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Abstract— In this paper, I will introduce to the APSIPA 

audience an emerging area of machine learning, deep-structured 

learning. It refers to a class of machine learning techniques, 

developed mostly since 2006, where many layers of information 

processing stages in hierarchical architectures are exploited for 

pattern classification and for unsupervised feature learning.  

First, the brief history of deep learning is discussed. Then, I 

develop a classificatory scheme to analyze and summarize major 

work reported in the deep learning literature. Using this scheme, 

I provide a taxonomy-oriented survey on the existing deep 

architectures, and categorize them into three types: generative, 

discriminative, and hybrid. Two prime deep architectures, one 

hybrid and one discriminative, are presented in detail. Finally, 

selected applications of deep learning are reviewed in broad 

areas of information processing including audio/speech, 

image/video, multimodality, language modeling, natural 

language processing, and information retrieval. 

I. INTRODUCTION 

Today, signal processing research has a significantly widened 

scope compared to just a few years ago, and has encompassed 

many broad areas of information processing (Deng, 2008). In 

particular, machine learning has become an important 

technical area of the IEEE signal processing society. Since 

2006, deep structured learning, or more commonly called 

deep learning, has emerged as a new area of machine learning 

research (Hinton et al., 2006). Within the past few years, the 

techniques developed from deep learning research has already 

been impacting a wide range of signal and information 

processing work within the traditional and the new, widened 

scopes (Yu and Deng, 2011). A series of workshops, such as 

the 2011 ICML Workshop on Learning Architectures, 

Representations, and Optimization for Speech and Visual 

Information Processing, the 2011 Learning Workshop, the 

2009 ICML Workshop on Learning Feature Hierarchies, the 

2009 NIPS Workshop on Deep Learning for Speech 

Recognition and Related Applications, the 2008 NIPS Deep 

Learning Workshop, as well as the special section on Deep 

Learning for Speech and Language Processing in IEEE 

Transactions on Audio, Speech, and Language Processing (to 

appear in January 2012) have been devoted exclusively to 

deep learning and its applications to various classical and 

expanded signal processing areas. We have also seen the 

government sponsored research on deep learning; e.g., the 

DARPA deep learning program (DARPA, 2009). The author 

has been directly involved in organizing several of the events 

above, and has seen the emerging nature of deep learning; 

Hence the need for providing an overview article here.  

Deep learning refers to a class of machine learning techniques, 

where many layers of information processing stages in 

hierarchical architectures are exploited for pattern 

classification and for unsupervised feature learning.  It is in 

the intersection among the research areas of neural network, 

graphical modeling, optimization, pattern recognition, and 

signal processing. Two important reasons for the popularity of 

deep learning today are the significantly lowered cost of 

computing hardware and the drastically increased chip 

processing abilities (e.g., GPU units).   

 

This overview paper, as the companion material to the invited 

tutorial, is aimed to introduce the tutorial audience and the 

readers of this article to the emerging technologies enabled by 

deep learning. I also attempt to provide a comprehensive 

review on the research work conducted in this exciting area 

since the birth of deep learning in 2006 which is of direct 

relevance to signal and information processing. Future 

research directions will be discussed to attract interests of and 

to solicit efforts from more signal processing researchers, 

students, and practitioners in this emerging area for advancing 

signal and information processing technology and 

applications. 

II.      DEEP-STRUCTURED LEARNING --- A BRIEF       

HISTORICAL ACCOUNT 

Until recently, most machine learning and signal processing 

techniques had exploited shallow-structured architectures. 

These architectures typically contain a single layer of 

nonlinear feature transformations and they lack multiple 

layers of adaptive non-linear features. Examples of the 

shallow architectures are conventional hidden Markov models 

(HMMs), linear or nonlinear dynamical systems, conditional 

random fields (CRFs), maximum entropy (MaxEnt) models, 

support vector machines (SVMs), logistic regression, kernel 

regression, and multi-layer perceptron (MLP) neural network 

with a single hidden layer. A property common to these 

shallow learning models is the simple architecture that 

consists of only one layer responsible for transforming the 

raw input signals or features into a problem-specific feature 

space, which may be unobservable. Take the example of a 

SVM. It is a shallow linear separation model with one or zero 

feature transformation layer when kernel trick is and is not 
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used, respectively.  Shallow architectures have been shown 

effective in solving many simple or well-constrained 

problems, but their limited modeling and representational 

power can cause difficulties when dealing with more 

complicated real-world applications involving natural signals 

such as human speech, natural sound and language, and 

natural image and visual scenes. 

 

Human information processing mechanisms (e.g., vision and 

speech), however, suggest the need of deep architectures for 

extracting complex structure and building internal 

representation from rich sensory inputs. For example, human 

speech production and perception systems are both equipped 

with clearly layered hierarchical structures in transforming the 

information from the waveform level to the linguistic level 

(Baker et al., 2009; Deng, 1999, 2003). It is natural to believe 

that the state-of-the-art can be advanced in processing these 

types of natural signals if efficient and effective deep learning 

algorithms are developed. Signal processing systems with 

deep architectures are composed of many layers of nonlinear 

processing stages, where each lower layer’s outputs are fed to 

its immediate higher layer as the input. The successful deep 

learning techniques developed so far share two additional key 

properties: the generative nature of the model, which typically 

requires adding an additional top layer to perform the 

discriminative task, and an unsupervised pre-training step that 

makes effective use of large amounts of unlabeled training 

data for extracting structures and regularities in the input 

features. 

