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Abstract—Many state-of-the-art emotion classification systems
are computationally complex. In this paper we present an
emotion distillation framework that decreases the need for
computational complex algorithms while maintaining rich, and
interpretable, emotional descriptors. These representations are
important for emotionally-aware interfaces, which we will in-
creasingly see in technologies such as mobile devices with per-
sonalized interaction paradigms and in behavioral informatics.
In both cases these technologies require the rapid distillation of
vast amounts of data to identify emotionally salient portions. We
demonstrate that emotion distillation can produce rich emotional
descriptors that serve as an input to simple classification tech-
niques. This system obtains results that match state-of-the-art
classification results on the USC IEMOCAP data.

I. INTRODUCTION

As computing power continues to grow, engineers and
scientists have been able to obtain increasingly quantitative
measures of human emotion and behavior. Emotion is integral
to behavior comprehension as it underlies social communi-
cation [1], [2], [3]. Consequently, proper modeling of this
complex signal will aid in the design of empathic assistive
devices, devices designed to assess and describe emotional
communication to their users. These systems must be able to
describe emotion in an interpretable and robust manner. One
method to meet these requirements is through emotion distil-
lation. Emotion distillation is the process of generating a set of
emotion-specific features from the original high-dimensional
feature space that describes how emotion fluctuates over time.
Simple classification of this distillation can then be performed
(e.g., Figure 1). Simplified emotional computing can aid the
development of emotionally aware mobile companions, mobile
monitoring systems, and mobile assistive devices. There has
been research into mobile emotion classification devices. For
example, in [4], [5] the authors demonstrated that mobile
affective devices could be developed using powerful handheld
mobile computers. However, these systems are still too com-
plex to implement natively on many hand-held mobile devices.
In this work we demonstrate how emotion distillation can
be used as a pre-processing stage in computationally simple
emotion classification systems.

Distillation systems have important application in behav-
ioral signal processing and natural language processing, in
which vast amounts of data must be processed to make a few
high-level judgments [6] or in which emotionally/behaviorally
salient regions must be located [7]. Once located, these regions
can be analyzed automatically or cued for follow-up by
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Fig. 1. A framework for emotionally rich classification.
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human experts in a closed-loop framework [8], [9]. Distillation
features are strongly tied to the behavior of interest, natu-
rally highlighting salient portions of the data. This simplifies
the feature-space representation by reducing the quantity of
spurious information. Emotion distillation can be viewed as a
supervised emotion-specific approximation of factor analysis.
The benefit of this approach is that classifiers operating on
top of distilled emotional cues need not be computational
complex. We will analyze a technique for emotion distillation
and classification to assess the benefits this two-stage process.

The distillation approaches described in this paper are based
on our Emotion Profile (EP) and emotogram representations.
EPs characterize emotion in terms of affective blends (e.g.,
very angry and slightly sad) [10]. EPs are a multi-dimensional
utterance-level characterization of emotion that describe the
presence or absence of set basic emotions (e.g., angry, happy,
neutral, sad). Emotograms are a temporal extension of EPs
that capture the change in the presence and absence of these
emotions in time. We have demonstrated that emotion can be
classified by modeling the dynamics of the emotograms with
Hidden Markov Models (HMM) [11]. However, it is not yet
clear if computationally simple classification techniques can
similarly model the temporal variation of these rich emotional
descriptors.

In this work we distill emotion information using EPs and
emotograms. We classify the distilled emotogram representa-
tion using Hidden Markov Models (HMM) as demonstrated
in [11] and compare these results to the computationally
simple n-gram modeling, commonly employed in language
modeling. We also assess the efficacy of computationally
simpler static emotogram modeling using Linear Discriminant
Analysis (LDA) and maximization over a time-condensed
emotogram (simple summation, the simplest approach). Ac-
curate classification results suggest that emotion distillation is
a rich emotional representation with sufficient clarity to permit
simple classification techniques.

The novelty of this work is its description of how emotion
distillation can be used to create simple lightweight clas-
sification frameworks and interpretable representations. Our
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results suggest that this method is effective for classifying the
affective label of utterances across all classification methods
employed. We demonstrate that given emotionally distilled
information we can use simple classification techniques to
achieve state-of-the-art performance (Metallinou et al., 2010,
62.42 4+ 3.16 [12]), which used HMMs across multiple modal-
ities and fused with decision-level Bayesian fusion.

