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Abstract—Recent studies have shown that phase information
contains speaker characteristics. A new extraction method to
extract pitch synchronous phase information has been proposed
and shown that it was very effective under channel matched
condition. However, phase changes between different channels.
Therefore, the speaker recognition performance is drastically
degraded under channel mismatch condition. On the other hand,
joint factor analysis (JFA) is an approach that is robust for chan-
nel variability. In this paper, we propose phase information-based
JFA for speaker verification under channel mismatch condition.
Speaker verification experiments were performed using the NIST
2003 SRE database. Phase information-based JFA achieved a
relative equal error rate reduction of 20.9% for male and 17.4%
for female compared to the traditional system based on Gaus-
sian mixture model and Universal background model (GMM-
UBM) that influenced by channel variability. Furthermore, by
combining phase information-based method with the MFCC-
based method, we obtained the better result than that of the
only MFCC-based method.

I. INTRODUCTION

In conventional speaker verification methods based on mel-
frequency cepstral coefficients (MFCCs), only the magnitude
of the Fourier Transform in time-domain speech frames has
been used. This means that the phase component has been
ignored. Importance of phase in human speech recognition has
been reported in [1], [2]. Several studies have invested great
effort in modeling and incorporating the phase into the speaker
recognition process [3]. The complementary nature of speaker-
specific information in the residual phase compared with
the information in conventional MFCCs was demonstrated in
[3]. The residual phase was derived from speech signals by
linear prediction analysis. Recently, many speaker recognition
studies using group delay based phase information have been
proposed [4], [5].

Previously, Wang et al. proposed a speaker verification sys-
tem using a combination of MFCCs and phase information [6],
[7] directly extracted from the limited bandwidth of the Fourier
transform of the speech wave. However, problems occurred
in extracting the phase information because of the influence
of the windowing position. Shimada et al. proposed a new

method to extract pitch synchronous phase information [8].
The experimental results showed that the phase information
was effective for speaker recognition under channel matched
condition [6], [7], [8].

However, phase drastically changes between different chan-
nels. In [9], the experimental results indicated that the speaker
recognition performance based on phase information was dras-
tically degraded under channel mismatch and channel distor-
tion conditions. To mitigate the influence of channel mismatch
for phase information, joint factor analysis (JFA) [10] instead
of traditional GMM-UBM based on Gaussian mixture model
(GMM) and Universal background model (UBM) is used in
this study. Recently, the JFA approach has become the active
field for speaker verification. This modeling proposes powerful
tools for addressing the problem of speaker and channel
variability in GMM framework. Therefore, it is considered
that the degradation of speaker verification performance using
phase information under channel mismatch condition would
be mitigated partly. Furthermore, a combination of the phase
information-based JFA and MFCC-based JFA is also studied
in this paper.

II. PHASE INFORMATION EXTRACTION

The spectrum S(ω, t) of a signal is obtained by DFT of an
input speech signal sequence

S(ω, t) = X(ω, t) + jY (ω, t)

=
√
X2(ω, t) + Y 2(ω, t)× ejθ(ω,t). (1)

However, the phase θ(ω, t) changes according to the frame
position in the input speech. To overcome the influence of the
phase response with respect to frame position, phases with the
anchoring radian frequency ωb for all frames are converted to
a constant, and the phase with the other frequency is estimated
relative to this. In the experiments discussed in this paper, the
anchoring radian frequency ωb is set to 2π×1000 Hz. Actually,
this constant phase value of the anchoring radian frequency
does not affect the speaker recognition result. Without loss



of generality, setting the phase with the anchoring radian
frequency θ(ωb, t) to 0, we have

S′(ωb, t) =√
X2(ωb, t) + Y 2(ωb, t)× ejθ(ωb,t) × ej(−θ(ωb,t)), (2)

whereas for the other frequency ω = 2πf , the spectrum on
frequency ω is normalized as

S′(ω, t) =
√
X2(ω, t) + Y 2(ω, t)× ejθ(ω,t)

×e
j ω
ωb

(−θ(ωb,t)). (3)

Then, the phase information is normalized as

θ̃(ω, t) = θ(ω, t) +
ω

ωb
(−θ(ωb, t)). (4)

In a previous study, to reduce the number of feature pa-
rameters, we used phase information in a sub-band frequency
range only. However, a problem arose with this method when
comparing two phase values. For example, for two values
π − θ̃1 and θ̃2 = −π + θ̃1, the difference is 2π − 2θ̃1. If
θ̃1 ≈ 0, then the difference ≈ 2π, despite the two phases
being very similar to each other. Therefore, we mapped the
phase into coordinates on a unit circle [6], [7], that is,

θ̃ → {cosθ̃, sinθ̃}. (5)

Using the relative phase extraction method that normalizes
the phase variation with respect to frame positions, the phase
variation can be reduced. However, the normalization of phase
variation is still inadequate. For example, for a 1000 Hz
periodic wave (16 samples per cycle for a 16 kHz sampling
frequency), if one sample point shifts in the cutting position
(frame position), the phase shifts only 2π

16 , while for a 500
Hz periodic wave, the phase shifts only 2π

32 with this single
sample cutting shift. On the other hand, if the 17 sample
points shift, their phases will shift by 17·2π

16 (mod2π) = 2π
16

and 34π
32 , respectively, for the two periodic waves. Therefore,

the values of the relative phase information for different cutting
positions are very different from those of the original cutting
position. We have addressed such variations using a statistical
distribution model of GMM [6], [7].

