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Abstract—In this paper we deal with the problem of power
line detection from millimeter-wave radar video. We propose an
algorithm that is based on Hough Transform, Support Vector
Machine, and particle filter tracking. We explore the defining
characteristics of the power lines in the radar video, and
present an approach to utilize these characteristics together with
the temporal correlation property of the power line objects.
The particle filter framework naturally captures the temporal
correlation of the power line objects, and the power-line-specific
feature is embedded into the conditional likelihood measurement
process of the particle filter. Experimental result validates the
effectiveness of the power line detection approach.

I. INTRODUCTION

For the flight safety of helicopters, power-line-strike acci-
dent has been a substantial threat [5]. Most of these accidents
happened at night, thus an automatic power line detection and
warning system for helicopters that can work anytime is highly
desirable to ensure helicopter flight safety. A few previous
works have been developed for power line detection with
radar [1][8][10]. However, these works provide no automatic
algorithm to detect the power lines from the radar signal.

In [4], a power line imaging system based on a 94-
GHz active millimeter-wave radar is reported. Unlike previous
radar systems, the system in [4] can synthesize the field-of-
view scene containing the power lines from the Intermediate
Frequency (IF) channel of the reception signal in real time at
10 fps (frames-per-second). In Fig. 1 we show an example
of a radar image and in Fig. 2 the zoom-in views of the
power lines.From the radar images a few characteristics of
the power lines can be observed. Firstly, although in these
images the power lines appear as curves, it is just an artifact
of the B-scope, i.e., polar coordinate view. They will appear
as straight lines when the coordinate system is transformed
to Cartesian coordinate. Secondly, the power lines appear in
parallel groups. Thirdly, the power lines have a so-called Bragg
pattern, i.e., the periodic peak pattern, due to the periodic
pattern of the power line surface. Based on the synthesized
field-of-view, the automatic detection of the power lines can
be accomplished by an image processing approach on the radar
video.

We have proposed an algorithm for automatically detecting
power lines from the radar video in [7]. Hough Transform is
employed to detect power line candidates, and a pre-trained
Support Vector Machine (SVM) classifier is used to differen-
tiate power lines from noise lines based on the power-line-

Fig. 1: B-scope image of a scene that contains power lines
and their supporting towers.

Fig. 2: Zoom-in view of the power line images. The ground
return noise is evident in the right image.

specific Bragg pattern. However, each frame is processed sep-
arately, and the important temporal correlation between power
line object is only imposed as a heuristic post-processing
step. Thus, even though the frame-level detection accuracy
(determining if a frame contains power lines or not) in [7]
is impressive, the power-line-level accuracy (determining the
existence of individual power lines) is not as good.

In this paper, we observe that the temporal correlation
of the power line objects can be captured by using formal
tracking methods such as particle filtering. Particle filter has



been applied to various tracking tasks such as tracking sports
players [11], pedestrians [2], and surveillance applications.
To the best of our knowledge, this paper is the first one to
apply particle filter for tracking power lines in radar video.
We demonstrate that the characteristics of the power lines can
be embedded into the update step of the particle filter. The
two distinguishing characteristics of the power lines, namely,
the intrinsic characteristics or features of the objects, and the
temporal correlation of the objects, are combined and both are
effectively used. The successful usage of these two types of
information is the key to the accurate and robust detection of
the power lines.

In the next section, we explain our proposed approach in
details. We present the experimental results in section III, and
conclude this paper in section IV.

II. POWER LINE TRACKING WITH PARTICLE FILTER

A. Object Tracking with Particle Filter

The problem of object tracking can be modeled as the
estimation of the hidden state of a system xk using a sequence
of noisy measurements z1:k, where k is the frame index.
The system state includes the information about the object
of interest, such as the position, velocity, and the size of the
object. Particle filter is a sequential importance sampling (SIS)
technique to approximate the posterior pdf p (xk|z1:k) using
a finite set of N weighted samples {xi

k, w
i
k}i=1···N by Monte

Carlo simulation. The candidate particles x̃i
k are sampled from

an appropriate importance distribution q (xk|x1:k−1, z1:k), and
the weights of the samples are [3]

wi
k = wi

k−1

p (zk|x̃i
k)p (x̃

i
k|xi

k−1)

q (xk|x1:k−1, z1:k)
(1)

In the case of bootstrap filter [9][12], the importance distri-
bution q (xk|x1:k−1, z1:k) is the same as the state transition
density p (xk|xk−1), and the weight wi

k for each particle i in
frame k is then simplified as

wi
k = wi

k−1 · p (zk|x̃i
k) (2)

Because a large number of these particles have negligible
weights, the particles are re-sampled in each frame to avoid the
degeneracy problem. For a fixed number of particles initialized
with equal weight, the importance weight in Eq. 1 is reduced
to p (zk|x̃i

k), the conditional likelihood of a new observation
zk given the particle x̃i

k.