II. DESCRIPTION OF DATA

In this paper we use the audio-visual+motion capture
IEMOCAP database collected at the University of Southern
California [13]. This study is restricted to the audio and
motion-capture data. These data are dyadic emotional inter-
actions between actors elicited using emotionally evocative
scripts and improvisational scenarios and contain a wide range
of emotions. Six evaluators labeled the categorical emotional
labels of the data from the set of: angry, happy, neutral,
sad, frustrated, excited (later merged with happy), surprised,
disgusted, fear, and other. Approximately 17% of the data
has no majority-agreed ground-truth label, highlighting the
variability and non-prototypicality of the data. We use data
from the emotion classes of: angry, happy, neutral, and sad.
There are a total of 661, 1,155, 515, 572 angry, happy, neutral,
and sad utterances, respectively (2,903 in total).

The audio features are extracted using Praat [14]. These
features include pitch, intensity, and Mel Filterbank outputs
(MFB), commonly used features in emotion recognition [15].
The motion-capture features are an adaptation of facial anima-
tion parameters (FAP) (discussed in [16]) to the IEMOCAP
database. The features are grouped by facial region and include
mouth, cheek, eyebrow, and forehead features.

The initial feature set includes statistical functionals calcu-
lated over the audio and motion capture signals. The function-
als are calculated over windows of 0.25 seconds (with a half
window length overlap) and include: mean, variance, upper
and lower quantiles, and quantile range (685 features). The
feature set size was reduced using Principal Feature Analysis
(PFA) [17], also employed in [11]. PFA identifies a subset of
features in the original feature space that explain a majority of
the variance in the data. This results in a set of features that
are less correlated than the initial set, explain the variance,
and are interpretable. We retained 190 features as in [11].

III. METHODS

A. Emotion Distillation via Emotion Profiles (EPs)

Emotion Profiles quantify the affective content of an ut-
terance in terms of four components defined by the human-
centered basic emotion labels: angry, happy, neutral, and sad.
Each component describes the estimated level of the emotion
class in the analyzed data, providing a quantitative description

of the affective content. This description also provides human-
interpretable information, important when this system is used
in the context of a human-computer interaction.

EPs quantify the presence of emotion cues within an ut-
terance using classifier-derived confidence, proven effective in
our previous work [10], [11]. EPs are trained using four binary
subject-independent self vs. other Support Vector Machine
(SVM) classifiers over the classes of angry, happy, neutral, and
sad (e.g., angry vs. not angry). The output of each classifier is
a class membership (£ 1) and a distance from the hyperplane,
which we use to approximate the confidence of the assertion
of class membership (Figure 2). We use the same training
paradigm as in [11], with Radial Basis Function kernels and
sequential minimal optimization (SMO) [18], implemented
using Matlab’s svmclassify function. The testing data are
windowed portions of the utterances. The training data are
utterance-level statistics to decrease run-time. SVM training
is between O(n?) and O(n?®) depending on data noise. In
our dataset, a 0.25 second window generates over 80,000
windowed EPs, making training computationally complex.
However, this training complexity does not extend to testing.
Consequently, assuming the availability of offline training,
systems employing these techniques could potentially be em-
ployed on lightweight platforms.

EPs can be estimated over different window sizes to
estimate the sub-utterance affective content. We previously
extracted EPs over sliding windows of 0.25, 0.5, 1, L.5,
and 2 seconds to determine the effect of window size on
classification performance [11]. In this paper, we focus only
on a window size of 0.25 seconds. This permits the dynamic
analysis over all utterances greater than 0.5 seconds (the
HMM is a three-state model), eliminating the need to analyze
results by utterance length and makes our work more directly
comparable to published findings.

We formally define two terms: an EP slice and an
emotogram. An EP slice is an EP over a windowed
portion of an utterance. An EP slice for utterance i at
time ¢ is designated as E'P;; (see vertical slices in Fig-
ure 3, left). Each four-dimensional EP slice defines the
confidence, ¢, in the presence or absence of each emo-
tion: EPi,t = [Ct,angryact,happya Ct neutral; ct,sad]- An emo-
togram is the set of EP slices extracted over utterance ¢,
emot; = {[Ct,anga Ct,hap; Ct,neu7ct,sad]}:igNa where Ty is
the number of EP slices. The testing EPs are generated
using leave-one-subject-out cross-validation; the training emo-
tograms were generated using leave-one-training-speaker-out
cross-validation.

