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Abstract—This paper proposes a new class loss function as an
alternative to the standard sigmoid class loss function for optimiz-
ing the parameters of decoding graphs using discriminative train-
ing based on minimum classification error (MCE) criterion. The
standard sigmoid based approach tends to ignore a significant
number of training samples that have a large difference between
the scores of the reference and their corresponding competing
hypotheses and this affects the parameters optimization. The
proposed function overcomes this limitation through considering
almost all the training samples and thus improved the parameter
optimization when tested on large decoding graphs. The decoding
graph used in this research is an integrated network of weighted
finite state transducers. The primary task examined is 64K words,
continuous speech recognition task. The experimental results
show that the proposed method outperformed the baseline system
based on both the maximum likelihood estimation (MLE) and
sigmoid-based MCE and achieved a reduction in the word error
rate (WER) of 28.9% when tested on the TIMIT speech database.

I. INTRODUCTION

Weighted finite state transducer (WFST) is considered as
an appropriate and flexible approach for combining various
speech knowledge sources together in an integrated recogni-
tion network (also called decoding graph)[1]. The strength of
WFST comes from the simple but powerful operations i.e.
composition, determinization, and weight pushing [2].

The process of building speech decoding graphs usually
starts with representing each kind of speech knowledge sources
(namely, lexical, acoustic and language models) as a WFST.
Then a series of WFST operations are applied to produce
the final decoding graph. The resulting graph can be used to
decode speech utterances efficiently using a search algorithm
i.e. Viterbi search with beam pruning and token passing
techniques [3].

Most of current state-of-the-art speech research efforts are
biased towards optimizing the parameters of speech knowl-
edge sources separately without taking into consideration the
interdependency among these knowledge sources. The fact that
yields a sub-optimal performance of the overall speech decod-
ing process [4]. The key for enhancing the accuracy of the
speech decoders is to find a reliable estimation procedure for
optimizing the parameters of the various knowledge sources
jointly. One way to do that is to optimize the parameters of
speech knowledge sources while being integrated together into
a unified decoding graph and using discriminative training.

In the literature, MLE is the commonly used technique for
optimizing the language and acoustic models parameters sep-
arately [5]. However, MLE is based on some assumptions i.e.
speech observations are taken from a family of distributions
(typically Gaussian), training data is unlimited, and the true
language model is known. In real, none of these assumptions
holds for speech so, MLE is not guaranteed to give optimal
decoding results [6], [7].

Currently, discriminative training techniques are considered
as a complementary approach to MLE and overcome some
of its limitations [8]. The basic idea of discriminative train-
ing is to penalize the knowledge sources parameters that
are liable to confuse the correct and incorrect utterances.
Various discriminative training criteria have been used to
optimize the acoustic model parameters i.e. Minimum phone
error (MPE) [9], Minimum word error (MWE) [10], and
Maximum Mutual Information (MMI) [11]. It has been also
shown that discriminative training can be used to optimize
the language model parameters using various criteria such as
Minimum Sample Risk (MSR) [12], Minimum Classification
Error (MCE) [13], and the reranking techniques based on the
perceptron algorithm [14].

Although the variations of discriminative training criterion
achieved better performance than MLE, but still deal with the
knowledge sources as separate and independent optimization
tasks. There are some research efforts have been done on
the joint optimization of the acoustic and language models
parameters i.e. [4], [6]. These researches are based on optimiz-
ing the language model parameters in decoding graphs with
taking into consideration the acoustic score while training the
language model parameters using only the first best competing
hypothesis.

In this paper we improved the previous work on discrimi-
native training presented in [4], [6] through the utilization of
the N-best hypotheses in the training process. Additionally, a
new class loss function is presented as an alternative to the
standard sigmoid class loss function to improve the parameter
optimization of decoding graphs.

This paper is organized as follows: in section II the new
class loss function is defined and derived. The parameters
optimization procedure is discussed in section III. Experimen-
tal results comparing the proposed method with both sigmoid
based MCE and MLE are presented in section IV. Finally,



section V presents the conclusion and future perspectives.