 

Historically, the concept of deep learning was originated from 

artificial neural network research. (Hence, one may 

occasionally hear the discussion of ―the third generation 

neural networks‖.) MLP neural networks with many hidden 

layers are indeed a good example of the models with deep 

architectures. Back-propagation, invented in 1980’s, has been 

a well-known algorithm for learning the weights of these 

networks. Unfortunately back-propagation alone does not 

work well in practice for learning networks with more than a 

small number of hidden layers (see a review and interesting 

analysis in (Bengio, 2009; Glorot and Bengio, 2010). The 

pervasive presence of local optima in the non-convex 

objective function of the deep networks is the main source of 

difficulty in the learning. Back-propagation is based on local 

gradient descent, and starts usually at some random initial 

points. It often gets trapped in poor local optima, and the 

severity increases significantly as the depth of the networks 

increases. This difficulty is partially responsible for steering 

away most of the machine learning and signal processing 

research from neural networks to shallow models that have 

convex loss functions (e.g., SVMs, CRFs, and MaxEnt 

models) for which global optimum can be efficiently obtained 

at the cost of less powerful models. 

 

The optimization difficulty associated with the deep models 

was empirically alleviated when a reasonably efficient, 

unsupervised learning algorithm was introduced in the two 

papers of (Hinton et al. 2006; Hinton and Salakhutdinov, 

2006).  In these papers, a class of deep generative models was 

introduced, called deep belief networks (DBNs). A core 

component of the DBN is a greedy, layer-by-layer learning 

algorithm which optimizes DBN weights at time complexity 

linear to the size and depth of the networks. Separately and 

with some surprise, initializing the weights of an MLP with a 

correspondingly configured DBN often produces much better 

results than that with the random weights. As such, deep 

networks that are learned with unsupervised DBN pre-training 

followed by the back-propagation fine-tuning is also called 

DBNs in the literature (e.g., Dahl et al., 2012; Mohamed et al., 

2010, 2012).  

 

In addition to the supply of good initialization points, DBN 

comes with additional attractive features. First, the learning 

algorithm makes effective use of unlabeled data. Second, it 

can be interpreted as Bayesian probabilistic generative model. 

Third, the values of the hidden variables in the deepest layer 

are efficient to compute. And fourth, the over-fitting problem, 

which is often observed in the models with millions of 

parameters such as DBNs, and the under-fitting problem, 

which occurs often in deep networks, are effectively 

addressed by the generative pre-training step. 

 

The DBN training procedure is not the only one that makes 

deep learning possible. Since the publication of the seminal 

work in (Hinton et al., 2006; Hinton and Salakhutdinov, 2006), 

a number of other researchers have been improving and 

applying the deep learning techniques with success. For 

example, one can alternatively pre-train the deep networks 

layer by layer by considering each pair of layers as a de-

noising auto-encoder (Bengio, 2009).  

 

In the next section, a brief overview is provided on the 

various architectures of deep learning, including and beyond 

the original DBN. 

III.    DEEP LEARNING ARCHITECTURES --- A TAXONOMY-

ORIENTED OVERVIEW 

As described earlier, deep learning refers to a rather wide 

class of machine learning techniques and architectures, with 

the hallmark of using many layers of non-linear information 

processing stages that are hierarchical in nature. Depending 

on how the architectures and techniques are intended for use, 

e.g., synthesis/generation or recognition/classification, one 

can categorize most of the work in this area into three types: 

 

 Generative deep architectures, which are intended to 

characterize the high-order correlation properties of the 

data or joint statistical distributions of the visible data and 

their associated classes. Use of Bayes rule can turn this 

type of architecture into a discriminative one. 

 Discriminative deep architectures, which are intended to 

provide discriminative power for pattern classification, 



often by characterizing the posterior distributions of 

classes conditioned on the visible data; and 

 Hybrid deep architectures, where the goal is 

discrimination but is assisted (often in a significant way) 

with the outcomes of generative architectures via better 

optimization or/and regularization.  

 

Below we briefly describe the representative work in each of 

the above three categories. 

A. Generative architecture 

Associated with this generative category, we often see 

―unsupervised learning‖, since the labels for the data are not 

of concern. Among the various subclasses of generative deep 

architecture, the energy-based deep models are the most 

common (e.g., Ngiam et al., 2011; Bengio, 2009; LeCun et al., 

2007). One typical case is stacked de-noising auto-encoder 

(Vincent et al., 2010). Other forms of deep auto-encoders are 

also generative in nature, but with quite different properties 

and implementations. Examples are transforming auto-

encoders (Hinton et al., 2010) and the original form of the 

auto-encoders (Hinton and Salakhutdinov, 2006; Deng et al., 

2010) implemented by stacked RBMs. 

 

Another prominent type of energy-based generative model is 

deep Boltzmann machine or DBM (Salakhutdinov and Hinton, 

2009). A DBM contains many layers of hidden variables, and 

has no connections between the variables within the same 

layer. This is a special case of the general Boltzmann machine 

(BM), which is a network of symmetrically connected units 

that make stochastic decisions about whether to be on or off. 

While having very simple learning algorithm, the general 

BMs are very complex to study and very slow to compute in 

learning. In a DBM, each layer captures complicated, higher-

order correlations between the activities of hidden features in 

the layer below. DBMs have the potential of learning internal 

representations that become increasingly complex, highly 

desirable for solving object and speech recognition problems. 

Further, the high-level representations can be built from a 

large supply of unlabeled sensory inputs and very limited 

labeled data can then be used to only slightly fine-tune the 

model for a specific task at hand. 

 

When the number of hidden layers of DBM is reduced to one, 

we have Restricted Boltzmann Machine (RBM). Like DBM, 

there are no hidden-to-hidden and no visible-to-visible 

connections, but RBM is much faster to learn. The main 

virtue of RBM is that via composing many RBMs, many 

hidden layers can be learned efficiently using the feature 

activations of one RBM as the training data for the next. Such 

composition leads to Deep Belief Network (DBN), which we 

will describe in more detail, together with RBMs, in Section 

IV.  

 

The standard DBN has been extended to the factored higher-

order Boltzmann machine in its bottom layer, with strong 

results for phone recognition (Dahl et. al., 2010). But it is 

very difficult to train this layer and the results are not easy to 

reproduce. Other representative deep generative architectures 

include sum-product networks (Poon and Domingos et al., 

2011), and recurrent neural networks, which are demonstrated 

to be well capable of generating sequential data such as text 

characters (Sutskever et al., 2011). 

