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Abstract—Network tomography is a problem of estimating
network properties such as the packet loss rates of links using
available packets. There are two kinds of methods to measure
packets: active and passive. An active measurement specifies
link information (paths) of packets a priori while a passive
measurement gets only the origins and destinations of packets.
The conventional methods for estimating the packet loss rate
of each link, one of the network tomography problems, utilize
only active measurements because passive measurements have
no link information. We propose a method to utilize passive
measurements also. The method regards the link information
in the passive measurements as latent variables and estimates
the variables and the loss rates of links simultaneously in the
framework of Bayesian inference. We show through numerical
experiments that our method outperforms the conventional algo-
rithm with only active measurements in the estimation accuracy.

I. INTRODUCTION

Monitoring internal properties of a communication network
such as delay, congestion and packet loss rates is crucial
for maintaining it [1]–[5]. However, some properties are
impossible or costly to measure directly. The problems of
estimating such properties from indirect measurements are
called Network tomography [6]–[10]. In this paper, we treat
the problem of estimating the packet loss rates of links [11],
[12].

Consider success rates instead of loss rates. A success rate
of a path of a packet is expressed as the product of the
success rates of links therein if the paths are known and the
losses occur independently. Hence, estimating the success rates
of links from the rates of paths results in a linear inverse
problem. The conventional methods tackle this problem from
two approaches. One is to introduce additional assumptions
such as sparsity, that is, few links have low success rates.
Sparse solutions are given by compressed sensing [13] or its
variations [14]. The other is to increase the packets whose
paths are specified a priori [11], [12], [15]. This is called active
measurements [16] and requires additional costs.

In this paper, we take another approach and propose a
method utilizing passive measurements instead of increasing
active measurements. Passive measurements require no addi-
tional cost to send packets because they observe the origins
and the destinations of ordinary packets. However, passive
measurements can give the success rate between an origin and
a destination using the packet capture technique [17]. In other
words, passive measurements have information on the success

rate of links although they do not specify which links the
packets passed.

The difficulty of using passive measurements lies in their
unknown paths, which are required to connect the success
rates of links with the success rate between two nodes.
In our method, the unknown paths are treated as missing
values (latent variables in the Bayesian framework) and are
estimated simultaneously using the expectation-maximization
(EM) algorithm based on a probabilistic model [18].

The rest of the paper is organized as follows. In Sec. II,
we mathematically formulate our problem, that is, active
and passive measurements as well as unobserved paths. We
derive our algorithm according to a standard way in Bayesian
framework in Section III. Section IV is devoted to numerical
experiments to confirm the superiority of our method. We
conclude our study in Section V.

II. PROBLEM FORMULATION

In this section, we mathematically formulate active and pas-
sive measurements as well as unobserved paths. Under the as-
sumption that packet losses occur independently, active/passive
measurements lead to linear equations. Furthermore, passive
measurements introduce latent variables due to its unobserved
paths.

In the following, we express a network as a graph G =
(V, E) and a path as a set of links W ⊂ E , where V and E ⊂
V ×V are the sets of nodes and links. We denote the ith path
and the jth link by Wi, i = 1, 2, ...,M and ej , j = 1, 2, ...,L,
respectively.

A. Active Measurements

An active measurement sends packets along a specific path
and calculates the packet loss rate based on the received
packets at the destination [6], [11], [12], [16]. Let the packet
loss rates of the path Wi and the link ej be QQQi and qqqj ,
respectively.

Under the assumption of independent packet losses, they
satisfy

1−QQQi =
∏

ej∈Wi

(1− qqqj). (1)

By taking logarithm, (1) is expressed in a matrix form as

yyy = AAAxxx, (2)



where the ith elements of xxx and yyy and the i, jth element of
AAA are respectively

xxxj = − log(1− qqqj), (3)
yyyi = − log(1−QQQi), (4)

AAAi,j =

{
1 if ej ∈ Wi,
0 otherwise.

(5)

B. Passive Measurements

A passive measurement counts the packets sent from an
origin and that received at a destination and calculates the
packet loss rate [17]. In this case, some packets go through
a path and others do another path, depending on the traffic
condition [19], [20]. Hence, we need to consider multiple
paths.