II. PROPOSED APPROACH

Assume that speech utterance is represented as a sequence
of observation vectors X and the corresponding word sequence
is W = w1, w2, ..., wn. The score of this observation sequence
given the acoustic model parameters Λ and the language model
parameters Γ is defined as [4]:

g (X,W ; Λ,Γ) = logP (X|W,Λ) + α.logP (W |Γ) (1)

where α is the language model scaling factor, P (X|W,Λ)
and P (W |Γ) are the acoustic and language models scores
respectively. The task of the speech decoder is to select the
best word sequence Wbest that maximizes the score of X as
follows:

Wbest = argmax
W

g (X,W ; Λ,Γ) (2)

where g is the total decoding score of the speech utterance X .
The N-best word sequences can be retrieved through keeping
the top N decoding hypotheses as follows:

Wr = argmax
W 6=W1,...,Wr−1

g (X,W ; Λ,Γ) (3)

where Wr is the rth best decoding hypothesis. Let Wref

denotes the correct reference word sequence, we need to
compare the score of Wref with that of its corresponding N-
best competing hypotheses W1, ...,WN . For this purpose, an
anti-discriminant function can be defined as:

d(X) = d (X; Λ,Γ)

= G (X,W1, ...,WN ; Λ,Γ)

− g (X,Wref ; Λ,Γ) (4)

where the contribution of N-best hypotheses is represented in
terms of Pnorm anti-discriminant function G defined as [8]:

G (Xi,W1, ...,WN ; Λ,Γ) = log

(
1
N

N∑
r=1

exp [g (Xi,Wr; Λ,Γ) η]

) 1
η

(5)

where η is a positive parameter that controls the weighting of
N-best hypotheses. The anti-discriminant function is used to
differentiate between the correct and incorrect word hypothe-
ses; since it gives +ve value if the best hypothesis is correct
and gives −ve value vice versa.

In order to use the anti-discriminant function in a gradi-
ent descent optimization, one way is to formulate it into a
smoothed and differentiable 0-1 function. The standard and
common choice is the sigmoid class loss function defined as:

l (d (X)) =
1

1 + exp (−γd (X) + θ)
(6)

where γ and θ are constants used to control slope and shift of
the sigmoid function respectively. Based on the Generalized

Probabilistic Descent (GPD) algorithm [15], the decoding
graph parameters can be iteratively adjusted using the follow-
ing update rule [4], [6]:

Γt+1 = Γt − ε5 l (X; Λt,Γt) (7)

To simplify the problem of joint optimization of both the
acoustic and language model parameters, we keep the parame-
ters of the acoustic models unchanged and calculate ∂d(X;Λ,Γ)

∂Γ ,
then the gradient of (6) becomes:

5l (d(X)) =
∂l

∂d

∂d (X; Λ,Γ)

∂Γ
(8)

where the first term is the gradient of the sigmoid class loss
function and is given by:

∂l

∂d
= γl(d)(1− l(d)) (9)

However, l(d) approaches the value One for the utterances
with a large value of d(X), yielding the slope of the sigmoid
function to approach the value Zero, and resulting in ignoring
the contribution that we may obtain from these utterances to
the gradient in the optimization process. In order to overcome
this limitation, we propose the following log class loss func-
tion:

l̂ (d (X)) = log(l (d (X))) = −log
(

1 + e−γ d(X)
)

(10)

The gradient of this new loss function is defined as:

∂l̂

∂d
=

γe−γd(X)

1 + e−γd(X)
(11)

The advantage of this gradient is that almost all the training
speech utterances are included in the training process even
if the speech utterance is highly misclassified. In this case,
it is obvious that for speech utterances with score difference
between the reference and competing hypotheses is large +ve
value, the gradient of the proposed function approaches γ/2
and thus these speech utterances will be considered in the
training process.

Back to the derivation in (8), to compute ∂d(X;Λ,Γ)
∂Γ , we need

to differentiate d (X; Λ,Γ) with respect to all the parameters of
the weight vector Γ. However, we can simplify this by taking
the partial derivative with respect to the transition weight s,
then the derivation becomes [8]:

∂d(X;Λ,Γ)
∂Γ =

[
−I (WRef , s) +

N∑
n=1

CnI(Wn, s)

]
(12)

where

Cn =
exp [g (X,Wn; Λ,Γ) η]
N∑
j=1

exp [g (X,Wj ; Λ,Γ) η]

(13)

where I(W, s) represents the number of occurrences of the
transition weight s in the decoding hypothesis W .



III. OPTIMIZATION PROCEDURE

The speech knowledge sources are compiled and integrated
together into a unified static and large decoding graph through
the application of a series of WFST operations [16]. An
optional silence is added at the boundaries of each word
in the dictionary and a scaling factor α = 13 is used to
scale the language model parameters. Table I shows the size
of WFST representing each knowledge source along with
the operations applied to get the integrated decoding graph
(C ◦ det(L)) · (G ◦ T ).

TABLE I
SEQUENCE OF OPERATIONS APPLIED TO BUILD LARGE WFST.