 

There has been a long history in speech recognition research 

where human speech production mechanisms are exploited to 

construct dynamic and deep structure in probabilistic 

generative models; for a comprehensive review, see book 

(Deng, 2006). Specifically, the early work described in (Deng 

1992, 1993; Deng et al., 1994; Ostendorf et al., 1996, Deng 

and Sameti, 1996) generalized and extended the conventional 

shallow HMM structure by imposing dynamic constraints, in 

the form of polynomial trajectory, on the HMM parameters. 

(A variant of this approach has been more recently developed 

with superior learning techniques for time-varying HMM 

parameters and with the applications extended to speech 

recognition robustness; e.g., Yu and Deng, 2009; Yu et al., 

2009. See also Zen et al., 2011 for the use of trajectory 

HMMs for feature mapping.). Subsequent work added a new 

hidden layer into the dynamic model so as to explicitly 

account for the target-directed, articulatory-like properties in 

human speech generation (Deng and Ramsay, 1997; Deng, 

1998; Bridle et al., 1998; Deng, 1999; Picone et al., 1999; 

Deng, 2003). More efficient implementation of this deep 

architecture with hidden dynamics is achieved with non-

recursive or FIR filters in more recent studies (Deng et. al., 

2006a. 2006b, Deng and Yu, 2007). All the above deep-

structured generative models of speech can be shown as 

special cases of the more general dynamic Bayesian network 

model and even more general dynamic graphical models 

(Bilmes and Bartels, 2005; Bilmes, 2010). The graphical 

models can comprise many hidden layers to characterize the 

complex relationship between the variables in speech 

generation. Armed with powerful graphical modeling tool, the 

deep architecture of speech has more recently been 

successfully applied to solve the very difficult problem of 

single-channel, multi-talker speech recognition, where the 

mixed speech is the visible variable while the un-mixed 

speech becomes represented in a new hidden layer in the deep 

generative  architecture (Rennie et al., 2010; Wohlmayr et al., 

2011).  

 

Dynamic or temporally recursive generative models for non-

speech applications based on the deep neural network 

architecture can be found in (Taylor et al., 2007) for human 

motion modeling, and in (Socher et al., 2011) for natural 

language parsing. 

 

B. Discriminative architecture 

Many of the discriminative techniques in signal and 

information processing apply to shallow architectures such as 

HMMs (e.g., He et al., 2008; Jiang and Li, 2010; Xiao and 

Deng, 2010; Gibson and Hain, 2010) or CRFs (e.g., Yang and 



Furui, 2009; Yu, Li, and Deng, 2010; Hifny and Renals, 

2009). Since CRF is defined with the conditional probability 

on data, it is intrinsically a (shallow) discriminative 

architecture. More recently, deep-structured CRFs have been 

developed by stacking the output in each lower layer of the 

CRF, together with the original input data, onto its higher 

layer (Yu, Wang, and Deng, 2010). Various versions of deep-

structured CRFs are usefully applied to phone recognition (Yu 

and Deng, 2010), spoken language identification (Yu, Wang, 

Karam, and Deng, 2010), and natural language processing 

(Yu, Wang, and Deng, 2010). However, at least for the phone 

recognition task, the performance of deep-structured CRFs, 

which is purely discriminative and non-generative, has not 

been able to match that of the hybrid approach involving 

DBN, which we will take on shortly. 

 

The recent article of (Morgan, 2012) gives an excellent 

review on other major existing discriminative deep models in 

speech recognition based mainly on the traditional neural 

network or MLP architecture using back-propagation learning 

with random initialization. It argues for the importance of 

both the increased width of each layer of the neural networks 

and the increased depth. In particular, a class of deep neural 

network models forms the basis of the popular ―tandem‖ 

approach, where a discriminatively learned neural network is 

developed in the context of computing discriminant emission 

probabilities for HMMs; for the most recent work, see (Pinto 

et al., 2011; Ketabdar and Bourlard, 2010). The tandem 

approach generates features for the HMM for phonetic 

classification, using one or more hidden layers of neural 

network with various ways of information combination 

(Morgan et al., 2005; Morgan 2011).  

 

In the most recent work of (Deng et. al, 2011), a new deep 

learning architecture, called Deep Convex Network or DCN, 

is developed which focuses on discrimination with scalable, 

parallelizable learning and has no generative component. We 

will describe this discriminative deep architecture in detail in 

Section V. 

 

Finally, the learning architecture developed for bottom-up, 

detection-based speech recognition proposed in (Lee, 2004) 

and developed since then can also be categorized in this 

discriminative deep architecture category. There is no intent 

and mechanism in the model to characterize joint probability 

of data and the recognition targets of speech attributes and the 

subsequent phone and words. The most current 

implementation is based on multiple layers of neural network 

using back-propagation learning. One intermediate neural 

network layer in the implementation of this detection-based 

framework explicitly represents the speech attributes, which 

are simplified entities from the ―atomic‖ units of speech 

developed in the early work of (Deng and Sun, 1994). The 

simplification lies in the removal of the temporally 

overlapping properties of the speech attributes or articulatory-

like features. Embedding such properties is expected to 

improve the accuracy of speech recognition. 

 

C. Hybrid architecture 

Hybrid deep architecture in this category refers to the deep 

architecture that comprises and makes use of both generative 

and discriminative components. In the existing hybrid 

architectures published in the current literature, the generative 

component is mostly exploited to help with discrimination as 

the final goal of the hybrid architecture. How and why 

generative modeling can help with discriminative can be 

examined from two viewpoints:  

 

1) The optimization viewpoint where generative 

models can provide excellent initialization points in 

highly nonlinear parameter estimation problems 

(The commonly used term of ―pre-training‖ in deep 

learning has been introduced for this reason); and/or 

 

2) The regularization perspective where generative 

models can effectively control the complexity of the 

overall model. See (Erhan et al., 2010) for an 

insightful analysis on and experimental evidence 

supporting both of the viewpoints above. 