B. Cascaded Particle Filters

We observe that the state vector can often be decomposed
into a few un-correlated sub-states, and the state space can
be decomposed into a few orthogonal sub-spaces. Let xk =
(uk,vk), if we have uk and vk independent of each other,
i.e., p (xk) = p (uk,vk) = p (uk) · p (vk), it can be easily
shown that p (xk|z1:k−1) = p (uk|z1:k−1) · p (vk|z1:k−1), and
p (xk|z1:k) ∝ p (uk|z1:k) ·p (vk|z1:k), i.e., both the prediction
and update steps can be factored into the prediction and update
of uk and vk separately. For particle filter, the dynamic model
to propagate the particles can be defined separately in the

sub-spaces, and the measurement likelihood p (zk|x̃i
k) is thus

decomposed into individual measurement likelihood in the
sub-spaces, i.e., p (zk|ũi

k) and p (zk|ṽi
k).

C. Observation Models
In this paper, we propose to track the power lines in

the Hough Transform domain using cascaded particle filters.
The power line is represented by two parameters, θ and ρ
in the Hough Transform domain, and they are very much
independent. Another reason for separating θ and ρ is because
in reality we find that all the power lines in the field-of-
view captured by the radar are parallel, thus the θ value for
all the power lines are the same. θ can be estimated first,
then individual ρ values for individual power lines can be
further estimated by individual ρ trackers along the estimated
θ direction. Thus, according to the cascaded particle filters in
the previous section, we will consider two separate likelihood
measurements, p(zk|θ̃ik) and p(zk|ρ̃ik).

1) Observation Model for θ, p(zk|θ̃ik): It it defined as the
following:

p(zk|θ̃ik) = c(zk|θ̃ik)︸ ︷︷ ︸
concentration

· s(zk|θ̃ik)︸ ︷︷ ︸
line strength

· gθ(θ̃
i
k, θ̂k−1)︸ ︷︷ ︸

temporal smoothness

(3)

Adopting the preprocessing algorithm including threshold-
ing and coordinate transformation in [7], Hough Transform
converts a frame zk to Hough-domain data Hk(θ, ρ), and
Hk(θi, ρj) represents the number of pixels (or line strength)
for a particular line parameter combination (θi, ρj). It can
be shown that

∑
ρ Hk(θ1, ρ) =

∑
ρ Hk(θ2, ρ) for any θ1, θ2,

yet Hk(θ1, ρ) and Hk(θ2, ρ) have different distributions over
ρ. For the true power line orientation, Hk(θtrue, ρ) is more
concentrated because there are a few power lines with the
same θtrue. With a similar concept as entropy, we define the
“concentration” measure as:

c(zk|θ̃ik) =
∑
ρ

Hk(θ̃
i
k, ρ) log

(
Hk(θ̃

i
k, ρ)

)∣∣∣
Hk(θ̃i

k,ρ)>0
(4)

For the true power line orientation, there will be a few lines
with significant strength. The line strength measure s(zk|θ̃ik)
takes the sum of the top three values in Hk(θ̃

i
k, ρ). Lastly, the

temporal smoothing term for θ is defined as:

gθ(θ̃
i
k, θ̂k−1) = exp(−(θ̃

i
k − θ̂k−1)

2/2σ2
θ) (5)

where θ̂k−1 is the tracked θ in the previous frame and σθ is
the standard deviation parameter of the Gaussian function.

