segmentation units [80]. Classical 

speaker models can also be categorized into nonparametric 

and parametric models. They are also called template models 

and stochastic models, respectively. Vector quantization (VQ) 

[14] and dynamic time warping (DTW) [15] are 

representative examples of template models for text-

independent and text-dependent recognition, respectively. In 

stochastic models, each speaker is modeled as a probabilistic 

source with an unknown but fixed probability density function. 

The training phase is to estimate the parameters of the 

probability density function from the training data. The 

likelihood of the test utterance with respect to the model is 

used for pattern matching. The Gaussian mixture model 

(GMM) [16, 17] and the hidden Markov model (HMM) [18, 

19] are the most popular stochastic models for text-

independent and text-dependent speaker recognition, 

respectively.  

Speaker models can also be classified into generative and 

discriminative models. The generative models such as GMM 

and VQ estimate the feature distribution within each speaker 

independently. While the discriminative models such as 

artificial neural networks (ANNs) [20, 21] and support vector 

machines (SVMs) [22, 23] model the boundary between 

speakers.  

In open-set applications (speaker verification and open-set 

speaker identification), the estimated features can also be 

compared to a model that represents the unknown speakers. In 

a verification task, the pattern matching module outputs a 

similarity score between the test sample and the claimed 

identity. In an identification task, it outputs similarity scores 

for all stored speaker models. 

The decision engine module analyzes the similarity score(s) 

(statistical or deterministic) to make a decision. The decision 

process is related to the task. For closed-set identification task, 

the decision engine can just select the identity associated with 

the model that is the most similar to the test sample. In open-
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set applications, the systems can also require a threshold to 

verify whether the similarity is valid. Since open-set 

application can also reject speakers, the cost of making an 

error should also be considered in the decision process. For 

example, it is more costly for a bank to allow an impostor 

(false acceptance) to withdraw money, than to reject a true 

bank customer. 

The effectiveness of a speaker recognition system is 

measured differently for different tasks. Since the output of a 

closed-set speaker identification system is a speaker identity 

from a set of known speakers, the identification accuracy is 

used to measure the performance. For the open-set systems, 

there are two types of error: false acceptance of an impostor 

and false rejection of a known speaker. The performance 

measure can also incorporate the cost associated with each 

error. The performance of a speaker diarization system is 

measured by diarization error rate (DER) [3]. It is expressed 

in terms of the miss (speaker in reference but not in 

hypothesis), false alarm (speaker in hypothesis but not in 

reference), and speaker-error (mapped reference speaker is 

not the same as the hypothesized speaker) rates. The overall 

DER is the sum of these three components. 

In summary, a general speaker recognition system consists 

of two key modules: feature extraction and classification. The 

classification module needs the extracted features from the 

feature extraction module. The feature extraction module is 

crucial in any speaker recognition systems. In the following 

sections we will overview different front-end features for 

robust speaker recognition.  

III. OVERVIEW OF LOW-LEVEL FEATURES 

Speech signal includes many features that are useful for 

speaker discrimination. Humans rely on such different types 

or levels of information in the speech signal to recognize 

others. We can roughly categorize these features into a 

hierarchy running from low-level features to high-level 

features. Low-level features are generally related to physical 

traits of a speaker’s vocal apparatus. Short-term spectral 

features, as the name suggests, are computed from short 

frames of about 20-30 milliseconds in duration. They are 

usually descriptors of the short-term spectral envelope which 

is an acoustic correlate of timbre, i.e. the “color” of sound, as 

well as the resonance properties of the supra-laryngeal vocal 

tract. High-level features are generally related to a speaker’s 

learned habits and style, such as particular word usage or 

idiolect. While all of these levels appear to convey useful 

speaker information, automatic speaker recognition systems 

have relied almost exclusively on low-level information via 

short-term features related to the speech spectrum until the 

SuperSID project [24] at the 2002 JHU Summer Workshop. 

We have discussed the characteristics that an ideal feature 

should have in previous section. From the practical point of 

view, the number of dimensions of features should be also 

relatively low. Traditional statistical models such as the 

Gaussian mixture model [16, 17] cannot handle high-

dimensional data. The number of required training samples 

for reliable density estimation grows exponentially with the 

number of features. Normally low-level features also have 

low dimensionality. The low-level features are still the most 

popular speaker features in current state-of-the-art speaker 

recognition systems. In this section, we overview some 

selected low-level features.  

