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Abstract—In this paper, we propose a robust speaker-
independent acoustic model training method using generative
training to generate many pseudo-speakers from a small number
of real speakers. We focus on the difference between each
speaker’s vocal tract length, and manipulate it in order to
create many different pseudo-speakers with a range of vocal
tract lengths. This method employs frequency warping based
on the inverted use Vocal Tract Length Normalization(VTLN).
Another method for creating pseudo-speakers is to vary the
speaking rate of the speakers. This can be achieved by a method
called PICOLA; Pointer Interval Controlled OverLap and Add.
In experiments, we train acoustic models using these generated
pseudo-speakers in addition to the original speakers. Evaluation
results show that generating pseudo-speakers by manipulating
speaking rates did not result in a sufficient increase in perfor-
mance, however, vocal tract length warping was effective.

I. INTRODUCTION

Speech recognition techniques are widely spread in many
kinds of applications; car navigation systems, speech guidance,
and so on. These application require consistent high perfor-
mance of speaker-independent speech recognition systems.
To the robust recognition, the acoustic models used in the
speech recognition system plays a central role. In the training
process of acoustic models, using a small training data sets
during the training process of acoustic models can lead to
poor recognition rates. In particular, recognition performance
is insufficient for unknown speakers whose data is not used in
the training process. It is important to make use of training data
from many speakers to make models robust to even unknown
speakers. However, collecting training data from such a lot of
people is very difficult. In our study, methods of training robust
speaker-independent acoustic models from small number of
speakers are proposed.

In order to improve the recognition performance, adaptation
techniques are often used. Model-based adaptations, such as
maximum a posteriori (MAP) adaptation[1] and maximum
likelihood linear regression (MLLR) [2], transform acoustic
models (usually hidden Markov models (HMMs)) to fit the
target speaker or environment. Particularly in conventional
study, constrained MLLR (CMLLR) is often proposed [3].
Previously we proposed a method based on the opposite view
[4], in which we do not remove the speaker variations; instead
we added them to the averaged speech features. We assumed
that individual speech variation is generated by adding indi-

vidual differences to an “average” person. Speaker recognition
using the MLLR transformation matrix [5] suggests that
the linear transformation matrix expresses individuality. We
first obtained the MLLR transformation matrices for training
speakers from a limited amount of speech data and applied
PCA to them to extract a small number of bases. Then we
generated pseudo-speaker transformation matrices from the
statistical linear combination of the bases. Finally, the speech
features were generated by applying the inverse transformation
matrices to the normalized speech features and we trained
the speaker independent (but environment adapted) acoustic
models using generated speakers.

When we applied this method in our previous study, how-
ever, we did not pay enough attention to speakers’ speech
characteristics (vocal tract length, speaking rate, etc.). It is not
clear whether speakers generated using this method reflected
characteristics of real speakers or not.

In this paper, when generating pseudo-speakers, we focus
on characteristics such as vocal tract length and speaking rate,
and express each speaker’s characteristics explicitly. First, we
pay attention to the fact that everyone has a different vocal
tract length. By compressing and expanding a speaker’s vocal
tract virtually, we can express many types of voices. This
can be achieved by the reverse use of Vocal Tract Length
Normalization (VTLN), which is usually used to normalize
the vocal tract length of speakers. In our proposed method,
we change the speakers’ vocal tract lengths at random and
make many types of voices, instead of normalizing them.

Another method we use in order to express different char-
acteristics is to change speakers’ speaking rates. Compared to
manipulating their vocal tract length, which mimics differences
in speakers’ physical characteristics, this method can be used
to express their unique prosodic characteristics. It is important
to focus on these characteristics, especially when training
models robust to spontaneous speech. We use the PICOLA
algorithm, which only changes the speaker’s speaking rate
without changing the pitch of the voice, or the original voice
quality.

In this study, we propose using these two methods to express
the speakers’ characteristics explicitly. We can then obtain
a large number of speech variations from a small number
of speakers, and make robust speaker-independent acoustic
models.