2) Observation Model for ρ, p(zk|ρ̃ik): The ρ tracker is
cascaded after the θ tracker and tracks for the ρ value of each
individual power line along the orientation θ̂k tracked by the
θ tracker. The conditional likelihood of a particular ρ sample
ρ̃ik is defined as:

p(zk|ρ̃ik) = f(zk|ρ̃ik)︸ ︷︷ ︸
classifier confidence

· a(ρ̃ik, ρ̂k−1)︸ ︷︷ ︸
association function

· gρ(ρ̃
i
k, ρ̂k−1)︸ ︷︷ ︸

temporal smoothness
(6)

The classifier confidence is directly inherited from the SVM
classifier in [7]. The association function measures the similar-
ity of the Hough domain data in a local neighborhood between



this sample ρ̃ik and the tracked ρ̂k−1 in the previous frame,
using a normalized correlation function. Lastly, the temporal
smoothing term for ρ is defined in the similar way as Eq. 5:

gρ(ρ̃
i
k, ρ̂k−1) = exp(−(ρ̃

i
k − ρ̂k−1)

2/2σ2
ρ) (7)

D. Power Line Detection with Tracking

The motion dynamic models that propagate the particles are
defined as drifting models considering that the movement of
the helicopter is smooth:

θk = θk−1 + εθ (8)

ρk = ρk−1 + ερ (9)

The process noise εθ and ερ are drawn from zero-mean
Gaussian distributions with standard deviations of σθ and σρ.

The θ-tracking algorithm is presented in the follwing, the
purpose of which is to estimate the orientation of all the
parallel power lines in a frame given the orientation of the
power lines in previous frame:

Algorithm 1 The θ-tracking algorithm

Input: A new radar video frame zk, and its Hough Trans-
form Hk(θ, ρ)
if k = 0, i.e., the first frame then

θ̂0 = argmaxθ c(z0|θ) · s(z0|θ)
Initialize Nθ θ-particles θ̃i0 = θ̂0, wi

θ0
= 1

Nθ

else
Propagate θ-particles according to Eq. 8
Measure weight according to Eq. 3, wi

θk
= p(zk|θ̃ik)

Output θ̂k = argmaxi w
i
θk

Re-sample Nθ un-weighted particles from p(θk|z1:k)
approximated by {θ̃ik, wi

θk
}

end if
Output: θ̂k

The re-sampling step is implemented in the same way as
[6]. The algorithm for processing a ρ-tracker is:

Algorithm 2 The ρ-tracker processing algorithm

Input: A new radar video frame zk, its Hough Transform
Hk(θ, ρ), the output θ̂k from θ-tracker, and the particles of
the ρ-tracker {ρ̃ik−1, w

i
ρk−1

} from previous frame
Propagate ρ-particles according to Eq. 9
Measure weight according to Eq. 6, wi

ρk
= p(zk|ρ̃ik)

Output (ρ̂k, wρ̂k
) = argmaxi w

i
ρk

Re-sample Nρ un-weighted particles from p(ρk|z1:k)
approximated by {ρ̃ik, wi

θk
}

Output: ρ̂k, wρ̂k

The overall power line detection with tracking algorithm
is presented in Alg. 3. Tρ is a parameter that controls the
association threshold for the ρ-tracker, and Mρ defines the
maximum number of ρ-trackers allowed in each frame. In
the first frame the ρ-trackers are initialized by searching for

Algorithm 3 The power line detection with tracking algorithm

Input: A new radar video frame zk
Step 1. Pre-process: thresholding and coordinate transfor-
mation according to [7]
Step 2. Hough Transform: zk → Hk(θ, ρ)
Step 3. θ-tracking: get θ̂k by Alg. 1
Step 4. ρ-tracking
if k = 0, i.e., the first frame then

Initialize Mρ ρ-trackers by searching for Mρ local max-
ima {ρ0,j , j = 1, · · · ,Mρ} in H0(θ̂0, ρ).
for all ρ0,j do

if f(zk|ρ0,j) > 0, i.e., passes SVM then
Initialize Nρ particles ρ̃i0,j = ρ0,j

else
Terminate this ρ-tracker ρ0,j

end if
end for

else
Process each ρ-tracker ρk,j by Alg. 2, get the ρ-tracker
output ρ̂k,j and ŵρk,j

if ŵρk,j
> Tρ then

Keep this ρ-tracker
else

Terminate this ρ-tracker
end if
Add new ρ-trackers by searching for local maxima not
covered by any ρ-tracker, similar to k = 0 initialization
case, and allow up to Mρ ρ-trackers