 

When the generative deep architecture of DBN discussed in 

Subsection III.A is subject to further discriminative training, 

commonly called ―fine-tuning‖ in the literature, we obtain an 

equivalent architecture of deep neural network (DNN, which 

is also called DBN or deep MLP in the literature). In the DNN 

or the hybrid DBN with fine tuning, the weights of the 

network are ―pre-trained‖ from RBM and DBN instead of the 

usual random initialization. See (Mohamed et al, 2012) for a 

detailed explanation of the equivalence relationship and the 

use of the often confusing terminology. We will review 

details of the DNN in the context of RBM/DBN pre-training 

and its interface with the most commonly used shallow 

generative architecture of HMM (DNN-HMM or DBN-

HMM) in Section IV. 

 

Another typical example of the hybrid deep architecture is 

developed in (Mohamed et al., 2010).  This is a hybrid of 

DNN with a shallow discriminative architecture of 

conditional random field (CRF). Here, the overall architecture 

of DNN-CRF is learned using the discriminative criterion of 

frame-level conditional probability of labels given the input 

data. It can be shown that such DNN-CRF is equivalent to a 

hybrid deep architecture of DNN and HMM, whose 

parameters are learned jointly using the full-sequence 

maximum mutual information (MMI) between the entire label 

sequence and the input vector sequence. 

 

A final example given here of the hybrid deep architecture is 

based on the work of (He and Deng, 2011), where one task of 

discrimination (speech recognition) produces the output (text) 

that serves as the input to the second task of discrimination 

(machine translation). The overall system, giving  the 

functionality of speech translation --- translating speech in 



one language into text in another language --- is a deep 

architecture consisting of both generative and discriminative 

elements.  Both models of speech recognition (e.g., HMM) 

and of machine translation (e.g., phrasal mapping) are 

generative in nature. But their parameters are all learned for 

discrimination. The framework described in (He and Deng, 

2011) enables end-to-end performance optimization in the 

overall deep architecture using the unified learning 

framework initially published in (He et al., 2008). This hybrid 

deep learning approach can be applied to not only speech 

translation but also all speech-centric and possibly other 

information processing tasks such as speech information 

retrieval, speech understanding, cross-lingual speech/text 

understanding and retrieval, etc. 

 

In the following two sections, I will elaborate on two example 

architectures of deep learning. 

IV.       HYBRID ARCHITECTURE: DEEP BELIEF NETWORK 

A. Basics 

In this section, we present the most widely studied hybrid 

deep architecture of DBN or DNN, consisting of both pre-

training and fine-tuning stages in its parameter learning. Part 

of this review is based on the recent publication of (Yu and 

Deng, 2011). 

 

As the generative component of the DBN, it is a probabilistic 

model composed of multiple layers of stochastic, latent 

variables. The unobserved variables can have binary values 

and are often called hidden units or feature detectors. The top 

two layers have undirected, symmetric connections between 

them and form an associative memory. The lower layers 

receive top-down, directed connections from the layer above. 

The states of the units in the lowest layer, or the visible units, 

represent an input data vector.  

 

There is an efficient, layer-by-layer procedure for learning the 

top-down, generative weights that determine how the 

variables in one layer depend on the variables in the layer 

above. After learning, the values of the latent variables in 

every layer can be inferred by a single, bottom-up pass that 

starts with an observed data vector in the bottom layer and 

uses the generative weights in the reverse direction. 

 

DBNs are learned one layer at a time by treating the values of 

the latent variables in one layer, when they are being inferred 

from data, as the data for training the next layer. This efficient, 

greedy learning can be followed by, or combined with, other 

learning procedures that fine-tune all of the weights to 

improve the generative or discriminative performance of the 

full network. This latter learning procedure constitutes the 

discriminative component of the DBN as the hybrid 

architecture. 

 

Discriminative fine-tuning can be performed by adding a final 

layer of variables that represent the desired outputs and back-

propagating error derivatives. When networks with many 

hidden layers are applied to highly-structured input data, such 

as speech and images, back-propagation works much better if 

the feature detectors in the hidden layers are initialized by 

learning a DBN to model the structure in the input data as 

originally proposed in (Hinton and Salakhutdinov, 2006). 

 

A DBN can be viewed as a composition of simple learning 

modules via stacking them. This simple learning module is 

called restricted Boltzmann machines (RBMs) that we 

introduce next. 

B. Restricted Boltzmann Machine 

An RBM is a special type of Markov random field that has 

one layer of (typically Bernoulli) stochastic hidden units and 

one layer of (typically Bernoulli or Gaussian) stochastic 

visible or observable units. RBMs can be represented as 

bipartite graphs, where all visible units are connected to all 

hidden units, and there are no visible-visible or hidden-hidden 

connections. 

 

In an RBM, the joint distribution  (     ) over the visible 

units   and hidden units  , given the model parameters  , is 

defined in terms of an energy function  (     ) of 
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For a Bernoulli (visible)-Bernoulli (hidden) RBM, the energy 

function is defined as  
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where     represents the symmetric interaction term between 

visible unit    and hidden unit   ,    and    the bias terms, 

and   and   are the numbers of visible and hidden units. The 

conditional probabilities can be efficiently calculated as 
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Similarly, for a Gaussian (visible)-Bernoulli (hidden) RBM, 

the energy is  
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The corresponding conditional probabilities become 
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where    takes real values and follows a Gaussian distribution 

with mean ∑    
 
         and variance one. Gaussian-

Bernoulli RBMs can be used to convert real-valued stochastic 

variables to binary stochastic variables, which can then be 

further processed using the Bernoulli-Bernoulli RBMs. 