In the remainder of this paper we will describe four methods
used to classify the affective content of utterances using the
information described by the emotogram via HMMs and the
simple techniques of N-Gram modeling, LDA, and simple
summation. All experiments are performed using leave-one-
speaker-out cross-validation. The results are presented in terms
of unweighted accuracy (UW) averaged over the 10 speakers
as in [12].
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Fig. 3. Transformation from original emotogram (left) to quantized emotogram
(center) and quantized EP slice (right).

B. Dynamic Methods: HMM and N-Gram Modeling

We first demonstrate that the emotogram labels can be
classified by modeling the trajectory of the unquantized EP
slices, a strategy introduced in [11]. We model the emotograms
using a left-to-right three-state two-mixture description using
HTK, the Hidden Markov Model Toolkit [19]. This defines an
emotion in terms of a start, middle, and end state. The input
features to the HMM modeling are the normalized continuous-
valued EP slices of the emotograms. We will compare these
results to the simplified classification results.

N-gram modeling uses discrete units obtained by quantizing
the emotograms’ EP slices using the 0.8 and 0.2 quantiles
(determined empirically) for each component: angry, happy,
neutral, sad over all training emotograms. This results in
a four-dimensional discrete-valued representation (Figure 3).
The quantiles are defined over utterances with the ground
truth of the component (e.g., the quantiles for the angry
component are defined using angry utterances). The resulting
bins have designations of “high”, “medium”, and “low” for
each component. Quantiles are used to account for the varied
and skewed distribution of profile values over each component.
We code the representation, resulting in 81 one-dimensional
EP codes (39 of which occur in the data). The data are now
described as D;, one EP code from time slice, ¢. The coded
emotogram is: {Dt}tT;VO. We calculate unigram, bigram, and
trigram probabilities over the EP codes for each emotogram.

We posit that the distillation captures emotional structure.
We seek to identify the relationship between this structure
and the label of each test utterance’s emotogram by treating
the distillation as an observable Markov chain. We focus on
the evolution of emotion within the utterance (Equation 1).
We assume conditional independence and a uniform prior to
accommodate training-testing distribution mismatch. Thus, for
all m € {angry, happy, neutral, sad}, the prior, p(m), is 0.25
and is not included any of the equations.

Our preliminary formulation assumes that emotion percep-
tion is cumulative and that humans attend to all emotional
evidence when making an assessment (Equations 1 and 2).
However, psychological research has suggested that people
attend to salient information when making these assess-
ments [20]. Consequently, we propose an alternate formulation
that accumulates the probabilities as a sum, rather than a
product (Equation (3)), emphasizing evidence that is a strong
indication of a given class (an approximation of salience). The
final label reflects the presence of emotionally salient data
while mitigating both noise and emotionally inconsequential
information (which will have little effect on the final sum).

m>1k argmax P(D|m)

argma:c Z lOg

=argmat P(Dy, ..., D1lm) (1)

(D¢|Di—1,m)) + log(P(D1|m))

2

m} =argmae ZP (Dy|Dy_1,m) + P(Dy|m) 3)
=2

We model the emotion flow using unigram, bigram, and
trigram models. The bigram and trigram models use back-off
interpolation using parameters from largest n-gram to smallest
n-gram: [0.8, 0.2] and [0.5, 0.3, 0.2], respectively, determined
empirically. We also used add-less-than-one smoothing to
account for unseen data. We use a voting mechanism to
arrive at a final estimate of emotion content. We sum the
probabilities derived from the estimates of each n-gram model.
The maximal probability is chosen as the final class estimate.

C. Static Methods: Linear Discriminant Analysis and Simple
Summation

In this section we will look at two simple static modeling
techniques. We must alter our treatment of the emotogram.
Instead of modeling the dynamics of the profile, we treat
the emotogram as a set of emotional evidence that can be
accumulated over the course of that utterance. We start with
the original emotogram and define sumE P, the accumulation,
and normEP, the accumulation normalized by emotogram
length, Ty.

