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Abstract—We introduce novel auditory features in the hidden
Markov model (HMM) system for detecting child speakers. The
features derived by the gammachirp auditory filterbank (GCFB)
have been demonstrated to be suitable for vocal tract length
(VTL) estimation, both theoretically and experimentally. We
performed numerical experiments to distinguish between child
and adult speakers using HMMs trained on 2,360 speech samples
collected through a web-based query interface, and we compared
the performance of the common mel-frequency cepstral coeffi-
cients (MFCC) and the GCFB-based feature vectors. We also
introduced the modulation features as the substitution of delta
parameters. It has been clearly demonstrated that the error rate
distinguishing a child from an adult is reduced by GCFB. To
enhance our method for use as a web application, we applied our
original voice-enabled web framework to the front-end interface
of the proposed system.

I. INTRODUCTION

To protect children from harmful content on the Internet,
including violence and sexual matter, a reliable technique for
confirming the age group to which a user belongs is required.
Recently, parental control has become necessary to ensure a
child’s safety in the world of web networking. However, such
parental control method are not reliable because they can be
bypassed using several methods. While age group confirmation
using information related to human behavior, such as facial im-
ages, is being researched, automatic speech recognition (ASR)
has the potential to realize a friendly human-machine interface
for children using information related to the speaker’s voice,
which is gathered while he or she is speaking naturally[1]. In
addition, it is useful to know the attributes of the user of a
system that incorporates spoken dialogue.

In our previous studies [2][3], a method of detecting child
speakers was developed on the basis of ASR, which uses an
acoustic hidden Markov model (HMM) and a support vector
machine (SVM). However, when identifying speakers in the
second half of their teenage years, we were not able to achieve
sufficient accuracy. It is necessary to improve the accuracy
of the system, especially when dealing with teenagers whose
voices change frequently. Figure 1 indicates our preliminary
examination results of human’s hearing sense of distinguishing
child and adult speakers. The line shows correct rates in
which the target was correctly distinguished as the voice
spoken from a child speaker. In this test, we conducted the
subjective evaluation by 5 human subjects (2 males and 3
females). 260 utterances (male voice: 146; female voice: 114)
were evaluated. The subjects listened to a recorded voice
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Fig. 1. Correct rate [%] in distinguishing child and adult speakers by humans
evaluation[3]. “Boundary age (x-axis)” indicates the decision of the speaker
age threshold that acts as a boundary between adults and children.

from a loudspeaker directly. It is difficult even for a human
being to identify the age group of a teenage speaker because
the voices of most teenagers vary widely in terms of their
acoustic features. Our preliminary results also showed that the
automatic approach is often erroneous, identifying a child’s
samples as belonging to an adult female. For details, you can
refer to the Reference [3].

Several approaches to speech-based age estimation using
ASR have been investigated. In traditional methods, acoustical
feature vectors composed of the mel-frequency cepstral coef-
ficients (MFCCs) were often used[6]. Wada et al. suggested
methods using maximum a posteriori (MAP) adapted Gaussian
mixture model (GMM) supervector features and a maximum
likelihood linear regression (MLLR) transform vector[7]. Al-
though we could achieve a certain performance using these
features, which are suitable for ASR, it is also necessary
to investigate the acoustical features based on the theoretical
background of auditory studies.

To deal with the variations mentioned above, we have intro-
duced a novel acoustic feature derived from a gammachirp au-
ditory filterbank (GCFB)[8]. We demonstrate that the GCFB-
based feature outperforms the mel-frequency-based features
in vocal tract length (VTL) estimation[9]. This GCFB-based
feature would increase the reliability of the HMM system for
finding children because the VTL is roughly proportional to
the height of a speaker, which is a function of the speaker’s
age.

II. BACKGROUND OF THE GAMMACHIRP

The wavelet transform has been used to simulate the audi-
tory filterbank as the first-order approximation above 500 Hz.



