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Abstract— In this paper, we propose a simple and high efficient 

inter-core communication mechanism for multi-core systems. To 

alleviate the high hardware complexity and low communication 

efficiency originated from the relatively independent processor 

and NoC designs, we propose a scheme that integrates the 

computation and communication together as an efficient system. 

The space of the register file is extended using a configurable 

logic, to reduce the possibility of memory accesses without 

increasing operand space. Furthermore, read and write ports of 

synchronous FIFOs that used as interfaces between processors 

and network routers are mapped to register file address space by 

an added configure instruction, so that  the calculation results 

from computing units can be shared highly efficiently between 

different cores. Also, for each single core, we adopt SIMD 

technology to enhance performance of processing multimedia 

and communication applications. The system is synthesized to 

achieve 830MHz under 65nm TSMC technology in typical case.  

I. INTRODUCTION 

Long development cycle and high design cost of ASIC 
circuits and relatively low performance/power ratio of general 
purpose processors determine the evolution of modern 
integrated circuits. Power consumption of single-core 
processors has been increased greatly as semiconductor 
technology improves according to Moore’ Law, which has 
become the bottleneck of consumer electronics, such as cellular 
phones, portable game machines, digital video/audio players 
and tablet PCs. Designers must turn to other techniques for 
both performance/power ratio improvements and high data 
processing efficiency. One attractive option is to explore the 
possibility of extension based on general purpose processors to 
achieve ASIC-like computing efficiencies with 
microprocessor-like application development cost [1]. 

In the last few years, a fundamental shift in microprocessor 

design from frequency scaling to increased core counts has 

facilitated the emergence of multi-core architectures. Recent 

multi-core designs have proven to optimize performance while 

achieve higher energy efficiency, such as 48 cores in 45nm 

technology published in [2] and 167 processors in 65nm 

CMOS introduced in [3]. Although there have been many 

research works on Network-on-Chip (NoC) in the last decade, 

such as 2-D mesh architecture in [5] [6] and Spidergon 

architecture in [7], low communication efficiency between 

cores as a result of the relatively independent processor and 

NoC designs still exists as an urgent problem to solve. 
This paper presents a simple high-efficient inter-core 

communication mechanism for a multi-core system that 

integrates 32 RISC processors with extensions of register file 
and computation modules. In the proposed architecture, the 
original register file size is enlarged to reduce the possibility of 
memory access to improve performance/power ratio. 
Furthermore, inter-core communication efficiency is enhanced 
by mapping synchronous FIFOs to register file by an added 
configure instruction. Besides, computation modules of single 
core including ALU, MDU and Shifter are modified to support 
SIMD operations including 8-bit, 16-bit, and 32-bit data length 
modes, to accelerate applications of communication and 
multimedia.   

The following of this paper will be organized as follows: 
part II introduces related multi-core systems and on-chip 
communication architectures; part III shows the overview of 
the proposed system architecture; part IV describes the 
extension of the register file and a high-efficient 
communication method using FIFO mapping; part V shows the 
SIMD extensions of computing modules; in part VI, 
evaluations are given for the proposed communication 
mechanism and overall system; last section is the summary and 
conclusion. 

II. RELATED WORKS 

Many multi-core architectures and on-chip communication 

networks have been proposed in the last several years. Because 

of its simple topology, low area cost and extensibility, bus 

architectures are widely used in SoC platforms in the early 

years from on-chip computer buses as AMBA [8] and 

CoreConnect [9] to data network as MicroNetwork used in 

Sonic’s Silicon Backplane [10]. Due to the growing bus length 

and IP number, delay caused by the increasingly intrinsic 

parasitic resistance and capacitance may become large enough 

as a bottleneck, thus lead to another solution that uses a 

hierarchical architecture [11]. More recently, communication-

centric approach that decouples the processing units from 

communication network has become popular, such as SPIN 

(Scalable, Programmable, Integrated Network) in [12], mesh-

based interconnect structure called CLICHÉ (Chip-Level 

Integration of Communicating Heterogeneous Elements) in 

[13], 2D torus in [14] and OCTAGON MP-SoC architecture in 

[15]. The first-generation CELL uses a high bandwidth 

internal Element Interconnect Bus (EIB) couple its power 

architecture processor with multiple synergistic processors, IO 

interface and memory interface. 2D mesh network is used both 

in the TILE64-processor to connect 64 tile processors arranged 

in an 8×8 array [16] and in the 167-processor AsAP 
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computational platform [3]. 

