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Abstract—In this paper, we propose to use noise reduction
technology on both speech signal and visual signal by using
exemplar-based sparse representation features for audio-visual
speech recognition. First, we introduce sparse representation
classification technology and describe how to utilize the sparse
imputation to reduce noise not only for audio signal but also for
visual signal. We utilize a normalization method to improve the
accuracy of the sparse representation classification, and propose
a method to reduce the error rate of visual signal when using the
normalization method. We show the effectiveness of our proposed
noise reduction method and that the audio features achieved up
to 88.63% accuracy at -5dB, a 6.24% absolute improvement is
achieved over the additive noise reduction method, and the visual
features achieved 27.24% absolute improvement at gamma noise.

I. INTRODUCTION

Audio-visual Automatic Speech Recognition (ASR) system
[1], [2] using both acoustic speech features and visual features
has been investigated and found to increase the robustness
and improve the accuracy of ASR. The audio-visual ASR has
achieved better performance than the audio-only ASR when
the audio signal is corrupted by noise, and it can also achieve
a slight improvement when the audio is clean. In order to im-
prove the performance of the system, noise reduction method
was often employed on the speech signal. Nevertheless, in
real environment for example in a car, not only the speech
signal but also the visual signal are often corrupted by audio
and visual noise. Therefore, a noise reduction method for both
speech and visual signals is still categorized into challenging
tasks for the audio-visual ASR system.

Recently, Sparse Representation (SR) [3] has gained con-
siderable interest in signal processing. SR is known as a type
of sampling theory, which relies on the theory that many types
of signals can be well-approximated by a sparse expansion in
terms of a suitable basis, that is, we can represent a certain
signal with a small number of linear incoherent measurements.
The SR technology is similar to k-Nearest Neighbors (kNNs)
and Support Vector Machines (SVMs) which are also known
as exemplar-based techniques [4] used to characterize a signal
from a few support training signals. SR is typically used
for source separation and pattern classification. Blind source
separation [5] and noise reduction [6] using SR have shown
the effectiveness of SR in the source separation fields.

In this paper, we explore a robust audio-visual speech
recognition, which has been motivated by emerging the theory
of sparse imputation noise reduction. The speech noise can

be often considered as additive in the speech signal in the
time domain. The visual noise is a γ-transformation on the
images to change the lighting conditions by simulating a car-
driving condition, so feature reconstruction method by sparse
imputation noise reduction is employed for not only audio
but also visual signals. In this proposed method, given a
test vector which is corrupted by noise and an over-complete
training dictionary consisting of speech and visual examples
with the noise, we can then represent the test vector as
a linear combination of all training examples subject to a
sparseness constraint on a coefficient vector. The nonzero
coefficients reveal the true class of the speech sample. Then
we can reconstruct the features by using the coefficients and
the dictionary with only clean examples. A normalization
method was used in this work to improve the accuracy of SR
classification, and some changes also were done on the visual
features to employ the sparse imputation noise reduction on
the visual signal and improve the accuracy of the system.

II. SPARSE REPRESENTATION FEATURES

A. Sparse Representation Formulation

Consider an input vector y ∈ Rd, and a dictionary matrix
A ∈ Rd×n(d < n) consisting of training vectors and an
unknown vector x ∈ Rn, such that y = Ax. If the dictionary
A is overdetermined, the linear equations y = Ax can be
uniquely determined by taking the pseudo-inverse: y = Ax,
which is a linear least squares problem. The problem can be
solved by the l1-minimization:

(P1) : argmin||x||1 subject to y = Ax. (1)

Since d < n, and if x is sufficiently sparse and A is incoherent
to the basis in which x is sparse, the solution which can be
uniquely recovered by solving (P1).

There are several l1-min solvers can be used to solve the
(P1) problem, including Orthogonal Matching Pursuit (OMP)
[8], Basis Pursuit (BP), and LASSO. In this work, we use
the OMP method to solve the (P1) problem. The OMP solver
works better when x is very sparse, and OMP is also a fast
solver for the data of our work.

In order to create a set of SR features, first, consider
a series of speech samples Y = {y1, y2, . . . , yn}, and a
matrix A as the entire training set to include training samples
from all k classes. For a speech sample yn, we solve the
problem yn = Axn subject to the sparseness constraint on
the coefficient vector xn. The dominant nonzero coefficients



in xn reveal the true class of the speech sample. With the
new xn, a corresponding vector Axn is formed. Consequently,
the given series of speech sample set can be represent as
Y ′ = {Ax1, Ax2, , . . . , Axn}.

