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Abstract—Multichannel Wiener filter proposed by Duong
et al. can conduct underdetermined blind source separation
(BSS) with low distortion. This method assumes that the observed
signal is the superimposition of the multichannel source images
generated from multivariate normal distributions. The covariance
matrix in each time-frequency slot is estimated by an EM
algorithm which treats the source images as the hidden variables.
Using the estimated parameters, the source images are separated
as the maximum a posteriori estimate. It is worth nothing that
this method does not assume the sparseness of sources, which
is usually assumed in underdetermined BSS. In this paper we
investigate the effectiveness of the three attributes of Duong’s
method, i.e., the source image model with multivariate normal
distribution, the observation model without sparseness assump-
tion, and the source separation by multichannel Wiener filter. We
newly formulate three BSS methods with the similar source image
model and the different observation model assuming sparseness,
and we compare them with Duong’s method and the conventional
binary masking. Experimental results confirmed the effectiveness
of all the three attributes of Duong’s method.

I. INTRODUCTION

Source separation is an essential technology for hands-
free speech recognition and understanding of the sound en-
vironment by computer in real environments. In past decades
there has been a rapid progress in the research field of blind
source separation (BSS), which does not require prior infor-
mation, such as source position and voice activity detection
[1]. Independent component analysis [2] is representative of
BSS, but this method cannot be applied to underdetermined
conditions where the number of sources is larger than that of
microphones. Since stereo recording devices are used widely,
underdetermined BSS technique is demanded so that we can
apply BSS to two-channel recordings of arbitrary number of
sources.

A typical approach to underdetermined BSS is to assume
sparseness among sources [3]. Sparseness is the nature of
signals whose energy is concentrated in some frequencies and
almost zero in the other frequencies at each short time period.
Thus the BSS methods of this type assume that each time-
frequency slot of speech mixture is dominated by one of the
sources. The most representative of those methods is time-
frequency masking [3], which identifies the dominant source in

each time-frequency slot, and separate each source by masking
the time-frequency slots where the other sources are dominant.
Such identification is done by clustering the multichannel
features such as inter-channel level or phase differences with
k-means clustering [4], EM algorithm [5], etc.

There have been various works related with the time-
frequency masking. Araki et al. proposed combination with
minimum variance distortionless response beamformer [6]
to reduce musical noise caused by masking [7]. Also, Iso
et al. [8] used the time-frequency binary masking [9] for
initialization of an initialization-sensitive BSS method using
multichannel Wiener filter proposed by Duong et al. [10],
whose details are discussed in this paper.

The problem of the time-frequency binary masking is degra-
dation of speech quality caused by modeling mismatch of the
sparseness assumption, which is satisfied approximately but
not perfectly. While most of the underdetermined BSS tech-
niques assume sparseness of speech, Duong et al. proposed
low-distortion underdetermined BSS using the multichannel
Wiener filter without the sparseness assumption [10]. This
method models source image, which is the multiplication of
each source and its related transfer functions. The source
image is modeled by multivariate normal distribution whose
parameterization assumes stationarity of the transfer system
and quasi-stationarity of the sources. The multichannel Wiener
filter is designed using the parameters estimated by an EM
algorithm. The details of the underlying probabilistic model is
not described in the original paper [10], but as pointed in [11],
the source images are dealt as hidden variables, and the sum
of the hidden source images are constrained to equal to the
observed signal. With this constraint, superimposition of the
multiple sources in the mixed signals is modeled effectively.
The obtained multichannel Wiener filtering corresponds to
maximum a priori (MAP) estimate of the source images. The
detailed probabilistic modeling is described in this paper.