Higher performance of multi-core systems compared to 
single-core processor comes from instruction, data and task 
parallelism between cores and within cores, which can be 
categorized in three ways shown in Figure 1.  Algorithms that 
need large computations can be partitioned into balanced parts 
and processed in pipeline to improve throughputs. Also in each 
pipeline stage, independent tasks in the program can be 
designed to execute in parallel, which reduces the time delay of 
critical path greatly. Furthermore, for a single core, 
computation efficiency is raised by increasing instruction level 
and data level parallelism, such as superscalar or super-
pipelined architecture for the former, and SIMD structure for 
the latter. 
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Figure 1.  Parallelisms in Multi-core Processors 

III. PROPOSED SYSTEM ARCHITECTURE 

Figure 2 shows the block diagram of the proposed multi-

core architecture and its single core. Three ways of parallelism 

mentioned in above section can be reflected from our design. 

The overall system is partitioned into several homogeneous 

clusters to support process (task) level parallelism, and pipeline 

technology can be used between cores within a cluster or 

between clusters. For a single core, it is extended to be SIMD 

supported to improve data level parallelism.  

Our system is composed of 32 homogeneous processors 

and 4 logic circuits (memories). Locally the system can be 

regarded as 4 clusters, consisted by eight cores and one shared 

memory each. The processors and memories are connected by 

2-D mesh structure using wormhole routing strategy. This kind 

of hierarchy structure provides high efficiency both for a large 

task processed globally in the whole system and for a 

relatively simple task with small amount of computations 

locally processed in clusters. More related information about 

our system is available in reference [25] from our group.  

Single core is designed based on a MIPS-like classic RISC 

processor of MIPS32 4KE family [17] [18]. The processor is 

pipelined in 5 stages, including I stage for instruction fetch, E 

stage for instruction decode and register file data preparation, 

M stage for memory access, A stage for data aligner and W 

stage for write back to register file, as demonstrated in Figure 

2. 
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Figure 2.  Block diagram of the multi-core processor and its single core 

The space of the register file is extended using a 
configurable logic, to reduce the possibility of memory 
accesses without increasing operand space. Furthermore, the 
addresses of read and write ports of FIFOs are mapped to 
register file by an added configure instruction, which are 
designed to be asynchronous to function as the input and output 
interfaces of the system, and synchronous as the intermediate 
buffers between processors and routers. Also, computing 
modules including ALU, MDU and Shifter are designed to be 
SIMD supported. As a result multiple 8-bit and 16-bit data can 
be processed in parallel to improve performance for 
communication and multimedia applications. The next two 
sections will explain the above mentioned design in details. 

IV. CONFIGURATION OF REGFILE AND INTER-PROCESSOR 

COMMUNICATION MECHANISM 

Some registers in MIPS system are designed for special 
usage [4], such as $0, $1, $26, $27, $28, $29, $30, $31. Most 
algorithms and applications need more than 24 registers to 
store temporary data, leading to high possibilities of memory 
access, which causes high power consumption and low 
performance. 