B. Method 1: Addition Noise Reduction via SR

When a speech signal is corrupted by noise, we can consider
the noise is an additive in the speech signal in the time domain,
then, an observed signal gt, can be written as

gt = st + nt, (2)

where st is a clean speech signal and nt is a noise signal in
time t. When the SR problem y = Ax is applied to a noisy
signal, then y = Ax can be rewritten as

y = ys + yn = [AsAn][x
T
s x

T
n ]

T = Ax, (3)

where An indicates a dictionary matrix containing noise
exemplars and xn is the representation of noise via the noise
exemplars in the dictionary. As and xs indicate a matrix
containing speech sample exemplars and the representation of
the speech exemplars.

To reduce the noise in speech signal, we first construct a
new dictionary matrix A as the entire training set including
not only clean speech samples from all k classes but also the
noisy samples. Then for a given speech sample corrupted by
noise, we solve the problem (Eq.3), and will get a coefficient
vector x, so that the dominant nonzero coefficients in x reveal
the true class of the speech sample. Therefore, ideally, the
speech sample ys will be mapped into the clean speech sample
partition and yn will be mapped into the noise sample partition
of the dictionary matrix A. Finally given the As and xs, a
corresponding vector Asxs is formed, hence, the clean speech
sample can be described as:

ys = Asxs. (4)

C. Method 2: Sparse Imputation

For a noise sample ynoise, and a matrix Anoise including
training samples with the same noise, we solve the problem
ynoise = Anoisex subject to a sparseness constraint on the
coefficient vector x. In order to reconstruct the input sample,
we create a dictionary Aclean including only clean exemplars,
the training samples of the clean dictionary correspond to the
noise samples of the noise matrix. Then we reconstruct the
SR features with the clean dictionary Aclean, in other words,
the new SR clean feature can be described as Acleanx.

III. DATABASE AND FEATURES

A. CENSREC-1-AV Database

An evaluation framework CENSREC-1-AV [7] for audio-
visual ASR system is utilized in this work. The data
in CENSREC-1-AV is constructed by concatenating eleven
Japanese connected digit utterances from zero to nine, silence
(sil), and short pause (sp). It includes a training data set and a
testing data set. The training data consists of 3,234 utterances.
1,963 utterances were collected in the testing data. The testing

data set includes not only clean audio and visual data but also
noisy data. The audio noisy data were created by adding in-car
noises recorded on city road and expressway to clean speech
data at several SNR levels (20dB, 15dB, 10dB, 5dB, 0dB and
-5dB). Visual distortion was also conducted by simulating a
driving-car condition by a gamma transformation. The gamma
noise in this work is four times stronger than the baseline.

B. Audio and Visual Features

To create the audio features, 12-dimensional MFCCs and
a static log power, and their first and second derivatives are
extracted from an audio frame. As a result, a 39-dimensional
audio feature is obtained at every 10ms. Different from the
training data, the testing data includes not only the clean audio
and visual data but also noisy data. In this paper, the audio
features at several SNR levels (5dB, 0dB and -5dB) of the in-
car noises recorded on expressway are also extracted. A 30-
dimensional clean and gamma visual feature is also computed,
that consists of 10-dimensional “eigenlip” components [2]
and their ∆ and ∆∆ coefficients. Feature interpolation is
subsequently conducted using a 3-degree spline function in
order to make the feature rate to 100Hz, as same as the audio
rate.

IV. EXPERIMENTS

A. Dictionary Matrix A

In this work, a dictionary matrix A was constructed with
the samples which are chosen based on phoneme classes. We
use a time-aligned transcription [7] of the training data to
locate the frame number of a phoneme class. We have two
types of dictionary matrix, one for the additive noise reduction
method, another for the sparse imputation method, so that we
can compare these two methods.

The phoneme list used in CENSREC-1-AV database in-
cludes seventeen phoneme and sil. For a phoneme class
pi(i = 1, 2, . . . , 18), we randomly select a phone segment
pi,x(x = 1, 2, . . . n) corresponding to the phoneme class i
from all the training data set, n is the selected phone segment
number of train data in each class. Then the selected phone
segment of the phoneme class pi can be written as:

Api = [pi,1, pi,2, . . . , pi,n], (5)

where Api is the selected phone segment of the phoneme class
i, n is sixty in this work. The frame length of pi,x is about five
to thirty. For every phone segment pi,x, we randomly select
three frames after cutting the starting and ending 10% frames
of the phone segment.