A. MFCC 

Mel Frequency Cepstral Coefficients (MFCCs) have been the 

most popular low-level features for speaker recognition and 

speech recognition systems. The Mel-Frequency Cepstrum 

(MFC) is a representation of the short-term power spectrum 

of a signal, based on a linear cosine transform of a log power 

spectrum on a nonlinear mel scale of frequency. MFCCs are 

coefficients that collectively make up an MFC. The difference 

between the normal cepstrum and the mel-frequency cepstrum 

is that in the MFC, the frequency bands are equally spaced on 

the mel scale, which approximates the human auditory 

system's response more closely than the linearly-spaced 

frequency bands used in the normal cepstrum. This frequency 

warping can allow for better representation of signal, for 

example, in audio compression. Fig. 2 shows the computation 

flow chart of MFCCs: 

 Take the Fourier transform of a signal in a window. 

 Map the power/magnitude spectrum obtained above onto 

the mel scale, using triangular overlapping windows. 

 Take the logs of the powers at each of the mel 

frequencies. 

 Take the discrete cosine transform of the list of mel log 

powers. 

 The final MFCC features are the amplitudes of the 

resulting spectrum. 

 

 
 

Fig. 2: Computation flow chart of MFCCs 

 

There can be variations on this process, for example, 

differences in the shape or spacing of the windows used to 

map the scale [25].  

Different types of low-level features have been proposed in 

the speaker recognition area with the motivations to improve 

the performance of MFCC baseline systems. Some features 

aim at improving performance under noisy conditions, such as 

Minimum Variance Distortionless Response (MVDR) and 

Mean Hilbert Envelope Coefficients (MHEC) features etc. 

Some features aim at improving performance on reverberant 

speech, such as Frequency Domain Linear Prediction (FDLP) 

features etc. Some features are motivated by providing 

complementary information that have been missed by MFCC 

features, such as Spectral Centroid Frequency (SCF), Spectral 

Centroid Magnitude (SCM), Fundamental Frequency 

Variation (FFV), Harmonic Structure Cepstral Coefficients 

(HSCC) features etc. We will overview these representative 

low-level features in the following sub-sections. 



B. MVDR 

Minimum Variance Distortionless Response (MVDR) [26] is 

a method for estimating a smoothed version of a signal’s 

power spectrum. It is formulated as a filter design problem. Its 

warped version, warped MVDR (WMVDR) [27], is used to 

replace the FFT and filterbank steps in the extraction of 

MFCCs. 

Suppose we have a signal x[n], whose power spectrum is 

 jweS . We want to estimate  jweS   at a specific frequency 

foiw . To do this, we design a M-th order moving-average 

filter, whose coefficients are Mhhh ,,, 10  (they can be 

complex), and whose frequency response is  jw
w eH

if
. We 

want this filter to let the signal at frequency foiw  pass 

unchanged, while suppressing other frequencies as much as 

possible. To be precise, we minimize the energy that gets 

through when ][nx  is fed into the filter (minimum variance), 

under the constraint that the filter response at the specified 

frequency  jw
w eH

foi
 is equal to 1 (Distortionless). 

Define two vectors: 

T
Mhhhh ],,,[ 10        (1) 

  TjMwjwjw eeeV ],,,1[        (2) 

Then the problem can be formulated as to minimize 

hhH subject to  

1




 heV foijwH       (3) 

where  is an )1()1(  MM  Toeplitz autocorrelation 

matrix of the input signal ][nx  (we assume that ][nx  is real): 

   nx jnxinxjiRji ][][]),(  

Using Lagrangian multipliers, we can solve the coefficients of 

the optimal filter: 
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By substituting (4) into the objective function in (3), we can 

get the output energy of the filter centered at foiw : 
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The higher the filter order M, the better  jweE  will 

approximate  jweS , but it is always a “smoothed” version. 

Alternatively, when the filter order M is not very high, we can 

think of the output energies at a series of frequencies as the 

output energies of a filterbank. In order for MVDR to replace 

the spectrum estimation and filterbank steps in the MFCC 

extraction procedure, however, we still need frequency 

warping. Frequency warping is achieved with a bilinear 

transform: 

1
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The relationship between the original frequency and the 

warped frequency is shown in Fig. 3. In the case of  0 , if 

we pick a series of warped frequencies kw~   at equal intervals, 

the distribution of unwarped frequencies kw  will approximate 

the center frequencies of the Mel filterbank used in MFCC. At 

a sampling rate of 8 kHz, the warp factor 3624.0  gives the 

best approximation of the Mel scale [28]. 

 

 
Fig. 3: Relationship between original and warped frequencies for different 

warp factors 
 

We do not directly estimate  wS  at the frequency kw , 

because if we do so, the bandwidths of the filters would be the 

same, which would not give different resolutions in different 

frequency bands. Instead, we try to construct a warped signal 

whose power spectrum is a warped version of that of ][nx . 

