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Abstract—We are developing S-CAT computer test system
that will be the first automated adaptive speaking test for
Japanese. The speaking ability of examinees is scored using
speech processing techniques without human raters. By using
computers for the scoring, it is possible to largely reduce the
scoring cost and provide a convenient means for language
learners to evaluate their learning status. While the S-CAT test
has several categories of question items, open answer question is
technically the most challenging one since examinees freely talk
about a given topic or argue something for a given material.
For this problem, we proposed to use support vector regression
(SVR) with various features. Some of the features rely on speech
recognition hypothesis and others do not. SVR is more robust
than multiple regression and the best result was obtained when
390 dimensional features that combine everything were used. The
correlation coefficients between human rated and SVR estimated
scores were 0.878, 0.847, 0.853, and 0.872 for fluency, accuracy,
content, and richness measures, respectively.

I. INTRODUCTION

As the globalization proceeds, the number of international
students is increasing and there are demands for evaluating
their language ability for various purposes. Along with tests
with admission fee [1], [2], Japanese Computer Adaptive Test
(J-CAT) [3] had been developed as a free online proficiency
test for Japanese language learners. It is a computerized adap-
tive testing based on item response theory [4] that adapts to
examinee’s ability level so that minimum number of question
items is required to estimate the examinee’s ability [5]. The
J-CAT test consists of four sections that are respectively de-
signed to examine vocabulary, grammar, reading, and listening
related abilities. The testing system consists of an item bank
and a testing engine, and is fully automated. The score report
is immediately provided to the examinee at the end of the test.
The first pre-test was conducted in 2007 and it has been used
by 26 institutions around the world since then. The system is
used around 5000 examinees per year.

Despite the success, a limitation of J-CAT is the lack of
speaking tests while speaking ability is very important for
international students in their daily lives. For this reason, S-
CAT is under development that extends J-CAT by supporting
speaking test items. It will be the first automated adaptive
speaking test for Japanese language. Since the test is provided

for free, it is not possible to score the spoken answers by
human raters. Therefore, speech processing techniques are
employed. Using computers for scoring has also a benefit that
it is free from biases by individual human raters.

The S-CAT test will have five item categories: reading,
multiple-choice, blank-filling, sentence generation, and open
answer. The reading is to read a given sentence, the multiple-
choice is to select an answer from choices and to read it, the
blank-filling is to pronounce words that best fit in a blank.
The sentence generation is to compose a sentence that fits to
a question and to speak it, and open answer is to argue about
a given topic. While the automatic scoring is required for all
the categories, the focus of this paper is the open answer. It
is technically the most difficult because the answer utterances
have the largest freedom.

Our basic strategy for this challenge is to first prepare a pair
of data consisting of waveforms of spoken answers by exam-
inees and their scores rated by human raters. Then we extract
various features from the waveforms and train score estimators
so that the human scores are predicted based on the features.
Related research has been performed by Educational Testing
Service (ETS) for English where a multiple regression was
used to score spontaneously spoken responses from examinees
based on five and 11 features [6]. They reported correlations
from 0.57 to 0.68 between the human rated and regression
estimated scores. One difference of our research from it is
simply the target is Japanese instead of English, but another
difference is the utilization of support vector regression (SVR)
which is expected to be more robust than multiple regression
for overtraining. This property of SVR have motivated us to
use large number of features. In fact, we investigate to use
nearly 400 features.

The organization of the rest of this paper is as follows. In
Section II, the overview of the S-CAT system is described. In
Section III, the open answer items in S-CAT are explained. In
Section IV, the principles of SVR is briefly reviewed. Features
we used for the answer scoring are explained in Section V.
Experimental conditions are described in Section VI and the
results are shown in Section VII. Finally, conclusions are given
in Section VIII.
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Fig. 1. S-CAT system overview.

II. SYSTEM OVERVIEW

Figure 1 shows the overview of the S-CAT system. The
system is based on the client/server model. Clients and the S-
CAT server are connected by the HTTP protocol and items are
presented to examinees via web browsers. When an examinee
answers an item by voice, it is recorded by a microphone and
transmitted to the S-CAT server over the Internet. The scoring
engine scores the answer and the next item is selected based
on the score so that the examinee’s ability level is efficiently
identified.

The scoring engine is a set of score estimators designed for
each item or for each item category. As it has been mentioned
in the introduction, the focus of this paper is the automatic
scoring of the open answer items. We use SVR as an estimator
with various features.

III. OPEN ANSWER ITEMS IN S-CAT

The open answer question items in S-CAT are items that
ask examinees to talk about their thinkings or to explain
something that can be read from a given graphic chart or
from a leaflet. The questions are given by Japanese voice
but they are something like this: “Are you for solar energy
or not? Why?” Another example is a combination of a voice
instruction and a picture of a leaflet: “Assume you have gotten
this leaflet today. Call your friend and explain what kind of
event is going to be held and where it is. Note however,
your friend is absent and you have to record your voice to
an answering machine.” The examinees are required to talk
for 40 seconds per item.