Suppose that Ni packets are sent from an origin through the
path Wi. Then, Ni(1−QQQi) packets among them are received
at the destination. Summarizing such packets for all paths, the
total numbers NS and NR of packets sent and received satisfy

NS =
|W|∑

i

Ni, (6)

NR =
|W|∑

i

Ni(1−QQQi). (7)

Equation (7) is written as

α = βββTQQQ, (8)

where α = 1−NR/NS is the measured packet loss rate and
βββi = Ni/Ns is the ratio at which the ith path is chosen.

Note that Eq. (8) is linear in QQQ while Eq. (2) is linear
in xxx. Because they have a nonlinear relationship QQQ = 111 −
exp (−AAAxxx), estimation with active and passive measurements
is a nonlinear problem.

C. Unobserved Paths

In our problem, some paths are observed and others are not.
Hence, we divide vectors and matrices, yyy, AAA, βββ, QQQ, into two
parts as

yyyT = (yyyT
o , yyyT

m), AAAT = (AAAT
o ,AAAT

m), (9)

βββT = (βββT
o ,βββT

m), QQQT = (QQQT
o ,QQQT

m), (10)

where o means observed and m means missing. Using the
above notation, Eqs. (2) and (8) are expressed as

yyyo = AAAoxxx, (11)
yyym = AAAmxxx, (12)

α = βββT
o QQQo + βββT

mQQQm. (13)

The missing values are treated as latent variables to be
estimated in our method.

III. DERIVATION OF PROPOSED METHOD

Our method is based on the expectation-maximization (EM)
algorithm [18]. The EM algorithm estimates latent variables
and the parameters of a probabilistic model simultaneously
by maximizing the posterior distribution iteratively. In our
problem, the latent variables are QQQm and the parameters are
xxx. Hence, the EM algorithm maximizes the logarithm of the
posterior distribution of xxx given yyyo and α,

log p(xxx | yyyo, α) = log
∫

p(xxx,QQQm | yyyo, α)dQQQm, (14)

through the two steps, the expectation-step (E-step) and the
maximization-step (M-step). In the following, we derive the
concrete form of the EM algorithm.

Assume the probabilistic model,

p(yyyo | xxx) = N (yyyo | AAAoxxx, σ2
yIII), (15)

p(xxx) =
1

2σx
exp

(
−‖x

xx‖1
σx

)
, (16)

p(α |QQQm) = N
(
α | βββT

o QQQo + βββT
mQQQm, σ2

αIII
)
, (17)

p(QQQm | xxx) = N (QQQm | Q̃QQm, σ2
QIII), (18)

Q̃QQm = 111− exp (−AAAmxxx), (19)

where N (·) denotes the density function of the Gaussian
distribution. Maximum a posteriori estimation of Eqs. (15)
and (16) give the objective function of the sparse estimation
of the active measurement of the original network tomography
[12], [14]. Then, the E-step calculates the expectation of the
log likelihood function,

U(xxx,xxx(old)) = EEE[log p(xxx,QQQm, yyyo, α)] (20)

with respect to the conditional distribution,

p(QQQm | xxx(old), yyyo, α) = N (QQQm | µµµ(old),ΣΣΣ), (21)

where

µµµ(old) = ΣΣΣ
(
σ−2

α βββm(α− βββT
o QQQo) + σ−2

Q Q̃QQ
(old)

m

)
, (22)

ΣΣΣ−1 = σ−2
α βββmβββT

m + σ−2
Q III, (23)

Q̃QQ
(old)

m = 111− exp (−AAAmxxx(old)). (24)

This is rewritten as

U(xxx,xxx(old)) = EEE[log p(α,QQQm | xxx)] + log p(yyyo | xxx)p(xxx)

(25)

= − 1
2σ2

Q

‖QQQm − Q̃QQ
(old)

m ‖2

− 1
2σ2

y

‖yyyo −AAAoxxx‖2 − σ−1
x ‖xxx‖1 + const.