If we could split the utterance by each pitch cycle, changes
in the phase information would be further obviated. Thus,
we propose a new extraction method that synchronizes the
splitting section with a pseudo pitch cycle.

With respect to how to unite the cutting sections in the
time domain, the proposed method looks for the maximum
amplitude at the center around the conventional target splitting
section of an utterance waveform, and the peak of the utterance
waveform in this range is adopted as the center of the next
window. Fig. 1 outlines how to synchronize the splitting
section.

In this paper, however, we don’t discuss the comparison with
traditional phase information and pseudo-pitch synchronous
phase information because the effectiveness of pseudo-pitch
synchronous phase information has already been shown in [8].
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Fig. 1. How to synchronize the splitting section

III. JOINT FACTOR ANALYSIS

Joint factor analysis is an effective model for speaker veri-
fication under channel mismatch conditon. In this model, each
speaker is represented by the means, covariance, and weights
of a mixture of multivariate diagonal-covariance Gaussian den-
sities defined in some continuous feature space of dimensions.
The GMM for a target speaker is derived by adapting the
universal background model (UBM) mean parameters. The
basic assumption in JFA is shown as (6).

M = s+ c, (6)

where M is a speaker- and channel-dependent supervector, and
s and c are speaker and channel supervectors, respectively.

The first term in the right-hand side of (6) is modeled by
supposing that if s is the speaker supervector for a rondomly
chosen speaker, then

s = m+Dz + V y, (7)

where m is the speaker- and channel-independent supervector
(UBM), D is a diagonal matrix, V is a rectangular matrix of
low rank, and y and z are independent random vectors which
have standard normal distributions. The components of y and
z are refered to the speaker and residual factors, respectively.

The channel-dependent supervector c, which represents
channel effects in a speech, is supposed to be distributed
according to

c = Ux, (8)



TABLE I
DESCRIPTION OF THE DATA FOR ESTIMATING UBM AND JFA

PARAMETERS

MFCC phase
UBM estimating 1 utterance of the

for male each 100 speakers
UBM estimating 1 utterance of the 1 utterance of the

for female each 150 speakers each 100 speakers
JFA parameter 960 utterances

training for male of the 100 speakers
JFA parameter 1526 utterances

training for female of the 150 speakers

where U is a rectangular matrix of low rank, and x has
standard normal distribution. The components of x are refered
to the channel factors.

A detailed description of JFA can be refered by literature
[10].

IV. COMBINATION METHOD AND DECISION METHOD

MFCCs use only the magnitude of the Fourier Transform
in time-domain speech frames, that is, phase component is
ignored. On the other hand, phase information ignores the
magnitude of the Fourier Transform in time-domain speech
frames. Therefore, in this paper, the JFA score based on
MFCCs is combined with the JFA score based on phase
information. When a combination of the two methods is used
to identify the speaker, the score of the MFCC-based JFA
is linearly coupled with that of the JFA based on phase
information to produce a new score Scorecomb given by

Scorecomb = (1− α)ScoreMFCC + αScorephase, (9)

where ScoreMFCC and Scorephase are the score produced
by MFCC-based speaker model and phase information-based
speaker model, respectively, and α denotes the weighting co-
efficients, which are determined empirically. The combination
score is then compared to the threshold in order to take the
final decision.

V. EXPERIMENTS

A. Experimental setup

The effect of phase information-based JFA for speaker
verification under channel mismatch condition was evaluated
on the NIST 2003 SRE database [11]. The NIST 2003 SRE
database consists of recordings of 356 speakers (149 males and
207 females), recorded in multiple conditions which include
six transmission methods (CDMA, LAND, GSM, TDMA,
CELLULAR and UNK), multiple telephones, multiple places,
etc. Almost all the data for every speaker were recorded
by different environments. Therefore, this speaker verification
task is very difficult. The NIST 2003 SRE database was
divided into three parts, data for estimating UBM and JFA
parameters, enrollment data and test data because our group
don’t have anything other database of the NIST SRE series but
the NIST 2003 SRE database. Table I describes the data for
estimating UBM and JFA parameters and Table II describes
the details of the enrollment data and test data. Concretely
speaking, 149 male speakers were divided into 100 speakers

TABLE II
DESCRIPTION OF ENROLLMENT AND TEST DATA

(a) enrollment data
male 49 utterances of 49 speakers

female 57 utterances of 57 speakers
duration/utterance about 2 minutes

(b) test data
male 402 utterances of 49 speakers

female 523 utterances of 57 speakers
duration/utterance 15-45 seconds

TABLE III
THE NUMBER OF FACTORS FOR JFA MODEL (SPEAKER, CHANNEL,

RESIDUAL)

MFCC phase
male 4, 20, 20 40, 6, 6

female 30, 20, 20 40, 40, 40

for estimating UBM and JFA parameters and 49 speakers
for test, and 207 female speakers were divided into 150
speakers for estimating UBM and JFA parameters and 57
speakers for test. The test corpus consisted of 402 true trials
and 402 × 48 false trials for males, and 523 true trials and
523×56 false trials for females, respectively. We used gender-
dependent UBMs containing 1024 Gaussians for MFCC and
256 Gaussians for phase information, respectively.