 

Taking the gradient of the log likelihood     (   ) we can 

derive the update rule for the RBM weights as: 

 

          (    )        (    )  

 

where      (    ) is the expectation observed in the training 

set and       (    )  is that same expectation under the 

distribution defined by the model. Unfortunately, 

      (    )  is intractable to compute so the contrastive 

divergence (CD) approximation to the gradient is used where 

      (    )  is replaced by running the Gibbs sampler 

initialized at the data for one full step. Careful training of 

RBMs is essential to the success of applying deep learning to 

practical problems. A practical guide of the RBM training is 

provided in (Hinton, 2010). 

C. Stacking up RBM to form a DBN 

Stacking a number of the RBMs learned layer by layer from 

bottom up gives rise to a DBN an example of which is shown 

in Fig. 1. The stacking procedure is as follows. After learning 

a Gaussian-Bernoulli RBM (for applications with continuous 

features such as speech) or Bernoulli-Bernoulli RBM (for 

applications with nominal or binary features such as black-

white image or coded text), we treat the activation 

probabilities of its hidden units as the data for training the 

Bernoulli-Bernoulli RBM one layer up. The activation 

probabilities of the second-layer Bernoulli-Bernoulli RBM are 

then used as the visible data input for the third-layer 

Bernoulli-Bernoulli RBM, and so on. Theoretical justification 

of this efficient layer-by-layer greedy learning strategy is 

given in (Hinton et al., 2006), where it is shown that the 

stacking procedure above improves a variational lower bound 

on the likelihood of the training data under the composite 

model. That is, the greedy procedure above achieves 

approximate maximum likelihood learning. Note that this 

learning procedure is unsupervised and requires no class label. 

 

 
 

Fig. 1: Illustration of a DBN architecture. 

 

 

When DBN is applied to classification tasks, the generative 

pre-training can be followed by or combined with other, 

typically discriminative, learning procedures that fine-tune all 

of the weights jointly to improve the performance of the DBN. 

This discriminative fine-tuning is often performed by adding a 

final layer of variables that represent the desired outputs or 

labels provided in the training data. Then, the back-

propagation algorithm can be used to adjust or fine-tune the 

DBN weights. For example, for speech recognition the output 

layer can represent either syllables, phones, sub-phones, 

phone states, or other speech units used in the HMM-based 

speech recognition system.  

D. Interfacing DBN with HMM 

A DBN is a static classifier with input vectors having a fixed 

dimensionality. However, many practical pattern recognition 

and information processing problems, including speech 

recognition, machine translation, natural language 

understanding, video processing and bio-information 

processing, require sequence recognition. In sequence 

recognition, sometimes called classification with structured 

input/output, the dimensionality of both inputs and outputs are 

variable. 

 

The HMM, based on dynamic programing operations, is a 

convenient tool to help port the strength of a static classifier 

to handle dynamic or sequential patterns. Thus, it is natural to 

combine DBN and HMM to bridge the gap between static and 

sequence pattern recognition. An architecture that shows the 

interface between a DBN and HMM is provided in Fig. 2. 



This architecture has been successfully used in speech 

recognition experiments reported in (Dahl, Yu, Deng, and 

Acero, 2012). 

 

It is important to note that the unique elasticity of temporal 

dynamic of speech as elaborated in the book (Deng, 2006) 

would require temporally-correlated models better than HMM 

for the ultimate success of speech recognition. Integrating 

such dynamic models having realistic co-articulatory 

properties with the DBN and possibly other deep learning 

models to form the coherent dynamic deep architecture is a 

very challenging new research. 

 

 

 
 

Fig. 2 Interface between DBN and HMM to form a DBN-

HMM or DNN-HMM. This architecture has been successfully 

used in speech recognition experiments reported in (Dahl, Yu, 

Deng, and Acero, 2012). 

V.       DISCRIMINATIVE ARCHITECTURE:  DEEP CONVEX 

NETWORK 

A.  Motivations  

While DBN just reviewed has been shown to be extremely 

powerful in connection with performing recognition and 

classification tasks including speech recognition and image 

classification, training DBN has proven to be more difficult 

computationally. In particular, conventional techniques for 

training DBN at the fine tuning phase involve the utilization 

of a stochastic gradient descent learning algorithm, which is 

extremely difficult to parallelize across machines. This makes 

learning at large scale practically impossible. For example, it 

has been possible to use one single, very powerful GPU 

machine to train DBN-based speech recognizers with dozens 

to a few hundreds of hours of speech training data with 

remarkable results. It is very difficult, however, to scale up 

this success with thousands or more hours of training data.  

 

Here we describe a new deep learning architecture, Deep 

Convex Network (DCN), which attacks the learning 

scalability problem. This section is based in part on the recent 

publication of (Deng and Yu, 2011). 

B.  An architectural overview of DCN 

A DCN, shown in Fig. 3, includes a variable number of 

layered modules, wherein each module is a specialized neural 

network consisting of a single hidden layer and two trainable 

sets of weights. More particularly, the lowest module in the 

DCN comprises a first linear layer with a set of linear input 

units, a non-linear layer with a set of non-linear hidden units, 

and a second linear layer with a set of linear output units. For 

instance, if the DCN is utilized in connection with 

recognizing an image, the input units can correspond to a 

number of pixels (or extracted features) in the image, and can 

be assigned values based at least in part upon intensity values, 

RGB values, or the like corresponding to the respective pixels. 

If the DCN is utilized in connection with speech recognition, 

the set of input units may correspond to samples of speech 

waveform, or the extracted features from speech waveforms, 

such as power spectra or cepstral coefficients.  

 

The hidden layer of the lowest module of a DCN comprises a 

set of non-linear units that are mapped to the input units by 

way of a first, lower-layer weight matrix, which we denote by 

W. For instance, the weight matrix may comprise a plurality 

of randomly generated values between zero and one, or the 

weights of an RBM trained separately. The non-linear units 

may be sigmoidal units that are configured to perform non-

linear operations on weighted outputs from the input units 

(weighted in accordance with the first weight matrix W). 