Such a signal, however, would be infinite in time; therefore it 

would be hard to calculate its autocorrelation function 

accurately. But there’s a trick available. The traditional 

autocorrelation function is defined as: 

 
n n

i
x nxDnxinxnxiR ][][][][][        (7) 

where D  is the delay operator, expressed as 1z  in the z-

domain. We can replace it with a “warped delay operator” D
~

, 

whose z-domain expression is given by the bilinear transform 

(Eq. (6)), to define a “warped autocorrelation function”: 


n

i
x nxDnxiR ][

~
][][

~
               (8) 

The time-domain sequence corresponding to this 

autocorrelation function is hard to solve for, but we have 

found by experiment that the power spectrum of this signal, 

 wjeS
~~

, satisfies    dweSwdeS jwwj ~~ ~
 

If we do the MVDR estimation on the warped frequency scale 

at a series of kw~  at equal intervals, we will have constructed a 

series of warped filters  wj
w eH

k

~
~

~
 with equal bandwidths. Their 

unwarped counterparts,    wj
w

jw
w eHeH

kk

~
~

~
 , will have 

unequal bandwidths exactly like the Mel filterbank used in 

MFCC extraction. The energy values given by the warped 

MVDR will be equal to the output energies of the filterbank 

 jw
w eH

k
 on the unwarped scale: 
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Now the warped MVDR can replace the spectrum estimation 

and filterbank in MFCCs completely. 

Let 
~

 be the warped Toeplitz autocorrelation matrix: 

  
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These values are passed through the log compression and 

DCT steps, and the resulting feature is called the warped 

minimum variance distortionless response (WMVDR) feature. 

Previous experiments [28, 29] have shown that WMVDR 

features achieved better performance than MFCC features for 

speaker and speech recognition under noisy conditions. 

C. FDLP 

Frequency domain linear prediction (FDLP) was proposed in 

[30] to improve the speech recognition performance on the 

reverberant speech. It is applied to improve speaker 

recognition performance when speech is corrupted by 

reverberation in [31]. Since reverberation is a long-term 

phenomenon, techniques based on short-term spectra 

generally result in worse performance as the models trained in 

clean environments fail to match the reverberant test 

conditions. A number of feature compensation techniques 

have been proposed in the past for speaker verification 

systems (for example, feature warping [32], RASTA 

processing [33] and cepstral mean subtraction (CMS) [34]). 

Although these techniques provide good improvements for 

short-term distortions like telephone channel conditions, they 

fail to suppress the long-term artifacts caused by room 

reverberation.  

FDLP uses gain normalized temporal trajectories of sub-

band energies to compensate for the room reverberation 

artifacts. Hilbert envelopes of sub-band signals are estimated 

by applying linear prediction in the frequency domain. For the 

reverberant speech, the sub-band Hilbert envelopes can be 

assumed to be a convolution of the sub-band Hilbert envelope 

of the clean speech with the sub-band Hilbert envelope of the 

room impulse response [30]. When linear prediction is 

applied in the frequency domain, the Hilbert envelope 

convolution model suggests that the artifacts present in 

reverberant speech affect the gain of the sub-band temporal 

envelopes. This causes the mismatch between the features 

trained from clean and reverberant environments. In order to 

reduce the mismatch, the proposed FDLP technique 

normalizes the gain of the auto-regressive (AR) models in 

narrow frequency bands. Gain normalization of the sub-band 

envelopes provides reasonable suppression of the reverberant 

artifacts in speech. The gain normalized sub-band envelopes 

are then integrated into short time frames (for example: 32ms 

with a shift of 10ms as in [31]) using a Hamming window. 

The frequency axis of the multiple linear sub-bands (96 sub-

bands as in [31]) is warped according to the mel-scale. The 

output of the integration process provides a gain normalized 

mel-scale energy representation of speech similar to the mel-

spectrogram obtained in conventional MFCC feature 

extraction. These mel-band energies are converted to cepstral 

coefficients by using a log operation followed by a DCT. Fig. 

4 shows the FDLP feature extract flow chart. The procedure 

of gain normalization followed by the integration of the sub-

band envelopes provides short-term mel-band energies that 

are similar to the mel-spectrogram in MFCC feature 

extraction. Thus it can be viewed as a pre-processing 

mechanism for the MFCC features to improve robustness in 

reverberant environments. 

 

Fig. 4: Computation flow of FDLP [31] 

Fig. 5 illustrates the comparison of MFCC features with 

CMS and FDLP features with gain normalization [31]. It plots 

C0 for MFCC features and FDLP features. In these plots, 

MFCC features are processed with CMS and the FDLP 

features are derived from gain normalized sub-band envelopes. 

FDLP features show better invariance to telephone distortions 

as well as reverberant artifacts compared to MFCC features. 

The automatic speech recognition results in [30] and speaker 

verification results in [31] have proved that FDLP features 

can provide significant improvements under reverberant 

conditions.  