end if
Output: (θ̂k, ρ̂k,j) in each ρ-tracker as detected power lines
in zk

local maxima in Hough data, which is the same way for
detecting power lines as the previous algorithm [7]. If a
line candidate (corresponding to a local maximum in Hough
data) is classified by the SVM as a power line, a ρ-tracker
is initialized and it continues to track its position in future
frames. If the detection result is inaccurate and it is actually
a false alarm power line, the tracker will most likely not be
able to find any good association in future frames and this
false alarm ρ-tracker will be terminated. When a power line
is occluded by noise, the tracker could lose track of it. To re-
capture it when the power line appears again, in each frame
we also search for candidate power lines in the region that is
not covered by any ρ-tracker and initialize new ρ-trackers.

III. EXPERIMENTS

The helicopter flight test team has collected 8 datasets,
each lasting from a few seconds to about 15 seconds. These
datasets are collected under different flying conditions and
they can represent most of the cases that happen in real-world
situations. The simulation is carried on using these datasets.
We compare the line-level detection results in Table I with the
previous power line detection algorithm in [7]. We manually
inspect the result for each frame, and compute the line-level



TABLE I: Power-line-level recall and precision comparison
with previous algorithm.

[7] Ours

Dataset Recall Precision Recall Precision

1 75.87% 58.13% 97.73% 91.51%
2 79.06% 76.68% 97.91% 97.84%
3 73.78% 81.17% 87.45% 99.85%
4 57.29% 77.59% 79.57% 94.29%
5 77.72% 92.55% 80.69% 91.01%
6 46.15% 45.08% 100.0% 90.64%
7 57.37% 50.13% 94.78% 91.75%
8 50.26% 63.23% 89.65% 84.81%

Overall 68.36% 68.94% 92.03% 92.83%

TABLE II: Power-line-level recall and precision comparison
with θ-only tracking.

θ-only θ + ρ

Dataset Recall Precision Recall Precision

1 84.64% 91.59% 97.73% 91.51%
2 92.56% 100.0% 97.91% 97.84%
3 84.88% 99.83% 87.45% 99.85%
4 61.88% 92.70% 79.57% 94.29%
5 77.92% 85.90% 80.69% 91.01%
6 93.86% 94.31% 100.0% 90.64%
7 90.69% 88.31% 94.78% 91.75%
8 64.68% 75.31% 89.65% 84.81%

Overall 79.86% 90.47% 92.03% 92.83%

recall and precision for each dataset. We can see that with
the proposed cascaded particle filter tracking algorithm, both
recall and precision are greatly improved, thus boosting the
robustness of the power line detection algorithm significantly.

To validate the necessity for cascaded θ-tracking and ρ-
tracking, in Table II we compare the line-level recall and
precision with the θ-only tracking algorithm. In each frame
the overall power line orientation is tracked, and the top Mρ

lines along that direction are classified by the SVM classifier
as power lines or noise lines. We can see the performance
with full θ + ρ tracking algorithm is superior to that of θ-
only. We notice that the involvement of ρ-trackers particularly
improves the recall, which means more true power lines can
be detected. The reason is that without the ρ-trackers, power
lines that are occluded by the ground return noise may not
be correctly classified by the SVM, thus they are missed
by the θ-only algorithm. But with the ρ-tracking algorithm,
the strong association of these partially occluded power lines
between neighboring frames can still be greater than Tρ, thus
the effective utilization of temporal correlation complements
the “blind spots” of the SVM classifier.

We show some visual results in Fig. 3. The power lines are
overlaid as red lines in the detection results. We can clearly
see the effectiveness of the the algorithm.

IV. CONCLUSION

In this paper, we present a robust detection with particle fil-
ter tracking algorithm to automatically detect power lines from
the video captured by a 94 GHz millimeter-wave radar. The

Fig. 3: Some example frames with power line detection results.
Notice these are zoom-in views showing the power line region
only.

particle filter framework captures both the power-line-inherent
features and the important temporal correlation feature. The
experimental results show that the algorithm has superior
performance over the previous power line detection algorithm.
The power line imaging radar and the detection algorithm
in this paper can provide a valuable assistance to helicopter
pilots to avoid power-line-strike accidents, especially under
poor visibility and at night.
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