Graph/Operation Num. of states Num. of trans.
C 1,681 84,080
L 523,083 592,837
G 595,765 1,327,969
T 63,999 191,997

det(L) 209,919 279,673
C ◦ det(L) 346,452 550,709

G ◦ T 886,099 1,932,311
(C ◦ det(L)) · (G ◦ T ) 5,579,208 8,082,205

C : Context dependency WFST, L : Lexicon WFST, G : Tri-gram WFST,
T : Silence WFST, ◦ : Composition operation, det : Determinization
operation, · : Lookahead composition.

The training procedure followed to optimize the language
model parameters consists of the following steps:

1) For each training sentence we extract a reference sub-
graph Sref by constructing an acceptor-type WFST Yref
which has an arc sequence that inputs and outputs the
same word sequence and composing it with the large
decoding graph R as follows: Sref = R ◦ Yref .

2) Decode the training speech utterance using the large de-
coding graph R. For each sentence, store the correspond-
ing transitions of the N-best decoded sequences along
with the associated decoding score for each sequence.

3) Decode the training speech utterance using the extracted
reference subgraph SRef and store the correspond-
ing reference path along with the associated decoding
scores.

4) Count the transitions in the reference and N-best hy-
potheses based on the transition weights.

5) Calculate the score difference using (Eq. 4), then calcu-
late the gradient of the proposed loss function (Eq. 11)
and the gradient of the language model (Eq. 12).

6) Update the transition weights of the large decoding
graph using the update rule (Eq. 7).

7) Repeat from step 2 as long as the performance converges
or reaching a certain number of iterations.

Only the first transition in the set of candidate transitions
with different weight counts is updated [4].

IV. EXPERIMENTS

A. Experimental setup

The experiments are performed on the TIMIT speech
database. Approximately 2 hours of continuous speech rep-

resented in 1,019 utterances of manually transcribed data was
used for training the language model parameters of a large
decoding graph. The test set contains around 3.5 hours of
continuous speech represented in 2,819 utterances is used
for intensive testing. The transcriptions that contain out-of-
vocabulary (OOV) words were removed from both training
and testing sets.

In all experiments, the speech signal is sampled at 16kHz,
16bits/sample and framed with frame rate of 30msec with 75%
overlap between successive frames. Each frame is represented
using 39 dimensional feature vectors with 12 static Mel Fre-
quency Cepstral Coefficients (MFCC), 24 dynamic coefficients
(12 ∆, 12 ∆∆) and 3 log energy values.

The HMM set contains physical acoustic models for 38
phonemes, 882 diphones and 26,412 triphones. These physical
models are trained using Wall Street Journal (WSJ) speech
corpora. Additionally, 38,229 logical models are synthesized
using state tying based on decision trees. Each acoustic model
consists of 3 states with left to right transitions without skip.
There are total of 8,000 distinct states, each of which is
associated with 39-dimensional probability density function
taking the form of 32 mixtures per state and the covariance
matrix is diagonal.

The language model consists of 64,000 uni-grams, 522,530
bi-grams and 173,445 tri-grams. These n-grams are trained
from Gigawords text corpus and used to construct the large
decoding graphs with a vocabulary containing 64k words. The
resulting decoding graph and the operation applied are shown
in table I.

The decoder proposed in [17] is used in our experiments.
This decoder runs at 1.5xRT and 0.02xRT on the large decod-
ing graph R and the reference subgraph SRef respectively
when tested on 2.3 Ghz Intel Core i5 processor and after
applying some pruning thresholds. In the literature, there are
many faster decoders (eg. [18]), but these decoders only keep
track of the word history of hypotheses and thus, the complete
sequence of state transitions which play a crucial role in
discriminative training cannot be recovered.

B. Parameters selection

Before experimenting with discriminative training proce-
dure, we performed a number of experiments aiming at setting
three parameters of the procedure for the proposed log-based
training. This set of parameters includes: γ, which controls
the slope of the sigmoid function, ε, which is the increment
parameter of the gradient descent, and η which controls the
contribution of the N-best hypotheses in the parameters opti-
mization. To simplify the training procedure, we assumed that
α, the language model weight, and the word insertion penalty,
δ, are fixed and take the values α = 13, δ = 0.1 we also set
θ = 0 for both the sigmoid based and log based training. Since
the proposed method can deal with the utterances with large
difference between the reference and competing hypotheses
scores, we can easily set the values of the parameters γ and ε as
0.05 and 0.9 respectively depending on the convergence speed
of the training algorithm. The rationale for finding a reasonable



value of the third parameter η is based on the following
remark: when the difference df , between the reference and
competing hypotheses scores is large, the value of Cn which
represents the contribution of the N-best hypotheses tends
to Zero for large values of η. Choosing a small value for
η = 0.001 would have the effect of increasing the contribution
of the N-best hypotheses. While more experimental work
is required to fine tune these parameters seemed to yield a
reasonable convergence rate. For discriminative training using
the standard sigmoid class loss function, we used the values
0.01, 10 and 0.0001 for both γ, ε and η respectively [4].
The number of best decoding hypotheses included in the anti-
discriminant function of Eq. (5) is N = 2.