 

Fig. 5: Comparison of CMS for MFCC and gain normalization for FDLP [31] 

D. MHEC 

Mean Hilbert Envelope Coefficients (MHECs) feature is a 

type of new acoustic feature proposed in [35]. They were 

reported to perform better than traditional MFCC features 

under noisy conditions with different noise types and noise 

levels. They even display immunity to car noise: at an SNR of 

0 dB, the identification accuracy of MFCC-based system 

drops to below 10%, while that of MHEC-based system stay 

above 90% [35].  



 

Fig. 6: Computation flow chart of MHECs 

The steps to extract MHEC features from a speech signal 

are shown in Fig. 6. First, the speech signal is passed through 

a Q-channel Gammatone filterbank. The output of this is Q 

channels of time-domain signals. Second, the Hilbert 

envelope of the signal in each channel is calculated. Let the 

signal in channel j be  jns , , and its Hilbert transform  jns ,ˆ , 

then the analytic signal corresponding to  jns ,  is: 

     jnsijnsjnsa ,ˆ,,       (11) 

The Hilbert envelope of  jns ,  is defined as the modulus of 

this analytic signal: 

     jnsjnsjne ,ˆ,, 22            (12) 

Next, the signals  jne ,  are blocked into frames, and the 

mean Hilbert envelope at frame t in channel j is calculated as: 

     jnNsnw
N

jtE t

N

n

,
1

,
1

0

 
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      (13) 

where tN  is the starting sample of frame t, N is the frame 

length, and  nw  is a Hamming window of length N. The 

mean Hilbert envelope values  jtE ,  are compressed with 

logarithm, and normalized by the long-time average in each 

channel: 

 
 
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
T

t

n

jtE
T

jtE
jtE

1
log

log

,
1

,
,                 (14) 

Finally, a DCT is applied to the normalized values  jtEn ,  

to produce the MHEC features. 
Let us analyze why MHEC should outperform MFCC. 

Let’s look at how their extraction procedures differ. Two 

steps in their extraction procedures are the same: log 

compression and DCT. For MHEC, there’s a normalization 

step (Eq. (14)) in between. We suspect that a subtraction 

should be used instead of division in Eq. (14), since it doesn’t 

make sense to divide log values. If we change it to subtraction, 

this step is interchangeable with the DCT, because DCT is a 

linear transform. Then we can see that the normalization step 

is exactly CMS, so we can consider it as a post-processing 

step and exclude it from the feature extraction procedure itself. 

Now the last two steps for extracting MFCCs and MHECs 

are identical. The input to the identical steps can be 

considered as an energy map across the frames and the 

channels, and the difference between MFCC and MHEC is 

just how this energy map is constructed. Two major 

differences can be seen immediately: 

 MFCC goes into the frequency domain immediately 

with the STFT, while MHEC stays in the time domain. 

 The filterbanks used by MFCC and MHEC are 

different. Although both the Mel filterbank and the 

Gammatone filterbank use a warped frequency scale to 

give lower frequencies higher resolution, the scale 

used by the Gammatone filterbank is more warped 

than the Mel scale. Also, since the Gammatone 

filterbank is implemented in the time domain, the 

filters are not perfect triangles in the frequency domain, 

but rather bells with the tails overlapping a lot with 

neighboring channels. 

The last thing to contemplate is the Hilbert transform step 

in the extraction of MHECs. The Hilbert transform is simply a 

filter if viewed in the frequency domain, whose transfer 

function is: 
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Then the filter that produces an analytic signal from a real 

signal is: 
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This indicates that the analytic signal has exactly twice as 

much energy as the real signal. The Hilbert transform step 

now seems useless, because if we simply dropped it, all that 

would happen is that the energy map would be divided by 2. 

But this is not accurate since there are other details involved: 

the mean Hilbert envelope doesn't have a square in its formula, 

so it's not exactly a representation of the energy; also, the 

Hilbert transform is applied to the entire signal instead of 

frame by frame. These facts may be a third factor that 

contributes to the difference of MHEC and MFCC. 

We have identified three differences between MHEC and 

MFCC, but it is hard to say which one produces the benefit in 

MHEC. Very good noise robustness of MHEC features were 

reported in [35]. The authors also extended this type of 

feature for dealing with robust speaker recognition under 

reverberant mismatched conditions. More details can be found 

in the [36]. 

E. SCF/SCM 

Although MFCC is the most popular feature used in speaker 

recognition systems, it doesn’t capture all the information 

contained in the acoustic signal. For example, while it 

integrates the energy in each channel of the filterbank, it 

ignores the distribution of the energy within a channel. 

Therefore, the information contained in small oscillations in 

the fundamental frequency of the speech, which may reflect 

idiosyncrasies of the speaker, is totally lost. This is usually 

made up by using frequency modulation (FM) features. 

However, FM features are computationally expensive. In 

order to make use of the complementary information and to 

avoid high computational cost at the same time, a pair of new 

acoustic features, spectral centroid frequency (SCF) and 

spectral centroid magnitude (SCM) were proposed in [37]. 