As described above, Duong’s method has various interesting
attributes. However, it has not been well-investigated which
factor is effective for the high-quality source separation. In this
paper, we analyze in detail some of these attributes which are
considered to be the reason why Duong’s method can achieve



high quality source separation. In particular, we focus attention
on the following three, i.e., 1) the source image model by
multivariate normal distribution, 2) source separation by the
multichannel Wiener filter, and 3) use of EM algorithm devel-
oped without assumption of sparseness. In order to confirm
the effectiveness of these factors, we formulate alternative
underdetermined BSS methods with the same source image
model as Duong’s method by multivariate normal distribution
and the different observation model of sparse source image oc-
currences but superimposition of multiple source images. We
design the following three BSS schemes using the estimated
parameters: A) separation using the posterior probability that
source image is active, B) separation by maximum likelihood
binary mask which corresponds to maximum a posteriori
estimation of sparse source images, and C) separation by
an alternative multichannel Wiener filter designed using the
expectation of the sources in the sparse model. We compared
these three methods with Duong’s method and MENUET
which is a general binary masking method, and discuss the
performances from the following three viewpoints; i) validity
of the source image model with multivariate normal distri-
bution by comparing the typical binary mask MENUET and
sparse binary mask formulated, ii) effectiveness of separation
by the multichannel Wiener filter by comparing the above
three methods A), B), and C), and iii) effectiveness of source
image superposition model not assuming the sparseness by
comparing the newly formulated sparse Wiener filter and
Duong’s method. As a result, effectiveness of all the above
three attributes of Duong’s method has been confirmed.

In Section 2, we describe the observation model dealt in this
paper. We review Duong’s method in Section 3. The sparse
model which is a comparative approach is formulated in Sec-
tion 4. In Section 5, we perform a comparison experiment of
source separation to confirm the validity of Duong’s method.
Finally, Section 6 concludes this paper.

II. OBSERVATION MODEL

Here we describe the observation model of Duong’s method
and sparse models we newly formulate in this paper. First, the
observed signal is expressed as

x(n, f) = [x1(n, f), ..., xI(n, f)]
T

≈
J∑

j=1

hj(f)sj(n, f), (1)

hj(f) = [h1j(f), ..., hIj(f)]
T
. (2)

where sj(n, f) is the source signal, hj(f) is the transfer
function vector of the j-th source whose entry hij represents
the transfer function from the j-th source to the i-th micro-
phone, J is the number of the sources, I is the number of the
microphones, and (·)T is the transpose. Also, we define the
component of the j-th source reaching at the microphones as
the source image cj(n, f), which contains spatial information
such as reverberation, expressed as

cj(n, f) = hj(f)sj(n, f). (3)

In this paper, we discuss the problem to estimate the source
image cj(n, f) of each source.

III. MULTICHANNEL WIENER FILTER BY DUONG et al.

Here we explain about the multichannel Wiener filter by
Duong et al., from the viewpoint of maximum likelihood
estimation problem, which was not explicitly formulated in
[10].

A. Probabilistic Modeling of Source Image

Originally, the source image can be expressed as (3), but
assuming the time variation of the transfer function effected
by the longer reverberation than the length of the analysis
frames, Eq. (3) is rewritten as

cj(n, f) = hj(n, f)sj(n, f), (4)

where hj(n, f) is defined as the time-varying transfer func-
tion. For the probabilistic modeling of the source image
cj(n, f), two assumptions are introduced. First, under the
assumption that the sources does not change the position, we
regard the spatial correlation to be stationary and each of the j-
th source is given the time-invariant spatial correlation matrix
Rj(f). Second, assuming speech is non-stationary but quasi-
stationary, we denote the time-varying variance of the j-th
source with νj(n, f). Under these assumptions, the covariance
matrix Rcj (n, f) of cj(n, f) is regarded as the product of
Rj(f) and νj(n, f) as

Rcj (n, f) = νj(n, f)Rj(f), (5)

and the source image cj(n, f) is assumed to be gener-
ated from the zero-mean multivariate normal distribution
Nc(cj(n, f);0,Rcj (n, f)):

p(cj(n, f)|θ(f)) = Nc(cj(n, f);0,Rcj (n, f)). (6)