To verify robustness of phase information-based JFA for
channel variability, the speaker verification system using JFA
is compared with the system using traditional GMM-UBM in
this paper. For GMM-UBM, GMMs containing 1024 Gaus-
sians for MFCC and 256 Gaussians for phase information ap-
plying Maximum a posteriori (MAP) adaptation from gender-
dependent UBMs were used. For JFA, the number of speaker
factors, channel factors and residual factors are shown in Table
III. Table IV shows conditions for the speech analysis.

We applied voice activity detection (VAD) for speech data.
A frame is judged to be a speech frame if there is a segment
put between long silence segments more than 200 ms. Under
this condition, about 75% of all the frames were judged to be
speech frames.

B. Experimental results

The equal error rates (EERs) for speaker verification using
phase information-based GMM-UBM and JFA are given in Ta-
ble V. Phase information-based JFA showed the improvement
of EERs of 5.14% for male and 3.10% for female compared to
the system based on GMM-UBM. The results show that phase
information-based JFA has the moderate performance for
speaker verification and the degradation of speaker verification
performance using phase information caused by speaker and
channel variability was mitigated partly. The EERs for speaker
verification using MFCC-based GMM-UBM and JFA, using
a combination of MFCC and phase information are given in
Table VI. The combination of MFCC and phase information
achieved a better result than MFCC-based JFA which was one
of the standard methods for speaker verification. This indicated
that the phase information has complementary nature with
MFCC.



TABLE IV
CONDITIONS FOR SPEECH ANALYSIS

sampling frequency 8 kHz
MFCC phase

window size 25 ms 16 ms
window shift 10 ms 5 ms

frequency range all 60-700 Hz

dimensions
60 (19 MFCCs + power, 24 (12 sin

their ∆ and ∆∆ and 12 cos
coefficients components

TABLE V
EERS FOR SPEAKER VERIFICATION USING PHASE INFORMATION (%)

GMM-UBM JFA
male 24.57 19.43

female 17.86 14.76

These results show that phase information is effective for the
speaker verification, even under channel mismatch condition.
On the other hand, a previous study showed that phase infor-
mation was not effective under channel mismatch and channel
distortion conditions [9]. The reason is that the influence of
channel mismatch for phase information is mitigated by using
the channel variability robust JFA method. To verify this, we
evaluated EERs for speaker verification under transmission
mode matched and mismatch condition, respectively. We think
that channel characteristics varies drastically between different
transmission modes. Here, transmission mode matched condi-
tion means that the enrollment utterance and test utterance
have same transmission mode, while transmission mode mis-
match condition means that the enrollment utterance and test
utterance have different transmission mode. The experimental
result is given in Table VII. For both MFCC and phase in-
formation, the system based on JFA showed the improvement
of EERs compared to the system based on GMM-UBM under
transmission mode mismatch condition. From Table VII, it
is obvious that the JFA can partly remove the influence of
transmission mode mismatch for phase information, but the
influence is still large. Based on these results, the more im-
provement of the results shown in Table V and VI are expected
by normalizing phase information for each transmission mode.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we conducted the speaker verification using
pseudo-pitch synchronous phase information under channel
mismatch condition. To mitigate the influence of phase in-
formation under channel mismatch condition, a channel vari-
ability robust speaker verification method was applied. Phase
information-based JFA showed the improvement of EERs
of 5.14% for male and 3.10% for female compared to the
traditional system based on GMM-UBM. We obtained the
better result than only MFCC by combining MFCC and phase
information.

Phase information shows the lower EERs under transmis-
sion mode matched condition while the higher EERs under
transmission mode mismatch condition. As a result, in future
work, we will try to normalize phase information for each
transmission mode.

TABLE VI
EERS FOR SPEAKER VERIFICATION USING MFCC AND COMBINATION OF

MFCC AND PHASE (%)

GMM-UBM JFA

MFCC male 7.71 6.97
female 7.38 3.44

MFCC+phase male 7.68 6.72
female 6.65 3.25

TABLE VII
EERS FOR SPEAKER VERIFICATION UNDER TRANSMISSION MODE

MATCHED AND MISMATCH CONDITION (%)

match mismatch
GMM-UBM JFA GMM-UBM JFA

MFCC male 5.76 5.88 15.68 10.72
female 6.21 3.17 13.46 5.73

phase male 21.11 16.18 41.45 37.07
female 11.22 10.91 42.06 34.48

MFCC+ male 5.33 5.00 15.73 10.83
phase female 5.25 3.20 12.50 5.72
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