The rest of this paper consists of four sections. In section
IT and section III, we illustrate how to virtually change the
length of a speaker’s vocal tract and speaking rate in detail. In
section IV, we train acoustic models using not only existing
speakers, but also using pseudo-speakers generated using our
methods, and carry out speech recognition in order to evaluate
the effectiveness of the proposed methods. Finally, in section
V, we summarize the paper.

II. MANIPULATING VOCAL TRACT LENGTH

Vocal Tract Length Normalization is generally used to
remove differences in speakers’ vocal tract lengths. We can
achieve this by varying a certain parameter, «, called the
warping coefficient. This parameter is usually estimated using
a maximum-likelihood (ML) criterion [6]. By changing this
parameter, we can scale the spectrum along the frequency axis
f. VTLN is mathematically described as follows.

We first transform a time-dimensional waveform into a
spectral form by means of a short-time Fourier transform
(STFT), and then filterbank analysis is applied. During fil-
terbank analysis, the vocal tract length operation is applied
concurrently. We can express filterbank analysis as

> Tu(HX(F), (1)

where O, (n) is a value of n;h bin when the « is applied, I,
and h,, are lowest and highest ends of n;h triangle window,
T, (f) is a nth triangle window, and X (f) is a spectrum.
Frequency warping is actually applied to the central fre-
quencies of the filterbank, which can move depending on the
value of a [7]. Therefore, according to Equation (1), each of

the function T, (f) and X (f) is to be converted into T, (f)
and X ( f) where f corresponds to the warped value from
frequency f. Fig. 1 shows an illustration of the changing
central frequencies of the filterbank. This shows how a certain
value of frequency f. is converted to another value fc.

This spectral warping is conducted through a frequency
warping function. Several varieties of the function have been
proposed (linear [8], piece-wise linear [9], bilinear [10] and
multiple-parameter all-pass transforms [11][12]). Of these, we
apply a piece-wise linear function.

Fig. 2 shows the functions related to the original frequency
and the warped one. This function is proportional to the inverse
of a between 0 and a certain value of the frequency, and
thus we obtain warped frequency f = f-a~!. Finally, after
the filterbank analysis, we extract an MFCC feature vector
by applying IDCT to the logarithm of the output from the
filterbank.

In our study, we use o not to normalize the feature vector,
but to vary it. Instead of using an optimal o with the ML
criterion, we apply an arbitrary « to operate VTL and generate
pseudo feature vectors.

Fig. 1. Illustration of actual method used for changing central frequencies of
the filterbank
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Fig. 2. Warp function used in the filterbank analysis

III. CONVERTING SPEAKING RATE

The difference in speakers’ speaking rates is one of the
prosodic characteristics of language. Altering the speaking rate
is done by scaling the waveform in the time dimension. In
this study, we use the PICOLA (Pointer Interval Controlled
OverLap and Add) algorithm to convert the speaking rate.
Using this method, we focus on the fact that a speech wave is
composed of short and cyclic waves, so we insert such waves
into a speech wave or delete them from it. This method makes
it possible to compress or expand a wave while keeping the
pitch of voice the same, so that we can maintain the quality
of voice.

In Fig. 3, we show a brief illustration of the algorithm,
which shows how to compress the speech wave. From the
analyzing pointer, we apply a triangular window toward the
length of a pitch wave, and another window is also applied
to the succeeding pitch. These two waves are defined as the
A wave and the B wave. We sum A and B, to make a new
wave, C. After that, we replace the wave A and B with the
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Fig. 3. Brief illustration of speech wave compression

TABLE I
NUMBER OF REAL SPEAKERS AND CORRESPONDING UTTERANCES

[ #Speaker | #Utterence |

20 3,088
60 9,231
120 18,447
260 40,100

wave C. The reason why triangular windows are used here is
to maintain continuity at the joint point of wave C. Finally, we
shift the analyzing pointer to the right for distance L and then
perform the same operations. We define r as the compression
rate of the speech wave in the form of the following equation:
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IV. EXPERIMENTS