Here the probability density function Nc(c;µ,Σ) of the I-
dimensional random variable c arose from the multivariate
normal distribution with the mean µ and the covariance matrix
Σ is given by

p(c;µ,Σ) = Nc(c;µ,Σ)

≜ 1

πI det(Σ)
exp

(
−(c− µ)HΣ−1(c− µ)

)
, (7)

where det(·) is the determinant of the square matrix, and
(·)H is the complex conjugate transpose. Note that the spatial
correlation matrix Rj(f) should be expressed as Rj(f) =
hj(f)h

H
j (f) with its rank one when time-invariant transfer

function hj(n, f) is assumed. However, considering the effects
of such long reverberation which does not fit in the analysis
frames, Rj(f) is assumed to be full-rank considering the time
variation of the transfer function vector hj(n, f). Maximum
likelihood estimation of the generative model of cj(n, f) and
x(n, f) is described in the following section.



B. Derivation of EM Algorithm

Assuming the observed signal x(n, f) appears as the super-
imposition of the source images cj(n, f), j = 1, ..., J as

x(n, f) =
J∑

j=1

cj(n, f)

⇔ cj(n, f) = x(n, f)−
J−1∑
j=1

cj(n, f), (8)

the joint probability of x(n, f) and cj(n, f) is derived from
Eqs. (7) and (8) as

p(C(n, f),x(n, f)|θ(f))

=
J−1∏
j=1

Nc
(
cj(n, f);0,Rcj (n, f)

)
· Nc

x(n, f)−
J−1∑
j=1

cj(n, f);0,RcJ
(n, f)

 , (9)

where C(n, f) = {c1(n, f), ..., cj(n, f), ..., cJ (n, f)}. More-
over the likelihood of the observation is obtained as

p(x(n, f)|θ(f)) =
∫

p(C(n, f),x(n, f)|θ(f))dCJ(n, f)

= Nc(x(n, f);0,Rx(n, f)), (10)

by marginalization of all the source images, where CJ (n, f) =
{c1(n, f), ..., cJ−1(n, f)}, and Rx(n, f) is covariance matrix
of observation matrix x(n, f), given as

Rx(n, f) =
J∑

j=1

νj(n, f)Rj(f). (11)

With these probability density functions, the Q-function is
formulated as

Q(θ(f), θ̄(f))

=

N∑
n=1

∫
p (C(n, f)|x(n, f), θ(f))

· log p
(
C(n, f),x(n, f)|θ̄(f)

)
dCJ (n, f)

=

N∑
n=1

∫
p(C(n, f),x(n, f)|θ(f))

p (x(n, f)|θ(f))

· log p
(
C(n, f),x(n, f)|θ̄(f)

)
dCJ (n, f)

=
N∑

n=1

−IJ log π − I
J∑

j=1

log ν̄j(n, f)

−
J∑

j=1

log det(R̄j(f))

−
J∑

j=1

1

ν̄j(n, f)
Tr
(
Mj(n, f)R̄

−1
j (f)

) , (12)

Mj(n, f)

= Rcj (n, f)−Rcj (n, f)R
−1
x (n, f)Rcj (n, f)

+Rcj (n,f)R
−1
x (n,f)x(n,f)xH(n,f)R−1

x (n,f)Rcj (n,f).
(13)

The EM algorithm to estimate the parameters is obtained by
setting the partial differential of the Q-function to be zero.

C. Parameter Estimation and Source Separation

First, set appropriate initial values of νj(n, f) and Rj(f),
and initialize Rcj (n, f) and Rx(n, f) as follows.

Rcj (n, f) = νj(n, f)Rj(f), (14)

Rx(n, f) =
J∑

j=1

Rcj (n, f). (15)

After the above initialization, the E-step estimates the a
posteriori covariance matrix Rcj (n, f) as

Wj(n, f) = Rcj (n, f)R
−1
x (n, f), (16)

ĉj(n, f) = Wj(n, f)x(n, f), (17)

R̂cj (n, f) = ĉj(n, f)ĉ
H
j (n, f) + (I−Wj(n, f))Rcj (n, f).