C. Results and discussion

The baseline system consists of various knowledge sources
trained using the standard MLE approach. While performing
the parameters optimization using the proposed MCE ap-
proach, and after each iteration, the optimized graph is saved
on disk and used for testing. For both sigmoid based and log
based training, four training iterations were performed. The
reason for choosing this number of iterations is based on the
convergence of optimization process, since we observed that
the optimization diverges after the fourth iteration for both the
sigmoid and log based training.

The detailed testing results after each training iteration are
listed in tables II and III for the sigmoid and log based training
respectively. It is shown from these results that the recognition
accuracy and WER obtained using log-based approach out-
performs the results obtained when from the sigmoid-based
approach. The reason behind this improved performance is
that the sigmoid function ignores from the training procedure
all the utterances with high difference between the reference
and competing hypotheses especially in the first few iterations.
However, the log-based approach takes into consideration most
of the training utterances even when the score difference
between the reference and competing hypotheses is high.

Figure 1 shows the number of ignored utterances that are
skipped from the training process for both the sigmoid-based
and log-based approaches. It is shown that the number of
missed utterances in case of log-based approach is much lower
than that of the sigmoid based approach which proves our
claim. The number of ignored utterances in the first iteration is
160 utterances in the case of sigmoid-based approach while the
number of ignored utterances is only 15 utterances in the case
of log-based approach, this explains why the achieved word
accuracy of the log-based method is much higher than that
obtained using the sigmoid-based method. It’s also noted that
some of the ignored utterances are taken into consideration in
the next iterations, but still the number of ignored utterances
from the sigmoid-based approach is much higher than that
from the log-based one.

Table II shows the detailed results of each training iteration
of the sigmoid based approach. The first row shows the details
of the output from the decoding process for the set of test
utterances using MLE trained language model. The baseline
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Fig. 1. Number of ignored utterances while training.

word recognition accuracy is 77.01% and the WER is 25.19%.
The next rows in this table show the details of the output from
the decoder for the set of test utterances using the optimized
decoding graph after each training iteration. The best word
accuracy achieved is 83.98% and the best WER is 18.09%
when the sigmoid function is used as a class loss function for
the MCE training.

TABLE II
DETAILED PERFORMANCE OF TRAINED GRAPHS USING THE SIGMOID

BASED MCE.

Iteration Corr% Sub% Del% Ins% WER%
Baseline 77.01 18.51 4.47 2.20 25.19

1 80.39 15.95 3.66 2.06 21.67
2 81.93 14.72 3.35 1.90 19.97
3 83.24 13.59 3.18 1.93 18.69
4 83.98 13.15 2.87 2.07 18.09

The results obtained from discriminative training using
the proposed log-based approach is shown in table III. The
best word recognition accuracy obtained from the log-based
approach is 84.19% which is higher than the obtained word
accuracy from the sigmoid-based method. Besides, the WER
obtained from the log-based method is 17.89% which is also
better than that of the sigmoid-based method.

TABLE III
DETAILED PERFORMANCE OF TRAINED GRAPHS USING THE PROPOSED

LOG BASED MCE.

Iteration Corr% Sub% Del% Ins% WER%
Baseline 77.01 18.51 4.47 2.20 25.19

1 81.21 15.30 3.49 1.86 20.65
2 83.24 13.69 3.07 1.82 18.59
3 83.98 13.25 2.76 1.96 17.98
4 84.19 13.05 2.76 2.08 17.89

V. CONCLUSION

In this paper we presented an improvement to the previous
work presented in [4], [6] through the inclusion of N-best



hypotheses in the training process. Additionally, we presented
a new class loss function that overcomes the limitation of the
standard sigmoid class loss function for discriminative training
based on MCE criterion. The experimental results show that
the proposed log-based approach achieves better performance
than both MLE and the standard sigmoid-based MCE ap-
proaches when tested on the TIMIT speech database. A future
direction could be to evaluate the performance of the proposed
method with different number of N-best hypotheses included
in the calculation of the anti-discriminant function. Another
future direction is to test the proposed approach with different
strategies for updating the weights of the candidate transitions
like updating the final transition or randomly selecting the
transition used in the weight adjustment.
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