  

The second, linear layer in any module of a DCN includes a 

set of output units that are representative of the targets of 

classification. For instance, if the DCN is configured to 

perform digit recognition, then the plurality of output units 

may be representative of the values 1, 2, 3, and so forth up to 

10 with a 0-1 coding scheme. If the DCN is configured to 

perform speech recognition, then the output units may be 

representative of phones, HMM states of phones, or context-

dependent HMM states of phones. The non-linear units in 

each module of the DCN may be mapped to a set of the linear 

output units by way of a second, upper-layer weight matrix, 

which we denote by U. This second weight matrix can be 

learned by way of a batch learning process, such that learning 

can be undertaken in parallel. Convex optimization can be 

employed in connection with learning U. For instance, U can 

be learned based at least in part upon the first weight matrix 



W, values of the coded classification targets, and values of the 

input units.  

 

As indicated above, the DCN includes a set of serially 

connected, overlapping, and layered modules, wherein each 

module includes the aforementioned three layers -- a first 

linear layer that includes a set of linear input units whose 

number equals the dimensionality of the input features, a 

hidden layer that comprises a set of non-linear units whose 

number is a tunable hyper-parameter, and a second linear 

layer that comprises a plurality of linear output units whose 

number equals that of the target classification classes (e.g., the 

total number of context-dependent phones clustered by a 

decision tree used in). The modules are referred to herein as 

being layered because the output units of a lower module are 

a subset of the input units of an adjacent higher module in the 

DCN. More specifically, in a second module that is directly 

above the lowest module in the DCN, the input units can 

include the output units of the lower module(s). The input 

units can additionally include the raw training data – in other 

words, the output units of the lowest module can be appended 

to the input units in the second module, such that the input 

units of the second module also include the output units of the 

lowest module.  

 

The pattern discussed above of including output units in a 

lower module as a portion of the input units in an adjacent 

higher module in the DBN and thereafter learning a weight 

matrix that describes connection weights between hidden 

units and linear output units via convex optimization can 

continue for many modules. A resultant learned DCN may 

then be deployed in connection with an automatic 

classification task such as frame-level speech phone or state 

classification. Connecting DCN’s output to an HMM or any 

dynamic programming device enables continuous speech 

recognition and other forms of sequential pattern recognition. 

VI.        APPLICATIONS OF DEEP LEARNING TO SIGNAL AND 

INFORMATION PROCESSING 

In the expanded technical scope of signal processing, the 

signal is endowed with not only the traditional types such as 

audio, speech, image and video, but also text, language, and 

document that convey high-level, semantic information for 

human consumption. In addition, the scope of processing has 

been extended from the conventional coding, enhancement, 

analysis, and recognition to include more human-centric tasks 

of interpretation, understanding,  retrieval,  mining,   and user 

interface (Deng, 2008). Many signal processing researchers 

have been working on one or more of the signal processing 

areas defined by the matrix constructed with the two axes of 

signal and processing discussed here. The deep learning 

techniques discussed in this article have recently been applied 

to quite a number of extended signal processing areas. We 

now provide a brief survey of this body of work in four main 

categories. 

 

 

 
 

Fig. 3: A DCN architecture. Only four modules are illustrated. 

In practice, up to a few hundreds of modules have been 

efficiently trained and used in image and speech classification 

experiments. 

 

A. Speech and audio 

The traditional neural network or MLP has been in use for 

speech recognition for many years. When used alone, its 

performance is typically lower than the state-of-the-art HMM 

systems with observation probabilities approximated with 

Gaussian mixture models (GMMs). Recently, the deep 

learning technique was successfully applied to phone 

recognition (Mohamed et al., 2009, 2010, 2012; Sivaram and 

Hermansky, 2012) and large vocabulary speech recognition 

tasks (Yu et al., 2012) by integrating the powerful 

discriminative training ability of the DBNs and the sequential 

modeling ability of the HMMs.  

 

More specifically, the work of (Mohamed et al., 2009), a five-

layer DBN was used to replace the Gaussian mixture 

component of the GMM-HMM and the monophone state was 

used as the modeling unit. Although monophones are 

generally accepted as a weaker phonetic representation than 

triphones, the DBN-HMM approach with monophones was 

shown to achieve higher phone recognition accuracy than the 

state-of-the-art triphone GMM-HMM systems. 
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The technique of (Mohamed et al., 2009) was improved in the 

later work reported in (Mohamed et al., 2010) by using the 

CRF instead of the HMM to model the sequential speech data 

and by applying the maximum mutual information (MMI) 

training technique successfully developed in speech 

recognition to the resultant DBN-CRF training. The 

sequential discriminative learning technique developed jointly 

optimizes the DBN weights, transition weights, and phone 

language model and achieved higher accuracy than the DBN-

HMM phone recognizer with the frame-discriminative 

training criterion implicit in the DBN’s fine tuning procedure 

implemented as implemented in (Mohamed et al., 2009). 

 

In (Dahl et al., 2011, 2012), the DBN-HMM was extended 

from the monophone phonetic representation to the triphone 

or context-dependent counterpart and from phone recognition 

to large vocabulary speech recognition. Experiments on the 

Bing mobile voice search dataset collected under the real 

usage scenario demonstrate that the triphone DBN-HMM 

significantly outperforms the state-of-the-art HMM system. 

Three factors contribute to the success: the use of triphones as 

the DBN modeling units, the use of the best available tri-

phone GMM-HMM to generate the senone alignment, and the 

tuning of the transition probabilities. Experiments also 

indicate that the decoding time of a five-layer DBN-HMM is 

almost the same as that of the state-of-the-art triphone GMM-

HMM.  