An extended register file scheme is used in our design. We 
enlarge the size of register file to support data swap. Take R-
type instruction (Figure 3) for example, 5-bit rs, rt and rd are 
used for index of registers to store two source and one 
destination operands. In order to not increasing the instruction 
width for extra register index, a configure instruction is added 
to realize the switch between standard and extended registers. 

op rs rt funct

31 26 20 16 11 025 21

R-type(Register)

rd sa

10 6 5

 

Figure 3.  R-type Instruction 

The space of original register file is doubled with an 
extended file (shadow file), and is organized as 4 pairs of 



groups, each of which contains eight 32-bit registers. Read and 
write ports of FIFO are mapped to $24 and $25 registers. 
Accesses are switched by an added configure instruction. 
Figure 4 demonstrates read and write configured schemes of 
the proposed register file. 

The MSB of 5-bit Configuration decoded from configure 
instruction determines whether $24 and $25 registers are 
mapped as ports of FIFO. The least 4 bits represents switch 
signals between 4 pairs of register from (#1, #5) to (#4, #8) 
respectively. After that, the 5-bit address information included 
in the instructions indexes the output data from the target 
register. 
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Figure 4.  Read and write structures of the register file 

Applications are mapped to the system to take full use of its 
high parallelism and throughput. As demonstrated in Figure 5, 
appointed task is mapping to four cores on the right with dark 
color, the parallel results from SIMD execution units 
(ALU/MDU/Shifter) in the first core (up left) is transferred 
through read port of FIFO mapped in register file through 
intermediate routers to other SIMD execution units in neighbor 
cores. Data received by the write port of FIFO in destination 
core can be directly calculated as an operand by configuring 
the register file into normal state. Inter-core communication 
efficiency is highly increased as a result of this mapping 
mechanism. 
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Figure 5.  Inter-processor Communication Mechanism 

V. EXTENSIONS ON COMPUTING MODULES  

8-bit and 16-bit data are widely used in communication and 
multimedia applications, such as RS FEC decoding algorithm 
and H.264 decoder. To improve high performance/power ratio, 
key computing modules including ALU, MDU and Shifter are 
extended to support multiple modes of calculations, as a result, 
four 8-bit and two 16-bit data can be operated in one 
instruction in parallel. 

In most cases, the efficiency of multiplication operation 
determines the performance of a system. The module adopted 
in the proposed design can operate in four modes by using a 
reconfigurable booth array [19] (shown in Figure 6), which 
represents the partial products of 8-bit×8-bit, 16-bit×16-bit, 32-
bit×16-bit and 32-bit×32-bit operations (32-bit×32-bit is 
realized by executing 32-bit×16-bit twice, so the result would 
be obtained after one more clock cycle). The reconfigurable 
MDU module is realized in 4 steps, performing Booth 
encoding, Wallace tree compressing, accumulation and writing 
back to register, which corresponds with stage  E, M, A and W 
in main pipeline stream of the processor. It is worth noting that 
the operation of Booth encoding is executed in the second half 
cycle of E level, while data read from register file is operated in 
the first half. So the design is actually pipelined in 3 stages and 
can achieve nearly 850MHz in TSMC 65nm technology. 
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Figure 6.  Reconfigurable Booth encoding unit 

Furthermore, according to the features of communication 

applications, the performance would be much better if 

multiple-to-one operations are provided. For instance, multiply 

operations between four different 8-bit operands and one 8-bit 

operand is common. Thus, two modes of SIMD operations - 

scalar and vector are introduced [19]. 



Figure 7 shows the architecture of the extended SIMD ALU 
which can operate 4-bit, 8-bit, 16-bit, 32-bit saturated addition. 
Where Csa4_pg stands for 4-bit carry propagation signal [20] 
and carry generation signal generator unit. Then the Carry 
Generator module calculates these 16 pairs of data to get carry 
out signals into Carry Select Adders to select addition results. 
The parallelism between Carry Generator and Carry Select 
Adders reduces the latency to a certain extent. 
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Figure 7.  Architecture of SIMD ALU 

Communication algorithms also require for 8-bit shift 
operations. The SIMD extended Shifter supports SLL (shift left 
logical), SRL (shift right logical) and SRA (shift right 
arithmetic) for 8-bit and 16-bit. Figure 8 demonstrates the 
operation of four 8-bit data left shifted 3-bit in instruction psll.o. 