A. Acoustic model conditions

Based on the two methods explained in the previous two
sections, we trained acoustic models using the characteristics
of pseudo-speakers’ derived from a small number of real
speakers. As the original training data, we used the Japanese
Newspaper Article Sentences (JNAS) read speech corpus [13].
We first trained a model using 260 real speakers, which we
called the large speakers’ model. We also trained three other
models using 20, 60 and 120 speakers, who were selected from
260 speakers. First, we first arranged 260 speakers randomly,
and then we selected speakers starting from the top to the
20th, 60th, and 120th speakers, respectively. We called each
of these models small speakers’ models. Then, we generated
pseudo-speakers from 20, 60 and 120 speakers, by changing
the parameters of the vocal tract or the speaking rate. After
that, we trained three models using both existing speakers and
pseudo-speakers. We called each of them generated speakers’
models. The numbers of existing speakers and corresponding
utterances are presented in Table I.

TABLE I
TOTAL NUMBER OF SPEAKERS AND UTTERANCES USED IN 1ST TO 3RD

EXPERIMENTS
#Speaker Ist 2nd 3rd
and Real (VTL (Speaking rate | (Combined

#Utterance operation) operation) operation)

#speaker 20 340 100 500
#utterance 3,088 52,496 15,440 77,200

#speaker 60 300 300 1,500
#utterance 9,231 46,155 46,155 230,775

#speaker 120 600 600 3,000
#utterance 18,447 92,235 92,235 461,175

B. Experimental method

We conducted four experiments in total. First, we gener-
ated pseudo-speakers based on the VTL operation. In order
to evaluate the effect of the VTL operation-based method,
we compared the generated speakers’ model with the small
speakers’ models for each number of original speakers. We
also compared each generated speakers’ model with the large
speakers’ model. In order to generate pseudo-speakers’ fea-
tures, we applied warping coefficients from 0.8 to 1.2 to each
existing speaker; 17 values (0.8, 0.825, ..., 1.2) to 20 speakers,
and 5 values (0.8, 0.9, ..., 1.2) to 60 and 120 speakers.

In the second experiment, we generated pseudo-speakers
based on speaking rate conversion. The value of the speaking
rate is ranged from 0.75 to 1.25. The total number of given
values was 5 (0.75, 0.875, ..., 1.25) for all existing speakers.

Thirdly, we combined these two methods when generating
pseudo-speakers. Through this experiment, we tried to confirm
these methods had any complementary effects. The number of
speakers we used in each experiment is shown in Table II. As
can be seen from this table, the number of speakers we used
is a multiple of the number of actually existing speakers.

So far, we had not considered the effect of the total number
of training speakers in all the experiments. And so, with regard
to further experiments based on VTL operation, we considered
the effectiveness of increasing the total number of training
speakers. We varied the number of generated speakers and
made another three kinds of the speakers’ sets from each of
the existing speakers. We increased the number of speakers
as a multiple of each existing speaker (for example, from
20 speakers, we generated 140 and 340 speakers, both of
which are a multiple of 20). The detailed number is shown
in Table III, where “Total” speakers includes the originally
existing speakers and the generated pseudo speakers. Through
this experiment, we could confirm if the number of training
speakers has any effect on the recognition rate.

Other experimental conditions are summarized in Table IV.

To test recognition, we used 46 speakers as test data (23
males and 23 females selected from JNAS), and none of their
data were included in the training data.

C. Evaluation results

Fig. 4 shows word recognition accuracy for the first and
second experiment. The horizontal line at 92.0% stands for
the word accuracy of the large speakers’ model. As shown, all



TOTAL NUMBER OF SPEAKERS AND UTTERANCES USED IN THE 4TH

TABLE III

Word Accuracy[%]

