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Abstract—Due to outstanding search strength and well orga-
nized steps, genetic algorithm (GA) has gained high interest in
the field of overloaded multiple-input/multiple-output (MIMO)
wireless communications system. For overloaded MIMO system
employing spatial multiplexing transmission we evaluate the
performance and complexity of genetic algorithm (GA)-based
detection, against the maximum-likelihood (ML) approach. We
consider transmit-correlated fading channels with realistic Lapla-
cian power azimuth spectrum. The values of the azimuth spread
(AS) and Rician K-factor are set by the means of the lognormal
distributions obtained from WINNER II channel models. First,
we confirm that for constant complexity, GA performance is same
for different combinations of GA parameters. Then, we compare
the GA performance with ML in several WINNER II scenarios
and channel matrix means. Finally, we compare the complexity
of GA with ML. We find that GA perform similarly with ML
throughout the SNR points for different scenarios and different
deterministic rank. We also find that for achieving performance,
GA complexity is much less than ML and thus, is an advantage
in field programmable gate array (FPGA) design.

Index Terms—AS, fading, FPGA, genetic algorithm, K-factor,
maximum likelihood, overloaded MIMO, WINNER II.

I. INTRODUCTION

Signal processing for wireless communication is one of the
most dynamic areas of technology development. MIMO sys-
tem is called overloaded when transmit antennas are more than
receive antennas, i.e., NT > NR [1] [3]. Spatial multiplexing
(SM) techniques transmit information sequence independently
over multiple transmit antennas without requiring additional
bandwidth or transmission power. In some cases, in wireless
communications, e.g., airborne cellular, overloaded MIMO
system plays an important role. Since, the number and weight
requirements also impose limitations on the antenna used, so,
overloaded system makes practical sense for achieving the
required performance. Not only in airborne base station but
also in terrestrial base station, overloaded system may be used,
and this minimum required antennas at the receiver can reduce
overall network costs. Overloaded system can support more
mobile users without decreasing the signal quality [2].

Signal detection for overloaded system is a complex prob-
lem [1] [3]. Due to co-channel interference, antenna at the
base station faces high interference from numerous interfering
mobile subscribers as well as from other nearby radio or TV
signals. MIMO system can provide available diversity, but
conventional linear detectors fail to exploit these available
diversity. It is because of the increases traffic in a fixed

bandwidth creates more interference and then corrupt the
signal quality. Furthermore, ML detection can bring optimum
performance by exploiting all of the available diversities but
computationally complex and thus, require substantial hard-
ware and power usage [4] [5].

In quality communications link for the desired users, the
receiver must be able to reliably extract signals from the
interference environment. Efficient detection algorithm deals
effectively with overloaded MIMO system [1] and thus, enable
the recovery of user signals with a few antennas at the
receiver. Since, GAs implement evolutionary concepts and
have been shown feasible in finding solutions to optimization
problems in MIMO system [6] [7]. Thus, GA-based MIMO
detection of spatial multiplexing transmission promises to
achieve performance with much lower complexity [7] than the
optimum, but high-complexity, ML detection [8].

In our previous work [9] [10], we evaluated genetic algo-
rithm parameter requirements for detection in MIMO fading
channels. We have shown in [11], by employing meta GA
that, GA parameters are the function of channel parameters.
We have also shown in [12] the importance of initialization
(when GA has been initialized using the linear detector output,
incest prevention is no longer required) for GA performance
and complexity in WINNER II lognormal distributions.

However, previous work on GAs for MIMO [1] [7] detection
has not considered the performance and complexities of over-
loaded MIMO system in WINNER II lognormal distributions
and in correlated low rank Rician fading channel. Therefore,
herein, we have filled this gap by numerical simulation.

The rest of the paper is organized as follows. Section II
introduces the system model. Section III describes the con-
ventional ML detection. Sections IV describes the GA-based
MIMO detection. Finally, section V shows simulation results.

II. SYSTEM MODEL

A. Received signal model
Fig. 1 shows the principle of overloaded MIMO spatial

multiplexing system. We consider a frequency-flat fading
channel with NT transmit antennas and NR receive antennas.
Herein, NT > NR. For the numerical results shown later
in this paper, each component x is drawn from an M–PSK
modulation constellation. The base station transmits an NT×1
complex-valued signal vector x. Therefore, the NR× 1 signal
vector received at the mobile station can be written as [8]
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Fig. 1. Overloaded MIMO system.

y =

√
Es

NT
Hx+ n, (1)

where Es
NT

is the energy transmitted per antenna, H is the
NR×NT channel matrix with the channel fading gains |[H]i,j |,
hereafter assumed perfectly known and n is the noise vector
with variance N0.