In order to support additive noise reduction (Method 1), we
also select the noisy examples Asil,SNR for sil with the SNR
levels of 5dB, 0dB and -5dB. As a result, the dictionary A
can be written as:

A = [Ap1 , . . . , Ap18 , Asil,5dB , . . . , Asil,−5dB ]. (6)

We create an audio dictionary Aa and a corresponding visual
dictionary Av for calculating audio and visual SR features.



Fig. 1. Two methods of SR features reconstruction. Additive noise reduction
method (a); Sparse Imputation method (b).

For the sparse imputation noise reduction method (Method
2), we construct dictionaries for clean and noise data respec-
tively. The exemplars are selected from the clean training data
set for clean dictionary and noise training data set for noise
dictionaries. We finally got four dictionaries for audio data and
two dictionaries for visual data: Aclean, A5dB , A0dB , A−5dB ,
Vclean and Vgamma.

B. Experiment 1 using Additive Noise Reduction

In this experiment, the noise samples are considered as an
additive noise in the speech signal, therefore the SR features
are created using the method which describes in the previous
section. Figure 1 (a) shows the method in this experiment,
where, the audio SR features and visual SR features are created
separately. To create the audio SR features ysra , we use the
audio dictionary Aa and solve the problem ya = Aaxa with
the additive noise reduction method (Eq. 3, 4). Using the same
method, we can get the visual SR features ysrv . And then the
two SR features are integrated into audio-visual SR features.
The SR features are created for both training data and testing
data including all the audio noise conditions: expressway 5dB,
0dB, -5dB.

ysra = Aaxa

ysrv = Avxv

ysrav = ((ysra )T , (ysrv )T )T
(7)

In order to improve the performance of the SR classification,
a normalization method was used on the input samples y and
the dictionary matrix A. An m-th column in the dictionary is
normalized with mean um and standard deviation σm of the
column. The normalized column can be described as

A′
m = [

am,1 − µm

σm
,
am,2 − µm

σm
, . . . ,

am,D − µm

σm
]T (8)

Then, with the normalized y′ and A′, we can get the the
new SR features y′sra , then a reverse normalization is used
to reconstruct the features.

Our speech recognition system is based on multi-stream
Hidden Markov Models (HMMs), which we chose for their

TABLE I
RECOGNITION ACCURACY OF ADDITIVE NOISE REDUCTION METHOD

(METHOD 1.1) AND ADDITIVE NOISE REDUCTION WITH THE
NORMALIZATION ON TEST SAMPLE AND DICTIONARY (METHOD 1.2).

SNR Baseline Method 1.1 Method 1.2
Clean 99.67 99.49 99.12

Audio only 5dB 86.84 91.33 97.55
0dB 65.05 74.76 93.08
-5dB 47.55 55.77 82.39

Visual only Clean 42.29 42.65 42.77
Gamma 7.20 11.22 11.45

ability to vary the importance of each stream to the recogni-
tion. In this research, a early fusion bimodal training method
is used for training the multi-stream HMM to evaluate our
audio-visual features. The audio-visual testing is done with the
multi-stream model, and the audio stream weight is tested with
0.0 and 1.0, so that we can evaluate the accuracy of audio and
visual respectively. We optimize the recognition parameters,
i.e. an insertion penalty and stream weights, manually to
achieve the best performance of audio and visual features.

Table I shows the recognition accuracy for audio only, visual
only results of the proposed additive noise reduction method
(Method 1.1) and additive noise reduction with normalization
on test sample and dictionary (Method 1.2). Results for the
baseline system are also included for comparison. Looking
the result of audio only, SR features of Method 1.2 achieved
a recognition rate of 82.39% when the SNR was -5dB, more
than 34% better than the baseline features. And the accuracy
rate is more than 93% at 0dB. For the clean data, we can see
the performance was almost the same as the baseline features.
This confirms that the SR features with noise reduction with
normalization can significantly improve the performance when
the signal is corrupted by noise. Although, the visual dictio-
nary consists of no noise visual exemplars, the result of the
gamma noise is still improved with the new SR visual features.