 

 
Fig. 7: Computation flow chart of SCF/SCM 



 

The procedure to extract SCF and SCM are shown in Fig. 7. 

The steps up to “filterbanks” are identical to MFCC. The next 

two blocks calculate the “spectral centroid frequency” kF and 

“spectral centroid magnitude” kM  in each channel k, frame 

by frame, as follows: 
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Here S is the spectrum of the frame, f is the frequency at each 

point of the spectrum, kl  and ku  are the lower and upper 

bound of the frequency range of the k-th channel, and kw  is a 

triangle window spanning from kl  to ku  in the frequency 

domain. In plain words, kF  is the magnitude-weighted 

average frequency in the k-th channel, and kM  is the 

frequency-weighted average magnitude. The spectral centroid 

frequencies make up the SCF features directly. The spectral 

centroid magnitudes are then passed through log compression 

and DCT, just like in MFCC, to produce the SCM features. 

SCF features can describe the bias of the distribution of the 

energy in the channels. This can provide complementary 

information to MFCC. On the other hand, SCM features are 

almost the same as MFCC, except that the magnitudes at each 

frequency point within a channel are weighted with the 

frequency before being added up. In [37] evaluation on the 

NIST 2006 database using a fusion of SCM-based and SCF-

based subsystems, demonstrated relative improvements of 

13% over the performance of an MFCC-only system. This 

supports the hypothesis that the combination of SCM and 

SCF carries more information than MFCC alone. SCF was 

also shown to perform significantly better than the previously 

proposed sub-band spectral centroid and frame-averaged FM 

features, such as [38, 39], for speaker recognition. 

F. FFV 

Fundamental Frequency (F0) features have been applied to 

the speaker recognition task in one of three main ways. Most 

commonly, global utterance-level statistics, such as mean and 

standard deviation, are estimated and compared between two 

utterances [40]. However, such statistics do not capture the 

shape of the F0 trajectory in time, a limitation which has been 

addressed in part through the inclusion of dynamic features in 

the feature vector [41]. A second approach to modeling F0 for 

speaker recognition aims to explicitly represent the F0 

trajectory in time. Pitch contours between any two renderings 

of the same lexical content can be compared using dynamic 

time warping [42]. This approach is limited to text-dependent 

speaker recognition applications. Its extension to text-

independent applications [43], comprising the third approach 

we mention, relies on the availability of a speech recognition 

system and requires a considerable amount of training data. In 

theory, when these requirements are met, the approach allows 

for the inference of conditional F0 feature densities, given 

other features such as energy trajectories or specific lexical 

contexts.  

Instantaneous variation in pitch is normally computed by 

determining a single scalar, the fundamental frequency (F0), 

at two temporally adjacent instants and forming their 

difference. F0 represents the frequency of the first harmonic 

in a spectral representation of a frame of audio, and is 

undefined for signals without harmonic structure. In the 

context of speech processing applications, the localization of 

the first harmonic, and the subsequent differencing of two 

adjacent estimates, may be suboptimal feature compression 

and premature inference, since the goal of such applications is 

not the accurate estimate of pitch. In [44-46], a frame-level 

vector representation of the instantaneous change in F0, 

known as the fundamental frequency variation (FFV) 

spectrum was introduced. In particular, they leverage the fact 

that all harmonics are spaced equally in each of the two 

adjacent frames, and use every element of a spectral 

representation to yield a representation of the F0 delta. Unlike 

F0, the FFV spectrum remains well defined in the absence of 

voicing, and eliminates the need to localize a unique peak 

corresponding to the fundamental frequency, a process which 

is prone to error. In plain words, FFV spectrum estimates the 

fundamental frequency variation without estimating F0 

directly. Fig. 8 illustrated the FFV spectrum computation 

paradigm. 

 

 
Fig. 8: Illustration of FFV spectrum computation 

 

The experiments presented in [44] showed that FFV 

spectrum is suitable for standard Gaussian mixture modeling 

(GMM). Also, for speaker recognition, FFV information is 

complementary to that in standard frame-level MFCCs. 

Model-based combination with a GMM-FFV system reduces 

the classification error rate of the baseline GMM-MFCC 

system by 40-54%. 

G. HSCC 

In [47], it is argued that the estimation of pitch, an argmax 

operation in a transformed domain, does not serve the needs 

of speaker recognition. Those pitch errors which are 

considered most egregious may actually be just as speaker-



discriminative as is pitch itself, if not more so. From a 

systems engineering perspective, the result is that the speaker 

discriminative information which pitch estimators may first 

compute, but then suppress or discard in the service of a better 

argmax hypothesis, is never made available to downstream 

components. As one would expect, that information appears 

to be mostly unrecoverable even in the face of costly and 

arcane modeling efforts. So the goal is to reverse all these 

information.  