The optimal kernel function was derived as the “gammachirp”
function, which satisfies the minimum uncertainty relationship
between the joint representation of time and scale[12]. The
scale representation is derived using the Mellin transform,
which normalizes the scale variability. We proposed the sta-
bilized wavelet-Mellin transform to extract the information
about the vocal tract shape information and to segregate it
from the information about the VTL[13], as a model for the
early auditory systems. As an extension of the linear system,
without losing the essential optimality, the gammachirp filter-
bank (GCFB) was developed to simulate nonlinearity known
to exist in the auditory periphery, such as level-dependent
auditory filter shape, fast-acting compression, and two-tone
suppression[8].

A. Successful VTL estimation by GCFB

In the Reference [9], we performed numerical experiments
to evaluate the stability of the VTL estimation by calculating
the VTL ratios for all combinations of 28 speakers. Figure
2 shows the errors that occurred in VTL estimation when
using various filterbanks. GCFBdyn (leftmost) is GCFB with
nonlinear dynamics. GCFBlin is a linear version of GCFB in
which the nonlinear circuit is cut off. GTFB100, GTFB50,
and GTFB25 represent popular linear gammatone auditory
filterbanks with the bandwidth of 100%, 50%, and 25%
relative to the standard bandwidth, ERBN[14]. MFFBSTR24,
MFFBSTR40, and MFFBSTR120 represent mel-frequency fil-
terbanks derived from F0-independent STRAIGHT spectro-
grams, where the number of filterbanks are represented in
the suffix. MFFBSTFT24, MFFBSTFT40, and MFFBSTFT120

(rightmost) represent standard, STFT-based mel-frequency fil-
terbanks, which are commonly used as the preprocessor to
calculate the MFCCs. The results clearly demonstrate that
GCFBdyn is the best filterbank for the VTL estimation. Since
it performs better than GCFBlin (which is the second best),
it can be concluded that the nonlinearity in the auditory
filterbank improves VTL estimation performance. The results
imply that the use of GCFB is also effective for detecting child
speakers because the VTL is highly correlated with the body
height[15], which is smaller for a child than for an adult (see
Fig. 3).

III. EXPERIMENTS OF DISTINGUISHING BETWEEN CHILD
AND ADULT SPEAKERS BASED ON HMM

We compared the acoustic features derived from the GCFB
and MFCC. The experimental conditions are shown in Table
I. We have introduced three-type GCFB-based feature vectors:
GCFB25, GCCC, and GCMC. GCFB25 represents a simple
frequency domain feature, which consists of 25 channel spec-
tral values of GCFB. The first order regression coefficients (∆)
are appended to GCFB25 as dynamic information. GCCC is a
cepstral domain feature generated by the same generation pro-
cess as MFCC. The logarithmic gammachirp spectral values
are transformed to the cepstral domain by means of discrete
cosine transform (DCT). 12-dimensional cepstral coefficients
C1 to C12 are produced, and ∆ are appended.
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Fig. 2. Error (represented as standard deviation σ) in the VTL estimation by
various filterbanks[9].
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Fig. 3. Speakers age and height in our collection.

As shown in Figure 4, GCMC introduces the modulation
features of each coefficient[16] as the substitution of ∆. The
modulation spectrum is calculated from GCCC (C0 to C12)
(100 Hz sampling, 160 ms window with a 10-ms frame shift).
Cumulated energies for the frequencies between 2 to 16 Hz
are computed as C13 to C26 after applying the bandpass filter.
Introducing the modulation feature is motivated by findings
that the linguistic information of speech is distributed in a
limited modulation frequency region[17], [18], [19]. We could
improve robustness due to the modulation features given by
low frequencies between 2 to 16 Hz, which is relevant to
important linguistic information of speech signal[16] Thus, en-
vironmental changes according to recording conditions would
be reduced by GCMC.

When GCFB was used in our original features, input speech
sound was analyzed as a two-dimensional cochlear spec-
trogram by the dynamic compressive GCFB[8]. The center
frequencies of the gammachirp filters were equally spaced
on the ERBN-number[14] axis between 100 and 6,000 Hz.
A Hamming window of 30 ms with a 10-ms frame shift
was applied to the power of the GCFB output to derive the
smoothed spectrogram.