95

91.0 92.2 MNo operation
968 | 9] 89.9 MVTL operation

87.0 8 Speaking rate
85 - 85.6 operation
80 782 789
70

20 60 120

Number of speakers

EXPERIMENT
#Speaker Using only Using both
and real speakers | real and pseudo speakers
#Utterance Triall Trial2
#Speaker 20 140 340
#Utterance 3,088 21,616 52,496
#Speaker 60 300 420
#Utterance 9,231 46,155 64,617
#Speaker 120 600 840
#Utterance 18,447 92,235 129,129
TABLE IV
EXPERIMENTAL CONDITIONS
Training DB INAS
Feature 12 MFCC + 12 AMFCC
vectors +APower
decoder Julius-4.1.5 [14]
Acoustic model Speaker-independent triphoneHMM
structure 3000states, 16mixtures per state

Language model

3-gram model
(paper articles to the amount
of 75months)

Number of words

in dictionary 21,322
Evaluation IPA-98-Testset

data (Subset of INAS, 23 males and 23 females)
Number of

200 (100 by males and 100 by females)

evaluation speech

of generated speakers’ models based on VTL operation show
better performance than the small speakers’ models. The word
accuracy of the generated speakers’ model using 120 speakers
is a bit higher than that of large speakers’ model. The result
shows that VTL operation-based method can express a lot of
speech variations and thus contribute to improving recognition
accuracy.

In contrast, as shown in the second experiment, the effect
of converting the speaking rate is very small. We assume that
such poor result are caused by the method used to convert
the speaking rate. In the PICOLA algorithm, as we saw in
section III, pitch waves were maintained. Only the speaking
rate itself actually changed. When the speaking rate changes,
the durations of the utterances also changes, and thus the
transition probabilities in HMMs are mainly affected. The
PICOLA algorithm is able to maintain speech quality well,
and spectral information was only slightly changed. Thus, the
feature distribution parameters are not greatly varied. So it is
not effective to express spectral variations, and therefore the
experiment showed poor results.

The result of the third experiment is shown in Fig. 5. As well
as in the previous experiments, the horizontal line stands for
the word accuracy of large speakers’ model. As shown in this
graph, we could not obtain complementary effects through the
combination of two of proposed methods. We can see better
performance than with the method of converting speaking rate
alone, however, these results show slightly worse performance
than using the VTL operation-based method. As in the second
experiment, the PICOLA algorithm is not effective in this

Fig. 4. Word accuracy in the first and second experiments
(VTL operation and speaking rate operation)
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Fig. 5. Word accuracy in the third experiment
(Combining VTL with speaking rate operation)
experiment.

Finally, we show the results of the fourth experiment in Fig.
6. In contrast to the previous experiments, the horizontal axis
shows the total number of used speakers. From this figure, we
can see that word accuracy differs only a little as a result of
changing the total number of speakers. However, we can also
assume that all the models have their own upper limits on the
total number of speakers. These results show that the number
of speakers used for training acoustics models has an effect
on word accuracy, and that there is a optimal number of real
speakers needed for VTL operation to be most effective.
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Fig. 6. Word accuracy in the fourth experiment
(VTL operation changing the number of the speakers)



V. CONCLUSIONS

In this paper, we proposed generative training methods for
acoustic models by explicitly manipulating speaker charac-
teristics and speaking styles. We generated pseudo-speakers
by altering speakers’ vocal tract length and their speaking
rate. We found that by training acoustic models not only with
real speakers, but also using pseudo-speakers created using
the VTL operation as training data, the models were more
robust to unknown speakers. On the other hand, speaking rate
conversion was not effective in generating realistic pseudo-
speakers. Additionally, combining the VTL operation with the
speaking rate conversion was not effective either, and we could
not obtain any complementary effects. However, it was implied
that the number of speaker samples has an effect on raising
word accuracy.

We imagine that creating pseudo-speakers by converting the
speaking rate of actual speakers may be more effective for
recognition of spontaneous speech than read speech, since this
method may be useful for expressing prosodic characteristics.

In the future, we will consider other ways to represent
speaker variation, when training acoustic models in order to
achieve robust recognition of spontaneous speech, such as that
found in the Corpus of Spontaneous Japanese (CSJ) [15].
We will also explore using training data from training data
recorded in another environment, like JNAS, for this purpose.
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