Answers from examinees are scored by the following four
measures.

Fluency:
The fluency of the pronunciation.

Accuracy:
The correctness of the syntax and the relevance of
the wordings.

Contents:
The degree of how the requested task is accom-
plished. Whether the necessary information is trans-
mitted correctly.

Richness:
Abundance of vocabulary and expression.

For the training data used for system development, these scores
are rated by at least three human specialists per item and their
ratings are averaged. The scores rated by each specialist are
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Fig. 2. SVR regression curve and ε-insensitive tube.

integers from zero to four where four being the best. The
averaged scores are real numbers.

The human raters rate the spoken answers comprehensively
using their full knowledge. However, we do not imitate their
rating process for the automatic scoring. Instead, we use
machine learning techniques to predict human rated scores
based on features that are automatically extracted from speech
waveforms.

IV. SUPPORT VECTOR REGRESSION (SVR)

For binary and multi-class classification problems, Support
Vector Machine (SVM) is widely used. It is trained so as to
maximize margin of the decision boundary, which results in a
sparse solution and makes SVM robust for overtraining. SVR
is an extension of SVM for regression problems [7]. It predicts
continuous target values based on Equation shown in (1) using
a kernel function k.

y (x) =
N∑

n=1

αnk (x,xn) + β. (1)

In the equation, N is the number of training samples, xn is
feature vector, αn and β are coefficients. The cost function
used for training SVR gives zero error if the absolute differ-
ence between the prediction and the target is less than ε for
a positive value ε > 0 as shown in Figure 2, which makes
SVR depends only on a subset of the training data called
support vectors. The coefficients αn for points within the ε-
insensitive tube are all zero and they do not contribute to the
prediction. SVR is similar to the multiple linear regression but
the difference is this sparsity of the solution.

V. FEATURES FOR OPEN ANSWER SCORING

For the score estimation, we use decoder based features that
are based on speech decoder outputs and acoustic features that
are extracted from waveforms without using speech decoders.
The decoded features can capture what are spoken, but they
are affected by recognition errors. On the other hand, acoustic
features are free from the decoding errors but cannot capture
what are spoken.

The decoded features we investigated are as follows. De-
coders are used to recognize what words exist in speech
waveform and how they are time aligned.

VOA:
A measure for abundance of vocabulary defined as

Wunq√
2Wtot

, where Wunq is the number of unique words
and Wtot is the total number of words [8].

ROS:
Two rate of speech measures are defined. One is the



number of syllables divided by the length of speech
segments. The other is the length of speech segments
divided by the recording length.

KWD:
Number of keywords found in answer speech.
Around 80 keywords are manually defined for each
item that closely related to the topic, and the umber
of these keywords found in recognition hypothesis
is counted. Since it is difficult to accurately recog-
nize utterances given by international students with
varying language skills, two different decoders are
used simultaneously and the number of keywords
are counted for each recognition hypothesis. Addi-
tionally, the number of keywords found in one of or
both of the hypotheses are also used as features. The
total dimension of the feature is four.

DCDs:
Combined features of VOA, ROS, and KWD.

Five types of acoustic features listed in the followings are
used. To extract these, first a frame based features and their
deltas are estimated. Then, their 12 kinds of statistics are
computed as the features of a speech segment. These statistics
are minimum, maximum, range, positions of minimum and
maximum, arithmetic mean, slope, offset, quadratic error,
standard deviation, skewness and kurtosis.

ENG:
The statistics of signal frame energy.

ZCR:
The statistics zero-crossing rate.

VPR:
The statistics of voicing probability.

F0:
The statistics of fundamental frequency. Among the
12 statistics, minimum was not used.

MFC:
The statistics of twelve dimensional Mel-frequency
cepstral coefficients (MFCC).

ACTs:
Combined features of ENG, ZCR, VPR, F0, and
MFC.

These are extracted using the openSMILE feature extractor
with the default configuration setting for the INTERSPEECH
2009 Emotion Challenge feature set [9]. Please refer to the
openSMILE manual for the details. However, a difference is
that minimum of F0 has been removed since it is always zero
for our data. Hence, the total dimension is 383. Before they are
used for the score estimations, each of the feature dimensions
is normalized by a mean and a standard deviation estimated
on a training set.