C. Experiment 2 using Sparse Imputation

The sparse imputation noise reduction method described in
the previous section can be applied not only to additive noise
but also to the distortion of image. In this experiment, we
create four dictionaries for audio data and two dictionaries for
visual data. Figure 1 (b) shows the process of this method.
To create the SR features, for a test input signal ysr0dB ,
we use the audio dictionary A0dB and solve the problem
y0dB = A0dBx0dB . and then the clean audio dictionary Aclean

is used to reconstruct the new SR features, that is ysr0dB =
Acleanx0dB . Similarly, we can reconstruct all the audio SR
features ysrasnr(asnr = {clean, 5dB, 0dB,−5dB}) and all
the visual SR features ysrvsnr(vsnr = {clean, gamma}). And
then the two SR features are integrated into audio-visual SR
features. The SR features are created for both training data
and testing data.

Figure 2 shows visual features of two speaking continuous
digits. From this figure we can know that the value of the
first dimensional in (a) is positive number, but in (b) is
negative number. And the value of the first dimension is much



Fig. 2. Visual features of the baseline database. (a), (c) is the clean, gamma
data of FBJ-15O3456A, (b), (d) is the clean, gamma of MED-37A. The x
axis of each image represents the dimension of the features, the y axis is the
value of feature, z is frame number.

Fig. 3. The features of clean visual dictionary. (a) without normalization, (b)
with normalization.

higher than others. Figure 3 shows the difference between
the non-normalized and normalized visual features of the
clean dictionary, it shows that the difference between the first
dimension and other dimension is reduced after normalization.
Therefore we create a new set of baseline visual features (29-
dimension features) which only consists of from 2nd to 30th
parameters to reduce the negative effect of the normalization.
A normalization method [7] was used in CENSREC-1-AV to
calculate the visual features, when we change the normaliza-
tion method only using the mean value, we can get the features
(new-30-dimension) without the problem we described above.

Table II shows the recognition accuracy results for the
proposed method with sparse imputation noise reduction. From
the result, we can know that the sparse imputation method
achieved a recognition rate of 98.39%, 96.34%, 88.63%, and

TABLE II
RECOGNITION ACCURACY OF SPARSE IMPUTATION METHOD WITH NO

NORMALIZATION(METHOD 2.1), WITH NORMALIZATION (2.2) AND
BASELINE WHICH THE VISUAL FEATURE IS 30-DIMENSION.

SNR Baseline Method 2.1 Method 2.2
Clean 99.67 99.61 99.13

Audio only 5dB 86.84 77.74 98.39
0dB 65.05 65.02 96.34
-5dB 53.79 55.77 88.63

Visual only Clean 42.32 42.65 14.94
Gamma 7.20 28.16 23.27

TABLE III
RECOGNITION ACCURACY OF SPARSE IMPUTATION METHOD WITH

NORMALIZATION (METHOD 2.2.2) AND BASELINE WHICH THE VISUAL
FEATURE IS 29-DIMENSIONAL(BASELINE29); BASELINE30 IS THE
NEW-30-DIMENSIONAL FEATURES; METHOD2.2.30 IS BASED ON

BASELINE30.

Baseline29 Method2.2.29 Baseline30 Method2.2.30
Clean 44.69 28.98 37.82 36.32

Gamma 9.42 31.77 5.97 33.21

0.84%, 3.26%, 6.24% better than the additive noise reduction
method on the noisy condition 5dB, 0dB and -5dB respective-
ly. Table III shows the visual results of the 29-dimensional
features and new-30-dimensional features of baseline and the
sparse imputation noise reduction method. Method2.2.29 with
gamma features achieved 31.77%, it is better than the 30-
dimensional gamma SR features (Method2.1, 2.2). But with
clean features only achieved 28.98% which is lower than the
result of Baseline29. Although the accuracy of Baseline30 is
lower than baseline and Baseline29, Method2.2.30 achieved
36.32% with clean data and 33.21% with gamma noise. We
can know the effectiveness of our proposed method when using
the Baseline30 features.

V. CONCLUSIONS

In this paper, we have proposed two methods to reduce
the noise both for audio signal and visual signal. Our results
show effectiveness of the additive noise reduction method and
the sparse imputation noise reduction method. The additive
noise reduction method can be employed easily for various
noise environment and sparse imputation noise reduction has
achieved better performance when the noise environment is
confirmed beforehand. And we discussed the difference of
the audio and visual features and made some changes and
improved the performance of the sparse imputation noise
reduction on visual features.
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