The European project, WINNER II has shown in [13] that
measured H is a combination of a deterministic component
due to specular propagation and a random component due to
diffuse propagation i.e., H = Hd+Hr. In terms of normalized
components the channel matrix can be written as [8]

H =

√
K

K + 1
Hd,n +

√
1

K + 1
Hr,n, (2)

where K is the power ratio of the deterministic and random
components of the channel gain matrix. Hd,n and Hr,n are
the further normalized versions of Hd and Hr respectively,
i.e., E|[Hr,n]i,j |2 = 1, ∀i,j and ‖Hd,n‖2F = NTNR and, then
E‖Hr,n‖2F = NTNR. Therefore, H is properly normalized.
Thus, the value,

‖Hd‖2F
E||Hr||2F

=
K
K+1‖Hd,n‖2F
1

K+1E‖Hr,n‖2F
= K. (3)

Then, for K = 0 in (2) the term Hd = 0 therefore, fading
gains |[H]i,j | are purely Rayleigh distributed [8]. For K 6= 0,
the elements of Hr are complex-valued Gaussian random
variables, [H]i,j are Rice distributed and can model most
measured scenario [8].

Antenna geometry and channel determine (Hd,n) rank. Our
simulation results in section V, shown for Rayleigh fading
and for Rician fading. For Rician fading hereafter we assume
r = 1, in practice r is typically low. For Rician r = 1 the
transmitter and receiver separation, D, is much greater than
antenna elements distance, x, (i.e., D � x) [8].

B. Statistical models for AS and K- factor

AS and K affects system performance [8]. AS is the root
mean square of the power azimuth spectrum (PAS), and
determines the fading correlation. For smaller AS signals
are highly correlated and then performance is low, but for
higher AS performance is high due to low antenna correlation
[10] [13]. Using thorough measurements, the WINNER II
project has modeled AS and K as lognormal distributions
with scenario-dependent mean, variance, cross correlation, as
shown in Table I, where χ, ψ ∼ N(0, 1) and have correlation

TABLE I
BASE-STATION AS AND K STATISTICS [13, TABLE 4-5]

Scenario AS [◦] K ρ = E{χψ}

A1: indoor 101.64+0.31χ 100.1(7+6ψ) −0.6
B1: urban microcell 100.40+0.37χ 100.1(9+6ψ) −0.3
C2: urban macrocell 101.00+0.25χ 100.1(7+3ψ) +0.1

ρ [13]. This table depicts the WINNER II scenario A1 (indoor
or residential), B1 (urban microcell) and C2 (urban macrocell),
these scenarios are illustrative for our purposes, e.g., A1 has
very wide AS, B1 very narrow AS, and C2 moderate AS.
Therefore, we only consider scenarios A1, B1, and C2.

III. ML DETECTION

Maximum Likelihood is a nonlinear optimum interference
cancelation algorithm [1] [7]. For given H, ML detection
approach is to search over all MNT candidate vectors [8] for

x̂ML = argmin
x

∥∥∥∥y −√ Es

NT
Hx

∥∥∥∥2, (4)

where ‖ · ‖2 denotes the norm-2 of the vector. The solution
is the signal vector that minimizes the difference between
the received signal vector and the linear combination of
the channel matrix and the tested signal vector. Due to the
exhaustive search ML detection require high complexity [7]
and increases exponentially with the number of NT [5]. Our
numerical results have shown here for M ≤ 4. Because, the
MATLABr implementation on our computer took a long time
when M = 8 and NT = 8. Furthermore, for M = 16 and
NT = 8 was not possible because MATLABr exceeded the
maximum variable size.

IV. GA DETECTION

GAs can quickly search a large solution set and can im-
plement evolutionary concept to solve complex optimization
problems. They balance exploitative (i.e., covering the space,
by crossover and mutation) and explorative (i.e., choosing
the best candidates, by selection) principles to expeditiously
optimize functions over wide spaces [7]. Therefore, GAs are
feasible competitors in MIMO detection [1] [7].

Fig. 2 shows the component steps for a typical GA for
overloaded system. GAs maintain a population P of candidate
solutions. In our work, chromosome genes are the symbols
possibly sent from the transmit antenna. So, at every GA
generation, the current population of candidate solutions is
evolved into a new population, as discussed below.

Proper initialization is an important factor for GA conver-
gence [7]. In our case, the population forms a NT×P matrices.
The columns in this matrix, i.e., the individuals, are candidate
transmitted signal vectors, x. The fitness of each individual
x in the population is determined based on the ML criterion,
from

d =

∥∥∥∥y −√ Es

NT
Hx

∥∥∥∥, (5)

A smaller value of d indicates a fitter candidate solution.
The parents for the next generations are selected based on

their fitness value calculated by (5). Herein, we use the fitness-
proportionate method for the selection [7].
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Fig. 2. Genetic algorithm diagram

Crossover and mutation are genetic-like operators employed
in obtaining the offspring from the parents. Crossover is
working as a primary operator to create new individuals.
Herein we use uniform crossover. Uniform crossover allows
for gene exchange at any position in the chromosome, i.e., at
each of the NT vector positions. Then, offspring individuals
are formed by copying symbols from one parent or the other.