We define sumFEP; as the summation of the emo-
togram (emot;, defined in Section III-A) over all time
steps, sumBP; = : g [Ct angs Ct,hap, Ct,neu Ct sad} We
define sums of confidences over each emotion component as
Cin,m € angry, happy, neutral, sad and redefine sumFE P;
as: sumEP; = [Cangrys Chappy, Cneutrats Csad]- We nor-
malize sumEP by the length of the utterance, T, to create
normEP. The input to both the LDA and simple summation
classification is normEP.

Linear Discriminant Analysis (LDA) identifies Bayes opti-
mal decision boundaries to separate points assigned to class
m from those not assigned to m. The LDA decision boundary
separates based on differences between the weight vectors,
rather than the value of the weight vectors [21]. This formu-
lation is ideal for the aggregated emotogram representation.
The normFE P representation describes the accumulated evi-
dence of the relative flow of each emotion component. Thus,
classification that focuses on the differences in the component
definitions of normEP will be well positioned to classify
unlabeled test utterances. The summation classification assigns
an utterance to the class with the highest value of normEP.

IV. RESULTS AND DISCUSSION

The results demonstrate that there are no statistically sig-
nificant differences between any of the overall accuracies
of the presented methods (Table I). The major differences
in the accuracies across techniques presented in this paper



Type Angry  Happy Neutral Sad Unweighted
HMM 74.61 72.57 45.90 65.59 64.67 + 5.85
l-gram  76.82 76.82 28.70 76.27  64.67 + 5.59
2-gram  70.50 79.72 32.18 75.86  64.57 + 591
3-gram  71.92 78.12 30.78 77.51 64.58 + 6.27
vote 73.55 78.56 29.31 77.52 6474 + 6.12
LDA 76.78 72.28 41.93 70.61  65.40 + 5.61
sum 76.91 71.85 39.55 69.15  64.36 + 6.56
TABLE I

ACCURACIES OF HMM AND N-GRAM MODELING TECHNIQUES (NOTE:
THE N-GRAMS RESULTS ARE OBTAINED WITH INTERPOLATION).

are the per-class accuracies. HMM modeling results in the
highest neutral class accuracies while the n-gram techniques
had the highest sadness and happiness accuracies. The emotion
distillation classification results are comparable to those of
the more computationally complex state-of-the-art, 62.42 +
3.16 [12]. The two systems rely on slightly different subsets
of the IEMOCAP dataset, which makes it difficult to assess
the specific performance differences.

The n-gram results demonstrate that the four techniques,
unigram, bigram, trigram, and voting, perform comparably.
This first suggests that the information contained in individual
EP slices (modeled via unigrams) is expressed differently
across the four emotion classes in an utterance. The parity
between the unigram and the bigram/trigram results suggests
that the structure predicted by the emotogram representation
are not noise, otherwise the bigram/trigram results would
be lower than those of the unigram results. However, the
lack of improvement when considering the dynamics of the
emotogram changes suggests that there exist additional op-
portunities to more effectively model the emotional structure
of emotograms. Future work will explore methods to better
extract this intra-utterance emotional structure.

V. CONCLUSIONS

In this paper we present results demonstrating that emo-
tion distillation augmented with simple classification per-
forms comparably to distillation when augmented with Hidden
Markov Models. We show that all techniques perform compa-
rably to the state-of-the art results on this database, 62.42 +
3.16 [12]. We highlight that the maximal accuracies of the four
methods (HMM, n-gram, LDA, and simple summation) do not
differ significantly. This suggests that emotion fluctuation can
be modeled and interpreted in multiple contexts. Further, the
n-gram experiments suggest that emotion can be modeled by
implicitly focusing only on regions of the utterance that are
highly representative of a certain emotion class.

The presented success of emotion distillation suggests that
this process can be used to simplify the design of classification
algorithms for emotion recognition. In our future work we
will explore methods to assess the nature of intra-utterance
patterns. We will investigate simplified intra-utterance versions
of the inter-utterance context sensitive emotion computing
proposed in [22]. We also seek to employ distillation frame-
works in the context of mobile interface design and behavioral
informatics computation. We see emotion distillation as both a
method to simplify computation and as a technique to under-
stand more about the complex nature of emotion expression.
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