The acoustic features for reference were 12-dimensional



TABLE I
EXPERIMENTAL CONDITIONS.

Acoustic features
GCFB25 GCFB (25 dims.) + ∆
GCCC cepstral domain GCFB (12 dims.) + ∆
GCMC cepstral domain GCFB (12 dims.) + modulation
MFCC MFCC (12 dims.) + ∆ + ∆ power

Configurations
test data 2,360 utterances from 2 to 59 years

(10-fold cross validation)
HMM three class HMMs
type three state 128 Gaussians, left-to-right
Tool HMM Builder: HTK3.4.1[10]

Classifier: Julius4.1.4[11]

Fig. 4. Processing for GCMC feature, which consists of the gammachirp
cepstral coefficients and modulation coefficients.

MFCC, ∆ and ∆ power, which are commonly used in ASR.

In order to compare the features by a time-tested technique,
we adopted a simple HMM-based method that was developed
for speaker recognition[20]. It had been developed on the
basis of a isolated word ASR approach using the speech
recognizer Julius[11]. Because this approach is widely used
as the speaker recognition method, we think that it is suitable
for measuring the performance of the features impartially.
The three class HMMs with three state GMMs (Gaussian
Mixture Model) were built to classify three categories: Child,
Adult (Female), and Adult (Male), which were trained for
correspondence between the acoustic features and class label
for each utterance. In order to consider diversities of acoustical
characters after the age at which teenager’s voice changes,
female and male of adults were set as another HMM class.
The number of Gaussian we used was 128.

We set the boundary age to categorize a child or adult based
on the original personal age data: it is the decision that acts as a
boundary between adults and children. We set eight boundary
ages, i.e., one for every year between 13 and 20 years, to find
the best performance. For example, when the boundary age
was set as 15 years, the speakers in the age group of 0 to 14
years were categorized as children while speakers above 15
years of age were considered as adults.

Fig. 5. Constitution of the voice-enabled website used for collecting utterance.

Fig. 6. Screen capture of the comic-like interface to introduce our system.

A. Test data collected via the Internet

In the experiments, a web-based system enabled us to
evaluate the utterances collected from real home environments
via the Internet. We assumed our approach will be adopted
at home in everyday life. Therefore, we had to organize a
collection of voices recorded in home environments in order
to measure the performances[3].

Figure 5 illustrates the constitution of the website used for
collecting the utterances. In order to provide an easy and
friendly interface for recording the voices of children, we de-
veloped our website by introducing a comic-like interface and
Flash animations in the introduction section of the experiment
as shown in Figure 6.

This website has recorded the trial user’s voice three times
as shown as ”Exercise”, ”Stage 1” and ”Stage 2”. In the
exercise stage, the user was familiarized with the recording
interface. The trial user would utter the answer after a simple
question was displayed in Japanese. The questions that were
displayed in Stage 1 and Stage 2 were as follows.

• Stage 1: ”Could you tell me your favorite food?”
• Stage 2: ”Please tell me your favorite words.”
All captured voices would be automatically uploaded to our

web server. After completing three recording steps, trial users
and their parents were requested to fill surveys to report their
genders, ages, and hometowns. When it is difficult for child
users to operate PCs and fill the reports, we requested to their
parents vicarious operations excluding speaking acts.

The trial users were recruited via the Internet monitor



Fig. 7. Experimental results (F-measure).

invitation service of the Rakuten research company1, which is
one of the web-based crowdsourcing service provider in Japan.
For speech studies, the crowdsourcing is a useful approach that
involves outsourcing tasks to a distributed group of people[4],
[5]. In order to cover a wide variety of attributions such as
age groups and genders in the collection, the trial users of
our studies were adjusted by a prior screening on the basis of
preliminary surveys by the Rakuten’s service.