 
Fig. 9: Illustration of HSCC computation 

 

Conceptually and functionally, the harmonic structure 

transform is related to the fundamental frequency variation 

(FFV) spectrum applied to speaker recognition in [44]. The 

FFV algorithm compares the FFT spectrum to a synthetic FFT 

spectrum, namely the frequency-dilated version of the true 

FFT spectrum from the preceding speech frame, over a range 

of logarithmically-spaced dilation factors. This yields a search 

space; nominally, its argmax is the relative change in F0 

expressed in octaves per second. Here, the Harmonic 

Structure Cepstral Coefficients (HSCC) computation 

compares the FFT spectrum to another idealized FFT 

spectrum, namely the discrete-frequency comb filter with 

known F0, over a range of linearly-spaced F0 values. This 

also yields a search space; nominally, its argmax is the 

absolute F0 expressed in Hertz. For speaker recognition in 

[47], the entire search space is modeled rather than its argmax. 

Fig. 9 illustrates the computation paradigm of HSCC.  

Experimental results in [47] have shown that HSCC 

features achieve comparable performance to an MFCC 

baseline under matched-channel and matched-multisession 

nearfield conditions. In contrast to prosodic features 

elsewhere, HSCCs are simple to compute, simple to model, 

and appear to require neither segmentation nor large 

quantities of training material. The HSCC feature space offers 

a paradigmatic shift in the processing of prosody for speaker 

recognition, and possibly for other speech processing tasks. 

The effectiveness of HSCC features under mismatched far-

field conditions are to be investigated. 

H. Multitaper MFCC 

Multitaper is a technique for robust estimation of the power 

spectrum of a frame of acoustic signal [48]. In the standard 

procedure of MFCC extraction, the power spectrum is 

estimated by taking the square of the DFT spectrum of a 

windowed frame. Usually the Hamming window is used to 

suppress the sidelobes. Although the power spectrum obtained 

this way well preserves the information contained in the 

frame of signal, it also captures the variance. Therefore such 

power spectra usually look peaky, and vary greatly from 

frame to frame even when the acoustic signal stays relatively 

stationary. The multitaper technique in [49] addresses this 

problem by taking the average of multiple power spectra 

estimated with different window functions (also called 

“tapers”). This is inspired by the simple statistical fact that if a 

random variable X has a variance of 2 , the average of n 

independent samples of X only has a variance of n/2 . The 

price paid for smaller variance is decreased frequency 

resolution, but for MFCC extraction, the frequency resolution 

is less important because the spectrum will be integrated by 

subbands anyway. 

Fig. 10 compares the multitaper spectrum estimation for 

analysis of speech under additive factory noise corruption 

with the traditional single window/taper method [49]. The left 

panel shows spectrum estimate using the conventional single-

taper (Hamming window) method whereas the right panel 

shows spectrum estimate using multipeak tapers with k = 6 

tapers. The single-taper spectrum contains more details and 

shows large difference between the clean and the noisy frame. 

The multitaper spectra, in turn, are smooth and look visually 

more similar between the clean and the noisy version. This 

shows that the multitaper method achieves smaller variance. 

 

 
Fig. 10: Comparison of single window and multitaper methods under 

additive noise [49] 

 

There exist several types of multitapers, such as Thompson, 

Multipeak, and SWCE (sine-weighted cepstral estimator), 

optimized for different criteria. In [49], the performances of 

these types of multitapers, as well as the optimal number of 

tapers, are investigated in a speaker verification task. The 

conclusion is that Multipeak and SWCE tapers are better than 

Thompson tapers, and the optimal number of tapers lies 

between 4 and 8. In summary, Multitapers are simple and 

robust alternative for the conventional single-window 

methods. 



IV. OVERVIEW OF HIGH-LEVEL FEATURES 

The speaker-specific information is the result of complex 

transformations occurring at different levels of the speech 

production: semantic, linguistic, articulatory, and acoustic [2, 

50]. Humans rely on these several different types or levels of 

information in the speech signal to recognize others from 

voice alone. These can be the obvious nasality of a voice, a 

unique laughter, or the particular repeated word usage etc. In 

the previous section we overviewed the low-level features, 

which extract information at the acoustic level that deals with 

the spectral properties of the speech signal. For example, the 

dimensions of the vocal tract, or length and mass of vocal 

folds will define in some sense the fundamental and resonant 

frequencies, respectively. High level features 

capture speaker‐specific linguistic and behavioral aspects not 

reflected at the cepstral level. While there is a long tradition 

of exploring higher-level features for speaker recognition – 

especially the use of pitch and other prosodic markers [51-

53]) – systems incorporating them generally require 

significantly more data for adequate training or impose other 

constraints, such as text-dependency. In 2001, in response to 

growing interest in the use of higher-level features, NIST 

introduced the Extended Data task [54] based on the 

Switchboard-I corpus of conversational telephone speech. 