00000001000000010000000100000001

00001000000010000000100000001000

3bit 3bit 3bit 3bit

 
Figure 8.  Demonstration of PSLL.O 

VI. SYSTEM EVALUATION  

A comparison has been made between regular 
communication in which FIFO ports are mapping to memory 
address space and to register file as described in this paper. 
Figure 9 shows the difference of assembler codes and 
efficiency evaluation between the two mapping solutions. It 
compares the codes that the addition result of a0 and a1 is 
generated in source core (1) and sent to destination core (2) to 
operate addition with a2. It is quite obvious that the proposed 
communication mechanism evolves much fewer instructions 
than regular mechanism. The efficiency differs greater as more 
data need to be processed.  
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Figure 9.  The code differences between two FIFO mapping solutions 

Figure 10 demonstrates the relation between execution time 
in clock cycles with communication data packet length. Despite 
the same communication cost between source and destination 
processors, as processing data increase, operation cost of store 
word and load word in regular way will become even greater, 
while this cost is eliminated in the proposed mechanism. For 
example, 14 instructions will be used to transfer one word for 
regular way while 10 is needed in our design. The result is 
evaluated in condition that only data transfer is included 
without concerning extra computation operation. The 
differences in efficiency mainly originated from the cost of 
FIFO address generation and data transfers between memory 
and register file (as demonstrated by dashed box in Figure 9), 
the latter of which will differ much larger as data length 
increases (but within packet limit). 
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Figure 10.  Relative execution clock cycles with communication data packet 

length  

RS (255,239,8) FEC decoding algorithm is used to test the 
functionality and evaluate the performance of overall system. 
Table I shows the comparisons with other solutions. The 
overall latency, 1955 clock cycles, has less advantage than 
others because our core has much fewer extended GF 
instructions compared with EVP [21] and TI DSP [22], and the 
parallelism degree of our SIMD core (4) is lower than EVP (32) 
and TI DSP (8). However, although in the hypothetical case of 
working under 830 MHz operation clock frequency, the 
throughput of our implementation can reach 5157 Mbps in the 
worst case of 8-error incoming codeword, which is best among 
these platforms.  

TABLE   I 
COMPARISON OF LATENCY AND THROUGHPUT UNDER THE WORST CASE (8 

ERRORS) CONDITION  

 

Latency and 

Throughput 

RS algorithms 

Ours 

RS(2

55,23

9) 

Subhead 

EVP [21] 

RS(255,2

39) 

TI [22] 

RS(204,

188) 

Pal-Mult 

(0-p) 

[23] 

RS(255,2

51) 

Starcore 

[24]  

RS(255,2

39) 

Latency 
(clock cycles) 

1955 787 1213 1567 14334 

Data reception 

rate 
(1/throughput) 

(clock cycles) 

320 787 1213 1567 14334 

clock frequency 

(MHz) 
830 300 

600~ 

800 
50 300* 

Worst case 

Throughput 

(Mbps) 

5157 778 
783~ 
1045 

65 43 



*The clock frequency of Starcore is not released in [24] and is obtained from a 
public web. 

VII. CONCLUSION 

In this paper, we propose a simple high-efficient inter-core 

communication mechanism used for multi-core system. Based 

on the extension and configuration adopted in register file, 

FIFO that used as an interface between processor and network 

is mapped to register file by a configure instruction. As a result, 

calculation results from computing units are enabled to be 

transferred highly efficiently between different cores in the 

network. This communication mechanism provides an efficient 

solution for network design in multi-core systems. Also, with 

SIMD extended, basic single processor based on MIPS32 4KE 

family is enabled to enhance performance of communication 

and multimedia applications. The overall system is synthesized 

to achieve 830MHz under 65nm TSMC technology in typical 

case. 
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