We succeeded in collecting utterances from 1,152 trial web
users through the public test of our website. The author con-
firmed the captured voices manually since these voices could
include invalid recording data. We collected 3,053 utterances
of 1,050 speakers, excluding the invalid data. Figure 3 shows
the distribution of the speakers’ age and body height. We
were able to achieve an adequate balance between the number
of samples of child voices and those of the adult voices;
59.7% of the total 3,053 samples were uttered by children. To
evaluate the proposed method, we used 2,360 utterances from
our collection as the test data, and we performed a 10-fold
cross-validation. The speakers used for the evaluation were
excluded from the training data.

B. Results

Figure 7 indicates experimental results showing the F-
measure, where the horizontal (x-)axis represent the boundary
age. The F-measure values indicating the total accuracy in
distinguishing between children and adults were calculated as
follows:

F −measure =
2× Precision×Recall

(Precision+Recall)
. (1)

Precision is a measure of exactness or fidelity given by Eq.
(2), and recall is a measure of completeness given by Eq. (3).

Precision =
Correct result

Correct result+ Unexpected result
(2)

Recall =
Correct result

Correct result+Missing result
(3)

In the figure, we achieved the best performance when using
the feature vectors of GCMC (red line) in comparison with

1http://research.rakuten.co.jp/
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Fig. 9. Distribution of classified results. (GCMC, Boundary age: 18 years old)

other features. GCMC (red) has marked improved accura-
cies on average 0.06 from MFCC (purple line), and 0.03
from GCCC (green line). Although the performance of the
MFCC tended to decrease when the boundary age was set in
the late-teens (15 years or more), the GCFB-based features,
such as GCMC (red), GCCC (green), and GCFB25 (blue),
show comparatively stable performances. This implies that
the GCFB-based feature can outperform the MFCC in dis-
tinguishing the majority of teenagers, whose acoustic features
vary widely. GCMC (red) in comparison with GCCC (green)
proved that the modulation features yielded further improved
accuracies by enhancing the speech intelligibility in the signal.

The further details about classified results when the bound-
ary age was set as 18 years are shown in Figure 8 (MFCC) and
Figure 9 (GCMC). The figures illustrate classification rates
(%) of all samples, where the horizontal (x-)axises indicate
the speaker’s age on the basis of the original personal age
data. Because the boundary age was 18 years, the samples in
the age group of 0 to 17 years should be classified into the
green area (child). That is, it shows good performance that the
green area from 0 to 17 years (x-axises) is large.



Especially, we proved that the GCMC is able to reduce the
error rates by 12 % on the average in the age group of 8 to
12 years, and an improvement of 5 % in the age group of
13 to 17 years is obtained. In distinguishing between adult
and child speakers, there was a serious problem in that the
majority of teenagers voices are often confused because of
the acoustical diversity of their voice characteristics. It was
clearly demonstrated that the GCFB-based feature can conduce
distinguishing the acoustical features of the teenagers voices.

IV. WEB-BASED PROTOTYPE SYSTEM

We have developed a prototype system to demonstrate
and evaluate the proposed method through public testing by
Internet users. Figure 10 shows screen shots of our system
running on a typical web browser as a web application. A
web user can easily record his or her voice using the PC’s
microphone. The captured voice signals are transmitted to our
web server where programs identify whether the speaker is
an adult or a child. Finally, our system displays the result
of the identification (child or adult) automatically, like other
cloud computing applications. The voice-enabled web system
consist of a simple pure Java applet and server-side programs.
As described in [21], our voice-enabled web system can run
on all major operating systems and web browsers without the
installation of special programs. We have a plan to release
the prototype system as a free software for the beta-test by
Internet users.

V. CONCLUSION

Auditory feature vectors derived from the gammachirp
auditory filterbank (GCFB) have been tested for detecting
child users. As the GCFB is suitable for VTL estimation, both
theoretically and experimentally, a comparison of the HMM-
based method using the common MFCC and the GCFB-based
features showed that the GCFB significantly improves the
accuracy. As future works, computing of the GCFB needs to
be accelerated to develop fast and smooth interaction interface.
To improve the accuracy, instead of a text-independent system,
a text-dependent system could be considered. We intend to
introduce linguistic information[22] representing characteristic
differences between child and adult speakers.
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