Unlike the traditional speaker recognition tasks, the Extended 

Data task provided multiple whole conversation sides for 

speaker training (for up to about 45 minutes of speech) and 

tested on whole conversation sides, thus enabling research on 

larger-scale features. The SuperSID team [24] at the Johns 

Hopkins 2002 Summer Workshops assembled to 

systematically explore a wide range of features for speaker 

recognition. These new sources of information have shown 

the promise not only for improvement in basic recognition 

accuracy by adding complementary knowledge, but also the 

possibility for robustness to acoustic degradations from 

channel and noise effects.  

In this section we will overview several types of high-level 

features including prosodic features, phone features, lexical 

features, and cepstral derived features. 

A. Prosodic Features 

Prosodic features have been used for speaker recognition for a 

long history [41, 42]. With the continual advancement of tools 

(such as phone and speech recognition systems), increasingly 

large amounts of speech from a speaker, researchers have 

explored diverse collection of prosodic features for speaker 

recognition spanning many types of pitch, energy, duration, 

and the combination of them all.  

In [55], the authors proposed two approaches for exploring 

prosodic features: 1) Pitch and Energy Distributions, a feature 

vector consisting of per-frame log pitch, log energy, and their 

first derivatives was used for speaker verification; 2) Pitch 

and Energy Track Dynamics, the aim was to learn pitch and 

energy gestures by modeling the joint slope dynamics of pitch 

and energy contours. A sequence of symbols describing the 

pitch and energy slope states (rising, falling), segment 

duration, and phoneme or word context is used to train an n-

gram classifier. This combined well with absolute pitch and 

energy distributions in 1), indicating it is capturing new 

information about the pitch and energy features. 

In [56], a collection of (19) prosodic statistics from 

duration and pitch related features, such as mean and variance 

of pause durations and F0 values per word, were extracted 

from each conversation side. These feature vectors were used 

in a k-nearest neighbor classifier for speaker verification and 

the experimental results again indicate that prosodic features 

are useful and provide new information for speaker 

recognition.  

In [57], a more advanced paradigm for the extraction of 

prosodic features from speech was presented. Syllables are 

estimated automatically using the output of an automatic 

speech recognition (ASR) system, and more than a hundred 

measurements based on pitch and energy signals, along with 

the duration of the syllable and its constituents (onset, nucleus, 

and coda) are extracted over each syllable. These features are 

called syllable-based NERFs (non-uniform extraction region 

features), or SNERFs. The extracted features have some 

particular characteristics that make them harder to model than 

the standard spectral features: they have mixed 

continuous/discrete distributions, they are much sparser than 

low-level features, and they have undefined values. A system 

based on these features has been the best performing prosodic 

system on NIST speaker recognition evaluation (SRE) data 

published in the speaker recognition literature, since its 

introduction in 2005. Despite its success, these syllable-based 

features have not been widely used in the community, mainly 

because they are not simple to extract. They require ASR 

output and, even though they are all basically simple 

measurements over the pitch, energy and duration patterns, 

their implementation is laborious. In [58], a simplified version 

was proposed which uses ASR-independent regions based on 

the valleys found in the energy signal and uses polynomial 

approximations of the pitch and energy signals, along with the 

length of the regions. The features are not only simpler in 

extraction, they are also simpler to model since they are all 

continuous and do not contain undefined values. This makes 

the Joint Factor Analysis (JFA) modeling of these features 

possible. 

B. Phone Features 

Phone features are also known as acoustic tokenization 

features or phonetic features [59]. It generally employs 

unconstrained phone recognition essentially as a means by 

which to discretize the acoustic space and enable acoustic 

sequence modeling. In [60], an alternative acoustic 

tokenization approach using GMM-generated events was 

proposed. The “phonetic” speaker models capture an 

assortment of speaker-dependent factors, including spectral 

characteristics, pronunciation idiosyncrasies, and lexical 

preferences, and can therefore be difficult to interpret. The 

basic approach builds the speaker specific and universal 

background phone N-gram models based on the best phone 

decoding hypothesis and then evaluates likelihood ratios of 

speaker specific and universal phone N-gram models [61]. In 

this approach, the time sequence of phones coming from a 



bank of open-loop phone recognizers is used to capture some 

information about speaker-dependent pronunciations. Results 

can be improved by running several language-dependent or 

gender-dependent phone recognizers. Multiple phone streams 

are scored independently and fused at the score level. A 

refinement approach in [62] improved this approach by 

replacing phone N-gram with binary decision tree. With a 

binary tree, it is possible to use large context without 

exponential memory expansion. It is also easier to run some 

adaptation and recursive smoothing techniques on the binary 

decision tree that are important for sparse data sets. Improved 

approach in [63] examines capturing cross-stream information 

from the multiple phone streams simultaneously. 