VI. EXPERIMENTAL SETUP

In order to collect data for the development of S-CAT, we
made a web based system that imitated the actual speaking
test. For the experiments reported here, samples from 101
subjects were used that have been collected so far using the

TABLE I
FLUENCY SCORE ESTIMATION USING DECODED FEATURES

Features Regression SVR
Type dim Correl RMS Correl RMS
VOA 1 0.861 0.787 0.861 0.681
ROS 2 0.818 0.806 0.820 0.829
KWD 4 0.728 1.034 0.703 1.161
DCDs 7 0.854 0.719 0.863 0.850

TABLE II
FLUENCY SCORE ESTIMATION USING ACOUSTIC FEATURES

Features Regression SVR
Type dim Correl RMS Correl RMS
ENG 24 0.765 0.851 0.709 0.942
ZCR 24 0.820 0.786 0.760 0.933
VPR 24 0.783 0.903 0.629 1.194
F0 23 0.705 1.056 0.684 1.233

MFC 288 0.854 0.711 0.854 0.723
ACTs 383 0.773 0.862 0.865 0.683

web system. These subjects were international students and
had varying Japanese skills. The number of open answer items
was 10 and each of the subjects answered all these questions
providing 1010 samples in total. For the system development
and evaluation, the data was divided to training and evaluation
sets. Samples from 81 subjects were used as the training set
and the ones from 20 subjects were used as the evaluation
set. Since S-CAT is designed to be operated using a pre-
defied item bank, the experiments were performed subject-
independent and item-closed condition. The averaged variance
between human raters in each item for the test set was 0.355.

To extract the decoder based features, we used the
Julius [10] and the T 3 [11] decoders. The acoustic model was
a triphone HMM trained on the CSJ Japanese corpus [12] and
adapted to the utterances in the training set. The language
model was a tri-gram trained using the transcribed text of the
training data and texts from the web and news articles that
amounted to 300M words in total. Considering the difficulty of
the task, we focused on word correctness rather than accuracy
so as to minimize the loss of information by deletion errors,
and it was 60.6% for julius and 73.2% for T3 for the test set.
A single estimator is trained and used for all the 10 items in
common. SVR is trained and evaluated with SVM-Light [13]
using linear kernel and the default parameter setup based on
some preliminary experiments.

VII. EXPERIMENTAL RESULTS

Table I shows Pearson’s correlation and root mean square
error (RMS) of the estimated fluency scores by multiple linear
regression and SVR. Among the three types of baseform
decoded features (i.e. VOA, ROS, and KWD), VOA gave the
best results. The largest correlation 0.863 was obtained when
all the features are combined (i.e. DCDs) and SVR was used.
Although, the lowest RMS 0.681 was obtained when VOA
was used with SVR.

Table II shows the results when the acoustic features were
used. Among the five types of baseform acoustic features,
MFCC gave the best performance. It can also be seen that
while multiple regression worked better than SVR when the
dimension of the features were small, SVR outperformed it



TABLE III
SCORE ESTIMATION USING DECODED AND ACOUSTIC FEATURES

Features Estimator Fluency Accuracy Content Richness
Type dim Correl RMS Correl RMS Correl RMS Correl RMS

DCDs 7
REG 0.854 0.719 0.817 0.772 0.823 0.794 0.839 0.755
SVR 0.863 0.850 0.829 0.889 0.834 0.825 0.852 0.751

ACTs 383
REG 0.777 0.860 0.758 0.844 0.794 0.832 0.825 0.764
SVR 0.865 0.683 0.829 0.711 0.844 0.731 0.860 0.681

VOA+ACTs 384 REG 0.783 0.849 0.762 0.835 0.796 0.830 0.832 0.748
SVR 0.871 0.676 0.832 0.707 0.845 0.731 0.864 0.673

DCDs+ACTs 390 REG 0.814 0.795 0.802 0.775 0.818 0.797 0.848 0.724
SVR 0.878 0.654 0.847 0.674 0.853 0.716 0.872 0.651
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Fig. 3. Scatter plot of human and automatic scores for fluency score.

when the dimension was large. This shows the robustness
of SVR for overtraining and its ability to utilize information
contained in high dimensional features. The highest correlation
of 0.865 and the lowest RMS of 0.683 were obtained by SVR
using all the features in combination. These are comparable
as the best ones obtained by the decoded features.

Figure 3 shows scatter plot when DCDs and ACTs were
used in combination, to estimate the fluency score. It can be
seen that SVR results have narrower distribution than multiple
regression results.

Table III shows the results of estimation for all the four types
of rating scores; fluency, accuracy, content, and richness. In ad-
dition to DCDs, ACTs, and their combination (DCDs+ACTs),
a combination of VOA and ACTs was also evaluated as VOA
was specially good among the decoded features. As can be
seen, acoustic features gave generally good performance as
decoded features for all the types of rating scores despite
they do not aware the contents of utterances. This is probably
because the four types of ability of examinees are correlated
each other. The best results were obtained when all the features
were combined and SVR was used. The correlation for fluency,
accuracy, content, and richness were 0.878, 0.847, 0.853, and
0.872, respectively.

VIII. CONCLUSIONS

In order to automatically score spoken answers for open
question test items, SVR based estimators were investigated
using various decoded and acoustic features. It has been shown
that SVR is robust for overtraining and allows the use of

high dimensional features while the performance of multiple
regression degrades. Acoustic features worked well as decoded
features, and the best results were obtained by SVR using all
the features in combination. The correlations between human
rated scores and the estimated ones were 0.878, 0.847, 0.853,
and 0.872, respectively, for the fluency, accuracy, content, and
richness measures.
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