 

In (Deng et al., 2010), a type of deep auto-encoder developed 

originally for image feature coding was explored on the 

speech feature coding problem. The goal is to extract ―bottle-

neck‖ speech features by compressing the high-resolution 

speech spectrogram data to a pre-defined number of bits with 

minimal reproduction error. DBN pre-training is found to be 

crucial for high coding efficiency. When the DBN pre-

training is used, the deep auto-encoder is shown to 

significantly outperform a traditional vector quantization 

technique. If weights in the deep auto-encoder are randomly 

initialized the performance is substantially degraded. The 

architecture of the deep auto-encoder used in that work is 

shown in Fig. 4, with two layers of RBM following by fine-

tuning with four layers of DNN. 

 

Further, the most recent work of (Deng and Yu, 2011) makes 

use of the DCN architecture to perform frame-level phone 

classification. Higher accuracy than DBN is reported, 

especially after a ―fine-tuning‖ technique developed in (Yu 

and Deng, 2011) is exploited. While the preliminary work 

reported in (Deng and Yu, 2011) has not developed parallel 

implementation of the basic learning algorithm in the DCN 

architecture, active research is currently underway to enable 

high scalability of learning DCN via parallelization. 

 

In the work reported in (Lee et al., 2009) and some follow-up 

work, the convolutional structure is further imposed on DBN 

and is applied to audio and speech data for a number of tasks 

including music artist and genre classification, speaker 

identification, speaker gender classification, and phone 

classification, with strong results presented. 

 

 
Fig. 4: The architecture of the deep auto-encoder used in 

(Deng et al., 2010) for extracting ―bottle-neck‖ speech 

features from high-resolution spectrograms. 

 

 

The recent work reported in (Jaitly and Hinton, 2011) makes 

use of speech sound waves as the raw input feature to an 

RBM with a convolutional structure as the classifier. With the 

use of rectifier linear units in the hidden layer (Glorot et al., 

2011), it is possible to automatically normalize the amplitude 

variation in the waveform signal, thus overcoming the 

difficulty encountered in the earlier attempt of using the same 

raw feature in the HMM based approach (Sheikhzadeh and 

Deng, 1994). 

 

In addition to RBM, DBN, and DCN, other deep models have 

also been developed and reported in the literature. For 

example, the deep-structured CRF, which stacks many layers 

of CRFs, have been successfully used in the task of language 

identification (Yu, Wang, Karam, and Deng, 2010), phone 

recognition (Yu and Deng, 2010)0, sequential labeling in 

natural language processing (Yu, Wang, and Deng, 2010), and 

confidence calibration in speech recognition (Yu, Li, and 

Deng, 2010).  

 

As another example, in (Saon and Chien, 2012), a new type of 

HMM is introduced in which a set of hidden basis vectors and 

associated weights and precision matrices are jointly 

optimized. This can be considered as a generative deep 

architecture where the hidden basis, together with the 

associated weights, gives an intermediate representation of the 

speech signal. The work explores making HMM training 

more generalizable to unknown data, achieved by the 

developed Bayesian sensing framework to realize model 

regularization. 



B. Image, video, and multimodality 

The original DBN and deep auto-encoder were developed and 

demonstrated with success on the simple image recognition 

and dimensionality reduction (coding) tasks (MNIST) in 

(Hinton and Salakhutdinov, 2006). It is interesting to note that 

the gain of coding efficiency using the DBN-based auto-

encoder on the image data over the conventional method of 

principal component analysis as demonstrated in ((Hinton and 

Salakhutdinov, 2006) is very similar to the gain reported in 

(Deng et al., 2010) on the speech data over the traditional 

technique of vector quantization. 

 

In (Nair and Hinton, 2009), a modified DBN is developed 

where the top-layer model uses a third-order Boltzmann 

machine. This type of DBN is applied to the NORB database 

– a 3-dimensional object recognition task. An error rate close 

to the best published result on this task is reported. In 

particular, it is shown that the DBN substantially outperforms 

shallow models such as SVMs. 

 

In (Tang and Eliasmith, 2010), two strategies to improve the 

robustness of the DBN are developed. First, sparse 

connections in the first layer of the DBN are used as a way to 

regularize the model. Second, a probabilistic denoising 

algorithm is developed. Both techniques are shown to be 

effective in improving the robustness against occlusion and 

random noise in a noisy image recognition task.  

 

DBNs have also been successfully applied to create compact 

but meaningful representations of images (Taralba et al., 

2008) for retrieval purposes. On this large collection image 

retrieval task, deep learning approaches also produced strong 

results. 

 

Use of conditional DBN for video sequence and human 

motion synthesis is reported in (Taylor et al., 2007). The 

conditional DBN makes the DBN weights associated with a 

fixed time window conditioned on the data from previous 

time steps. The computational tool offered in this type of 

temporal DBN may provide the opportunity to improve the 

DBN-HMMs towards efficient integration of temporal-centric 

human speech production mechanisms into DBN-based 

speech production model. 

 

A very interesting piece of recent work appears in (Ngiam et 

al., 2011), where the authors from Stanford propose and 

evaluate a novel application of deep networks to learn 

features over both audio and video modalities. Cross modality 

feature learning is demonstrated --- better features for video 

can be learned if both audio and video information sources are 

available at feature learning time. The authors further show 

how to learn a shared audio and video representation, and 

evaluate it on a fixed task, where the classifier is trained with 

audio-only data but tested with video-only data and vice-versa. 

The work concludes that deep learning architectures are 

effective in learning multimodal features from unlabeled data 

and in improving single modality features through cross 

modality learning. 

C. Language modeling 

Research in language, document, and text processing has seen 

increasing popularity recently in the signal processing 

community, and has been designated as one of the main focus 

areas by the society’s audio, speech, and language processing 

technical committee. There has been a long history (e.g., 

Bengio et al., 2000; Zamora et al., 2009) of using (shallow) 

neural networks in language modeling (LM) – an important 

component in speech recognition, machine translation, text 

information retrieval, and in natural language processing. 