(18)

The update of the M-step is given by

νj(n, f) =
1

I
tr(R−1

j (f)R̂cj (n, f)), (19)

Rj(f) =
1

N

N∑
n=1

1

νj(n, f)
R̂cj (n, f), (20)

Rcj
(n, f) = νj(n, f)Rj(f), (21)

Rx(n, f) =

J∑
j=1

νj(n, f)Rj(f), (22)

where I is the I × I identity matrix. After the con-
vergence of the iteration of the E- step and M-step,
the source image is estimated by using the parameters.
Marginalization of p(C(n, f)|x(n, f), θ(f)) about c1(n, f),
..., cj−1(n, f), cj+1(n, f), ..., cJ(n, f) gives

p(cj(n, f)|x(n, f), θ(f))

= Nc

(
cj(n, f);Rcj (n, f)R

−1
x (n, f)x(n, f),(

R−1
cj

(n, f) +
(
Rx(n, f)−Rcj (n, f)

)−1
)−1

)
, (23)

and each source image can be estimated by the multichannel
Wiener filter represented as

cj(n, f) = Rcj (n, f)R
−1
x (n, f)x(n, f), (24)

which corresponds both to the expectation and the MAP
estimate.



IV. FORMULATION OF THE SEPARATION METHOD AND
OBSERVATION MODEL BY ASSUMPTION OF SPARSENESS

In this section, for the comparison to verify the effectiveness
of the model of Duong’s method, we formulate new source
separation methods which have the similar source image model
to Duong’s method but with an alternative assumption that the
observation is generated from the sparse distribution of the
source images.

A. Problem Establishment
We assume that in each time-frequency slot only one source

is active, and we denote the index of the active source in
the time-frequency slot (n, f) as z(n, f). We define the prior
probability of the j-th source to be active as

p(z(n, f) = j) = µj(f),

J∑
j=1

µj(f) = 1. (25)

Under this assumption, the observed signal x(n, f) is modeled
as

x(n, f) = cz(n,f)(n, f), (26)

say, the sparse observation model. Similarly to Duong’s
method, the generation of the source image cj(n, f) of this
model is represented as

p (cj(n, f)|z(n, f) = j, θ(f))

= Nc (cj (n, f) ;0, νj (n, f)Rj(f)) , (27)

by assuming that the covariance matrix Rcj (n, f) is given
by the product of the time-varying variances νj(n, f) and
the time-invariant spatial correlation matrix Rj(f), and
the source image cj(n, f) follows the normal distribution
Nc (x(n, f);0, νj(n, f)Rj(f)). We represent the model pa-
rameters by θ(f) = {Rj(f), νj(n, f), µj(f), for j = 1, ..., J}.

B. Model Parameter Estimation
Likelihood

∏
n p(x(n, f)|θ(f)) of the observed signal

x(n, f) to maximize the model parameters θ(f) are defined
as ∏

n

p (x(n, f)|θ(f))

=
∏
n

J∑
j=1

µj(f)Nc (x(n, f);0, νj(n, f)Rj(f)) . (28)

This maximum likelihood estimation can be obtained by EM
algorithm to maximize the Q-function with the hidden variable
z(n, f) is given below.

Qf (θ(f), θ̄(f))

=
∑
n,j

mj(n, f) logµj(f)Nc (x(n, f);0, νj(n, f)Rj(f))

=
∑
n,j

mj(n, f)

(
logµj(f)− I log π − I log νj(n, f)

− log det
(
R̄j(f)

)
−

x(n, f)HR̄−1
j (f)x(n, f)

νj(n, f)

)
, (29)

where mj(n, f) behaving as the time-frequency soft mask is
the posterior probability of z(n, f) given as

mj(n, f) = p (z(n, f) = j|x(n, f),Rj(f)νj(n, f)) , (30)

and satisfies
J∑

j=1

mj(n, f) = 1. (31)

The EM algorithm is derived by setting the partial derivative
of this Q-function by each parameter to be zero.