Mutation operator acts as a secondary operator. Which helps
the algorithm converging to a global optimum instead of
local optimum. Random mutations change the components of
offspring individuals with probability pm. In our case, we have
allowed each symbol of each offspring individual to mutate
into any other constellation symbol with mutation probability
computed herein with [6]:

pm =
1

P
√
NT

. (6)

The strategy of elitism is to avoid discarding the best solutions
by replacing the low-fitness offspring with the highest-fitness
parent. As a result search space is greatly developed. Finally, in
termination stage, the GAs decide whether to stop searching or
continue the search for a predetermined number of generations,
denoted herein by G.

Then, the GA complexity is proportional to the product of
P G i.e., GA complexity increases linearly in both P and G.

V. NUMERICAL SIMULATION RESULTS

A. Settings
For all the results shown below are from simulations and

assuming that H is perfectly known at the receiver i.e., the re-
ceive correlation matrix is set to INR . The transmit correlation,
is then computed for a given AS value as mentioned in [14].
The GA has been initialized randomly, ‘M0’ in figure titles,
the crossover is uniform approach, elitism is implemented and
the mutation probability is computed according to (6).

The figures depict the AER vs. the Es/N0. The AER plots
indicate the performance averaged over the fading as well
as over the spatially-multiplexed streams. We have used 2N2

samples of the channel matrix and noise vector (where N2

appears in the figure titles).
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Fig. 3. GA robustness for overloaded MIMO system, scenario C2.

The transmit-side PAS is set to the realistic Laplacian type
[13], AS and K set to the WINNER II averages (‘a’ in the
figure titles). The transmit/receive antennas are, NT > NR
with interelement distance equal to the half of the carrier
wavelength. In figure title, r indicates rank(Hd). For Rician
fading with rank(Hd,n) = 1 is generated as the outer product of
the receive and transmit array steering vectors i.e., aR and aT,
respectively. Their elements are given by e−jπdn sin θd,R(nR−1),
nR = 1 : NR, and e−jπdn sin θd,T(nT−1), nT = 1 : NT, respec-
tively, where dn is the normalized interelement distance i.e.,
dn = 1, θLOS,R = 10◦, and θLOS,T = 5◦. Then, Hd,n = aRa

H
T .

Rayleigh fading is also referred to herein r = 0, which is the
only rank-zero matrix.
B. Results and Discussion

1) GA Performance for constant complexity: Fig. 3 depicts
the performance of GA for different combinations of GA
parameter with constant complexity. Results show similar
performance for all sets of GA parameter. This result suggests
that GA performance is robust for overloaded MIMO system.

2) Effect of WINNER II scenarios and fading types: Fig. 4
shows GA performance with ML in different WINNER II sce-
narios. For all the scenarios GA coincide with ML throughout
the SNR points. Scenario A1 yield higher performance due to
the diversity gain generated by the larger AS in this indoor
scenario. B1 yields very poor performance due to the lower
AS experienced in this typical urban microcell scenario and
C2 generates intermediary performance due to its moderates
AS.

Fig. 5 depicts GA performance with ML in Rayleigh and
Rician fading channels for scenario C2. For both the channel
condition GA performs with ML throughout the SNR points.
r = 0 (Rayleigh) and r = 1 (Rician) influences achievable
AER performance. As expected, Rician yields the higher AER,
whereas Rayleigh yields the lower AER.

3) GA complexity compared to ML, in the scenario, A1:
Fig. 6 depicts GA convergence for NT = 8, NR = 5, M = 4,
r = 1, and scenarios A1. GA converges with ML after 16
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Fig. 4. GA performance for different AS and K values.
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Fig. 5. GA performance in fading channels, scenario C2.

G. Lower AER can be achieved with acceptable increase of
GA complexity. Since, the complexity order of GA and ML
is P G and MNT respectively and they are dominated by the
likelihood function, which contains of NTNR complex multi-
plication and addition. Thus, the complexity (PG = 23200)
of GA is much less than the complexity (MNT = 65536) of
ML.

VI. CONCLUSIONS
In this paper, we have shown GA-based detector per-

formance and complexity of overloaded MIMO system in
realistic channel models and correlated fading channels. We
found that, at a constant complexity, GA performance is less
sensitive to the parameter variable. GA perform with ML for
several WINNER II scenarios and in fading channels. GA
performance influenced by AS and K values and also r = 0
and r = 1. Fig. 5 shows at AER 10−2 Rician fading generates
performance about 10dB poorer than that was expected for the
Rayleigh fading. GA can achieve ML like performance with
lower complexity. In fig. 6 complexity of GA relative to ML
is about 35%. Thus, the GA-based detection is able to bridge
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Fig. 6. GA complexity with ML for overloaded system, scenario A1.

the performance and complexity gap between the conventional
ML detector. Therefore, much lower complexity is thus, much
easier to implement in hardware (FPGA design).
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