Recently, deep neural networks have been attracting more and 

more attention in statistical language modeling. 

 

An LM is a function that captures the salient statistical 

characteristics of the distribution of sequences of words in a 

natural language. It allows one to make probabilistic 

predictions of the next word given preceding ones. A neural 

network LM is one that exploits the neural network ability to 

learn distributed representations to reduce the impact of the 

curse of dimensionality. 

 

A distributed representation of a symbol is a vector of features 

which characterize the meaning of the symbol. With a neural 

network LM, one relies on the learning algorithm to discover 

meaningful, continuous-valued features. The basic idea is to 

learn to associate each word in the dictionary with a 

continuous-valued vector representation, where each word 

corresponds to a point in a feature space. One can imagine 

that each dimension of that space corresponds to a semantic or 

grammatical characteristic of words. The hope is that 

functionally similar words get to be closer to each other in 

that space, at least along some directions. A sequence of 

words can thus be transformed into a sequence of these 

learned feature vectors. The neural network learns to map that 

sequence of feature vectors to the probability distribution over 

the next word in the sequence.  

 

The distributed representation approach to LM has the 

advantage that it allows the model to generalize well to 

sequences that are not in the set of training word sequences, 

but that are similar in terms of their features, i.e., their 

distributed representation. Because neural networks tend to 

map nearby inputs to nearby outputs, the predictions 

corresponding to word sequences with similar features are 

mapped to similar predictions.  

 

The above ideas of neural network LM have been 

implemented in various studies, some involving deep 

architecture. In 0 and Hinton, 2007), temporally factored 

RBM was used for language modeling. Unlike the traditional 

N-gram model the factored RBM uses distributed 

representations not only for context words but also for the 

words being predicted. This approach is generalized to deeper 

structures as reported in (Mnih and Hinton, 2008). 

http://www.scholarpedia.org/article/Language
http://www.scholarpedia.org/article/Neural_Networks
http://www.scholarpedia.org/article/Neural_Networks
http://www.scholarpedia.org/article/Neural_net_language_models#Distributed_Representations


More recent work on neural network LM with deep 

architectures can be found in (Le et al., 2010, 2011; Mikolov 

et al., 2010). Use of hierarchical Bayesian priors in building 

up deep and recursive structure in LM appeared recently in 

(Huang and Renals, 2010) 

D. Natural language processing and information retrieval 

In the popular work on natural language processing, the 

authors of (Collobert and Weston, 2008) developed and 

employed a convolutional DBN as the common model to 

simultaneously solve a number of classic problems including 

part-of-speech tagging, chunking, named entity tagging, 

semantic role identification, and similar word identification. 

More recent work reported in (Collobert, 2010) further 

developed a fast purely discriminative approach for parsing 

based on the deep recurrent convolutional architecture called 

Graph Transformer Network. 

  

A similar multi-task learning technique with DBN is used in 

(Deselaers et al., 2009) to attack a machine transliteration 

problem, which may be generalized to a more difficult 

machine translation problem. 

 

The most interesting recent work on applying deep learning to 

natural language processing appears in (Socher et al., 2011), 

where a recursive neural network is used to build a deep 

architecture. The network is shown to be capable of 

successful merging of natural language words based on the 

learned semantic transformations of their original features. 

This deep learning approach provides an excellent 

performance on natural language parsing. The same approach 

is also demonstrated by the same authors to be successful in 

parsing natural scene images.  

 

Finally, we discuss applications of DBN and deep auto 

encoder to document indexing and information retrieval 

(Salakhutdinov and Hinton, 2007). It is shown that the hidden 

variables in the last layer not only are easy to infer but also 

give a much better representation of each document, based on 

the word-count features, than the widely used latent semantic 

analysis. Using the compact code produced by deep networks, 

documents are mapped to memory addresses in such a way 

that semantically similar text documents are located at nearby 

address to facilitate rapid document retrieval. This idea is 

explored for audio document retrieval and some class of 

speech recognition problems with the initial exploration 

reported in (Deng et al, 2010). 

VI. SUMMARY AND DISCUSSIONS  

This paper presents a brief history of deep learning, develops 

a categorization scheme to analyze the existing deep 

architectures in the literature into generative, discriminative, 

and hybrid classes. The DBN and DCN architectures are 

discusses in more detail, as they appear to be most popular 

and promising approaches. Applications of deep learning in 

four broad areas of information processing are then reviewed, 

including some of the author’s own work with colleagues. 

 

Deep learning is an emerging technology. Despite the 

empirical promising results reported so far, much needs to be 

developed. For example, recent published work shows that 

there is vast room to improve the current optimization 

techniques for learning deep architectures (Martens, 2010; Le 

et al., 2011; Martens and Sutskever, 2011). While the current 

learning strategy of generative pre-training followed by 

discriminative fine-tuning seems to work well empirically for 

many tasks, it fails to work for some other tasks that we have 

explored (e.g., language identification). For these tasks, the 

features extracted at the generative pre-training phase seem to 

describe the underlining speech variations well but do not 

contain sufficient information to distinguish between different 

languages. A learning strategy that can extract discriminative 

features is expected to provide better solutions. Extracting 

discriminative features may also greatly reduce the model size 

needed in the many current deep learning systems. 

 

Further, effective and scalable parallel algorithms are 

essential to train deep models with very large data, as in many 

common information processing applications such as speech 

recognition and machine translation. The popular mini-batch 

stochastic gradient technique is difficult to be parallelized 

over computers. The common practice nowadays is to use 

graphical processing units (GPUs) to speed up the learning 

process. However, single machine GPU processing is not 

practical for large datasets, which is typical in speech 

recognition and similar applications. To make deep learning 

techniques scalable to thousands of hours of speech data, for 

example, theoretically sound parallel learning algorithms or 

novel architectures need to be developed. The DCN 

architecture presented in this paper is a promising direction 

toward the scalability goal, but much more work is needed in 

this area. 
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