Improvements can also be obtained by modeling not just the 

top hypothesized phone sequence from the recognizer, but 

rather the expected phone N-gram frequencies extracted from 

phone recognition lattices [64]. In [65], lattice-based phone 

N-gram frequency modeling is combined with word 

conditioning. The phone N-grams occurring in specific words 

and frequent phrases are tallied and assembled into a more 

detailed feature vector that is modeled by SVMs. In [66], a 

unique combination of phone- and word-based modeling is 

described, trying to learn speaker-dependent pronunciations. 

The output of an unconstrained phone recognizer is time-

aligned with the phone sequence from a word recognizer, and 

the conditional probabilities of the former given the latter are 

modeled. Another important advance in high-level phonetic 

speaker recognition was the use of SVMs instead of 

likelihood models to model phone N-gram frequencies [67]. 

Although approaches based on unconstrained phone 

recognition get about 2 to 3 times the EER of the best cepstral 

systems, they can provide substantial gains when combined 

with the low-level cepstral features.  

C. Lexical Features 

Lexical features (a speaker’s preference of word usages) are 

one of the earliest types of higher-level features explored for 

speaker recognition. Early work in authorship authentication 

tried to use lexical N-gram statistics to discriminate different 

authors.  The approach did not produce a significant gain at 

the time, presumably because of the brief training and test 

samples used in task definitions at the time.  

 

 
Fig. 11: Illustration of speaker information captured by bigrams [68] 

 

However, under the extended data condition, it was found 

in [68] that rates of idiosyncratic word N-grams (for example, 

“how shall”, as shown in Fig. 11) could be used to help 

discriminate speakers.  

In the improved approach presented in [69], the relative 

frequencies of frequent word unigrams, bigrams, and trigrams 

are obtained and assembled into a feature vector that is 

modeled by SVMs. More recently, the approach has been 

extended to encode the duration (slow/fast) of frequent word 

types as part of the N-gram frequencies [70]. This technique 

explicitly models both N-gram frequencies and word 

durations. It can be considered to capture lexical, 

pronunciation, and prosodic characteristics of the speaker 

simultaneously. Lexical features have also proved to provide 

additional gains when combined with cepstral features.  

D. Cepstral-derived Features 

Speaker recognition systems based on low-level cepstral 

features are usually the best performing systems.  In [71], the 

MLLR approach was proposed. This approach is based on 

Cepstral-derived features. It uses speaker-specific model 

adaptation transforms from a speech recognizer (either phone 

or word level) as features, modeled by a support vector 

machine (SVM). Instead of cepstral features, it uses the 

difference between speaker-adapted Gaussian means and 

corresponding speaker-independent means as features. This 

difference is expressed as the coefficients of an affine 

transform that rotates and shifts the speaker-independent 

model to obtain a speaker-dependent model, computed with 

maximum likelihood linear regression. Furthermore, the 

Gaussian models used in this approach are not unstructured 

GMMs but the detailed context-dependent phone models used 

in a speech recognizer, making the resulting features text 

independent. This approach has the advantage that features 

are text independent while being shared among all instances 

of a given phone, thus avoiding the data fragmentation 

implied by the conditioning on words. Transforms specific to 

different phone classes are combined for greater 

representational detail. Experimental results have shown that 

although the MLLR transform features cannot perform better 

than the conventional Cepstral features, they can provide 

substantial gains when combined with the latter [72]. This 

shows that cepstral-derived high-level features can provide 

complementary information.  

V. CONCLUSIONS 

What is it in the speech signal that conveys speaker identity? 

This is one of the central questions addressed by automatic 

speaker recognition research. Speaker feature extraction is 

certainly one of the most important components in any 

speaker recognition systems. It is pretty obvious that we 

(humans) rely on several different types or levels of 

information in the speech signal to recognize others from 

voice alone. We can roughly categorize the speaker features 

into low-level features, related to physical traits of the vocal 

apparatus, and high-level features, related to learned habits 

and style. We have overviewed several types of low-level 



features and high-level features in this paper. Which features 

should one use? There are no standard rules for choosing 

among different features. It depends on the intended 

application, computing resources, amount of speech data 

available (for both development purposes and in run-time) 

and whether the speakers are cooperative or not. For 

beginners in speaker recognition research area, the short-term 

spectral features would be a good choice since they are easy 

to compute and yield good performance. High-level features 

are believed to be more robust because they are related to 

speaker’s learned habits and style, which normally not be 

affected by noises. However, High-level features also require 

considerably more complex front-end, such as automatic 

speech recognizer, and thus more training data to build a 

reliable system.  

In conclusion, there does not exist globally “best” feature 

for speaker recognition yet, but the choice is a trade-off 

between speaker discrimination, robustness, and practicality. 

Fusion of multiple features often provides additional gains. 
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