In the M-step, the variances νj(n, f), the spatial covariance
matrix Rj(f) and the prior probability µj(f) are updated as

νj(n, f)←
xH(n, f)R−1

j (f)x(n, f)

I
, (32)

Rj(f)←
∑

n
mj(n,f)
νj(n,f)

x(n, f)xH(n, f)∑
n mj(n, f)

, (33)

µj(f)←
∑

n mj(n, f)∑
n,j′ mj′(n, f)

. (34)

In E-step, the posterior probabilities are updated.

mj(n, f)←
µj(f)Nc (x(n, f);0, νj(n, f)Rj(f))∑
j′ µj′(f)Nc (x(n, f);0, νj′(n, f)Rj′(f))

.

(35)

C. Source Separation

Here we formulate three source separation schemes using
the estimated parameters.

1) Sparse soft mask using the posterior probability: The
first scheme is to use the posterior probability mj(n, f)
directly as the mask.

cj(n, f) = mj(n, f)x(n, f). (36)

2) Sparse binary mask: The second scheme is using the
binary mask Mj(n, f) to regard the observation as the exclu-
sive occurrence of one source with the maximum posterior
probability mj(n, f), given by

Mj(n, f) =

1 if j∗ = argmax
j

mj(n, f)

0 otherwise
, (37)

cj(n, f) = Mj(n, f)x(n, f), (38)

which corresponds to the MAP estimate of the source image
cj(n, f) to maximize p(c1(n, f), ..., cJ(n, f)|x(n, f),R1(f),
...,RJ(f), ν1(n, f), ..., νJ(n, f)).

3) Sparse Wiener filter: In the third scheme, we de-
sign a multichannel Wiener filter similar to the one in
Duong’s method, using the expectation of each variance
mj(n, f)νj(n, f);

Rx(n, f) =
∑
j

mj(n, f)νj(n, f)Rj(f), (39)

Rcj (n, f) = mj(n, f)νj(n, f)Rj(f), (40)

ĉj(n, f) = Rcj (n, f)R
−1
x (n, f)x(n, f). (41)



In the next section, we conduct experiments to compare
Duong’s method without the assumption of sparseness to
general binary mask MENUET and three methods with the
assumption of sparseness formulated in this section.

V. EXPERIMENTS

A. Experimental Condition

We compare the performances of MENUET the general
binary masking method, Duong’s method and the three source
separation methods derived from the sparseness assumptions.
We evaluated the source separation performance of six mix-
tures of three speeches chosen from four male and four female
utterances as listed in Table I.

We used two-channel microphone array with the inter-
element spacing of 2.15 cm. The distances between the sources
and the microphone array are 1.0 m. The horizontal angles of
the sources are −40◦, 0◦ and 30◦. The sampling frequency is
16 kHz, and the frame size is 1024 samples. The EM algo-
rithms are terminated after 50 iterations. Objective evaluation
scores of separation performance are the following 4 distortion
measures proposed in [12].

• SDR (Signal to Distortion Ratio): comprehensive distor-
tion

• ISR (Source Image to Spatial distortion Ratio): linear
distortion

• SIR (Source to Interference Ratio): distortion by the rest
reduction of the other source

• SAR (Sources to Artifacts Ratio): non-linear distortion
The unit is dB, and the higher values show the better per-
formance. We used the medhod in [8] to generate the initial
values and to align the permutation for Duong’s method and
the formulated methods. The other experimental conditions are
listed in Table II.