(26)

The M-step updates the parameter xxx so that U is maximized,
that is,

xxx(new) = arg max
xxx

U(xxx,xxx(old)). (27)

In total, our method is described as follows:



1) yyyo, QQQo, AAAo, AAAm, βββo, βββm, α are given and Q̃QQ
(old)

m is
initialized.

2) xxx(new) ← arg maxxxx U(xxx,xxx(old))
3) Q̃QQ

(old)

m ← 111− exp (−AAAmxxx(new))
4) µµµ(old) ← ΣΣΣ

(
σ−2

α βββm(α− βββT
o QQQo) + σ−2

Q Q̃QQ
(old)

m

)
5) Compute (20) and xxx(old) ← xxx(new).
6) If it does not converge, return to 2).
In the noiseless case, we can modify the above algorithm

to the following:
1) yyyo, QQQo, AAAo, AAAm, βββo, βββm, α are given and yyy

(old)
m is

initialized.
2) xxx← arg minxxx ‖xxx‖1 s.t. yyyo = AAAoxxx, yyy

(old)
m = AAAmxxx

3) Q̃QQ
(old)

m ← 111− exp (−AAAmxxx)
4) µµµ(old) ← ΣΣΣ(βββm(α− βββT

o QQQo) + Q̃QQ
(old)

m )
5) yyy

(old)
m ← − log (111−µµµ(old))

6) Compute (20) and if it does not converge, return to 2).
This is equivalent to a kind of compressed sensing.

IV. NUMERICAL EXPERIMENTS

To confirm the superiority of our method, some numerical
experiments were done as below.

A. Experiment Settings

We referred to [14] and [19] for the network structure and
the experimental setting (Fig. 1). Packets flowed from the
origin (S) to the destination (R) through six nodes (A, B, . . . ,
F). The nodes had eleven links (ej , j = 1, . . . , 11), which
produced six paths:

W1 = {e1, e5, e10} ,

W2 = {e1, e3, e6, e8, e10} ,

W3 = {e1, e3, e6, e9, e11} ,

W4 = {e2, e4, e6, e8, e10} ,

W5 = {e2, e4, e6, e9, e11} ,

W6 = {e2, e7, e11} .

We used the packet loss rates directly without generating
packets. The high packet loss rates were set to 0.05 while low
ones were set to 0.001. βββ was fixed to the uniform weights,
(1/6, . . . , 1/6)T. No measurement noise was added and hence
the modified method was used and compared to the com-
pressed sensing method that uses only active measurements
[13]. The performance was measured by the root mean square
error (RMSE) between the estimated packet loss rates and the
true ones. The methods were implemented in MATLAB and
CVX toolbox.

B. Results

When the number of the measured paths increased, RMSEs
decreased in both methods (Fig. 2). The proposed method
(blue) had lower RMSEs than the conventional method (red).
When the number of the high-loss links increased under
the condition that two paths are not observed by active
measurements, RMSEs increased in both methods (Fig. 3).

Fig. 1. Network in numerical experiments.
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Fig. 2. RMSE by number of paths observed by active measurements.
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Fig. 3. RMSE by number of links which have high packet loss rates.

The proposed method (blue) had lower RMSEs than the
conventional method (red).

C. Discussion

In the numerical experiments above, it is shown that our
proposed method usefully estimates the packet loss rates of
links in computer network. However, only a simple network
is simulated and a few extensions should be considered in the
future. Although this paper treated only passive measurements
with a specific pair of S and R, it is possible to include multiple



pairs for passive measurements. Another restriction is βββ. It is
fixed to the uniform weight here βββ can be estimated as well or
it can depend on other variables. Another issue is scalability. In
large-scale network settings, the number of paths exponentially
increases by increasing the number of links. This leads to the
increase in the number of the estimated parameters of packet
loss rates of paths. For this reason, the proposed method does
not scale to large-scale networks directly. If we estimate the
branching probability of the links, instead of the packet loss
rates of the paths, the weights of paths are replaced by the
weights of links.

V. CONCLUSIONS

We have formulated the packet loss rate estimation problem
with the active and passive measurements and proposed an
estimation method with the EM algorithm. In the future work,
estimation on a large-scale network will be addressed.
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