TABLE I
COMBINATION OF SIGNAL MIXTURE

−40◦ 0◦ 30◦

1 Male1 Female2 Female3
2 Female1 Male2 Female4
3 Female2 Female4 Male3
4 Female1 Male1 Male4
5 Male4 Female2 Male2
6 Male1 Male3 Female3

TABLE II
EXPERIMENTAL CONDITION

sources SiSEC 2011
source direction −40◦，0◦，30◦

number of microphones 2
distance between the two microphones 2.15 cm

FFT size 1024 point
sampling frequency 16000 kHz

iteration of EM algorithm 50 times
performance measures SDR, ISR, SIR, SAR

^�Z /^Z ^/Z ^�Z

�

D�Eh�d

^ �^ � �

/s �

^ �� �

� /s �

^ �t �

� /s�

� �

Fig. 1. Experimental result

B. Discussion

The experimental results are shown in Fig. 1. Duong’s
method marked good score in SIR, which indicates degree of
separation, and the highest score in SDR, which measures the
overall quality of the separated signal. Thus Duong’s method
is the best in this comparison. We discuss in detail in the
following.

In order to verify the validity of the multivariate modeling of
source image, we discuss the comparison between MENUET
and the sparse binary mask. Since all the evaluation scores are
similar, the multivariate model seems to have no remarkable
side effect and its validity is confirmed.

In order to verify which source separation scheme is effec-
tive, we compare the three methods formulated by the sparse
model. The sparse soft mask has the lowest scores. And while
the sparse binary mask marks higher scores in ISR and SIR
than the sparse Wiener filter, the sparse Wiener filter marked
the higher scores in SDR and SAR. The assumption of the
binary mask, which regards that in each time-frequency slot
the estimated dominant source solo generates the observed
signal, is effective for yielding high SIR, the source separation
score. However, this assumption is not strictly satisfied, and the
resultant error causes high distortion, as can be seen in the low
SAR of the sparse binary mask. Because of the high distortion,
SDR of the binary mask, which measures the overall quality
of the separated signal, is not very high in spite of the high
SIR. In contrast, the sparse Wiener filter has low distortion
as can be seen in its high SAR. Thus SDR of the sparse
Wiener filter is higher than that of the sparse binary mask
even with the lower SIR, and the sparse Wiener filter has the
better source separation performance than the sparse binary
and soft maskings. Therefore we can conclude that Wiener
filter performs the high-quality source separation with lower
distortion than masking.

Moreover, in order to verify the effectiveness of source
image superposition model not assuming the sparseness, we
compare the performances of the formulated sparse Wiener
filter and Duong’s method. These two methods has similar
SAR and causes similarly low amounts of distortion. However,
Duong’s method marks higher scores in SIR and ISR, and



as a result Duong’s method has higher SDR than the sparse
Wiener filter. Thus we can say that Duong’s method has
better source separation performance than the sparse Wiener
filter, and the best one among those compared methods. As
we discussed in Sect. III-C, Duong’s method estimates the
parameters of the multichannel Wiener as the optima of the
assumed probabilistic model in two senses of expectation and
MAP. However, the parameters of the sparse Wiener filter is
estimated indirectly in its probabilistic model combining the
estimations of soft mask and the covariance matrices, as shown
in Sect. IV-C. Therefore, we confirmed the effectiveness of the
parameter estimation by Duong’s method without assuming
sparseness both theoretically and experimentally.

As a result of the above comparisons, we can conclude that
multichannel Wiener filter causes low distortion, and by effec-
tive estimation of the parameters employing the multivariate
model without assuming sparseness, Duong’s method performs
high-quality and high-performance source separation.

VI. CONCLUSION

To investigate the factor of the low-distortion source separa-
tion by Duong’s method, we analyzed the three characteristic
attributes of Duong’s method, i.e., source image model with
multivariate normal distribution, separation by multichannel
Wiener filter and source observation model of superimposition
of source images without assuming sparseness among sources.
For this analysis, we formulated three alternative BSS methods
by sparse soft mask, sparse binary mask and sparse Wiener
filter, and the performances are compared with the general
binary masking method MENUET and Duong’s method. All
of these methods are derived from the same source image
model of Duong’s method and different observation model
where the sources are not superimposed but a single source
image appears in each time-frequency slot assuming source
sparseness. As a result, effectiveness of all the above three
attributes of Duong’s method has been confirmed.
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