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Abstract—This paper presents an automatic method to remove 

physiological artifacts from magnetoencephalogram (MEG) data 

based on independent component analysis (ICA). The proposed 

features including kurtosis (K), probability density (PD), central 

moment of frequency (CMoF), spectral entropy (SpecEn), and 

fractal dimension (FD) were used to identify the artifactual com-

ponents such as cardiac, ocular, muscular, and sudden high-

amplitude changes. For an ocular artifact, the frontal head re-

gion (FHR) thresholding was proposed. In this paper, ICA 

method was on the basis of FastICA algorithm to decompose the 

underlying sources in MEG data. Then, the corresponding ICs 

responsible for artifacts were identified by means of appropriate 

parameters. Comparison between MEG and artifactual compo-

nents showed the statistical significant results at         for 

all features. The output artifact-free MEG waveforms showed 

the applicability of the proposed method in removing artifactual 

components. 

I. INTRODUCTION 

 Magnetoencephalography (MEG) recording is a noninva-

sive technique in which measures electromagnetic field of 

brain activities with a good temporal resolution and moderate 

spatial resolution. MEG data are associated with electrical 

currents produced by a large number of neurons occurring 

naturally in the brain in terms of electromagnetic response. 

The application of using MEG data has been widely succeed-

ed in many fields such as clinical research, biomedical engi-

neering, physiological decoding, and cognitive science [1]–[5]. 

However, the presence of physiological artifacts could inter-

fere with the measurement during recording, including: eye 

movements, muscular contractions, cardiac signals, sudden 

high-amplitude changes, and environmental noise. Generally, 

cerebral activities are spontaneously masked by noise from 

biological or technical origins. The distinction of actual MEG 

signal and noise is common in the experimental literature and 

is usually made and understood with respect to the experi-

mental protocol in which neural potentials that are related to 

the experiment and regarded as brain signal or those are not 

regarded as noise [6]. Moreover, both noise and artifacts 

make analysis much more difficult and can even be mistaken 

for interpretation.  

 Recently, independent component analysis (ICA) has 

been proven to be an effective and applicable method for 

removing artifacts and noise in multi-channel physiological 

measure, e.g., electroencephalography (EEG) and MEG data 

[7]–[10], [22]. However, a few assumptions are made when 

using. And, ICA is unable to automatically determine the 

correct order of independent components (ICs), scale, or po-

larity of the sources, which make artifact identification diffi-

cult. Due to these limitations, the method for selecting 

artifactual ICs still remains challenging. Therefore, the avail-

ability of a standardized procedure for eliminating such prob-

lem would be extremely useful for the study of the human 

brain function [11], [12]. 

 For the related works on ICA based artifact removal, 

various methods have been proposed for the identification of 

ICs related to the artifacts from multi-channel physiological 

signals such as EEG and MEG. The measurement used by 

most of these methods focuses on a characteristic of artifact 

components related to topographic patterns, statistical features, 

scalp map, or spectral properties [13]–[17]. However, there 

were no studies that take into account the combination of 

linear and nonlinear features. Available features and the au-

tomation of ICA based artifact removal would be helpful a 

wider application of MEG studies. 

 In this paper, we proposed several linear and nonlinear 

features for automatic artifact removal including kurtosis (K), 

probability density (PD), central moment of frequency 

(CMoF), spectral entropy (SpecEn), and fractal dimension 

(FD). These proposed features are employed to identify the 

artifactual components such as cardiac (EKG), ocular (EOG), 

muscular (EMG), and sudden high-amplitude changes (HAM). 

ICA method is on the basis of FastICA algorithm to decom-

pose the underlying sources in MEG data. The individual 

features of artifacts in terms of linear and nonlinear methods 

are discussed. We also present the simple idea of reliable 

method to remove artifact automatically. The block diagram 

of the proposed method to identify and to remove artifacts is 

depicted in Fig. 1. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Block diagram of the proposed method for artifactual ICs identification and removal. 

 

 

II. METHODOLOGY 

A.  MEG Data Acquisition 

 MEG data were recorded with a 151–channel supercon-

ducting quantum interference device (SQUID) whole-head 

coaxial gradiometer MEG system (PQ 1151R; Yokoga-

wa/KIT) in magnetically shielded room (Diode Steel). MEG 

data were digitized by the sampling rate of 1 kHz 16-bit reso-

lution. Ten healthy children (5 boys, 5 girls) participated in 

this experiment. The participants had a mean chronological 

age of 65.4 months (39–81)
1
. All subjects were given to per-

form the resting state for three minutes. During MEG record-

                                                           
1  All subjects had normal brain function and data collection was approved 

by the Ethics Committee of Kanazawa University Hospital, all which were 

in accordance with the Declaration of Helsinki. 

ing, children lay on the bed and viewed a cartoon animation 

programs with stories through a TV monitor especially attrac-

tive to young children. The position of the head to be in the 

center of the MEG helmet was confirmed by measuring the 

magnetic fields after passing currents through coils that were 

attached at three positions as fiduciary points with respect to 

the landmark (bilateral mastoid processes and nasion). Off-

line analysis of MEG data was performed with Yokogawa 

MEG Reader Toolbox Rev1.4 and Matlab (MathWorks). 

B.  Preprocessing 

 Raw MEG data were pre-processed by an infinite impulse 

response (IIR) Butterworth type with a third order bandpass 

filter 1.5–80 Hz for initial environmental noise removal, pow-

er line noise at 50Hz has been removed by the notch filter (Q–

factor  = 35). 

ICA method by FastICA 

Normalized weight matrix 

Frontal head 

regions      

Input 151–channel MEG data 

EOG, ocular artifact EMG, muscular artifact EKG, cardiac artifact HAM, other environmental noises 

Yes No 

Preprocessing 

Kurtosis 

(K) 

Central Moment of 

Frequency (CMoF) 

Fractal Dimension 

(FD) 

Probability Density 

(PD) 

Spectral Entropy 

(SpecEn) 

Artifactual ICs subtraction 

Cleaned MEG signal reconstruction 

 
 



  

C. Independent Component Analysis (ICA) Model 

 ICA method has recently become an important tool for 

modeling and understanding empirical datasets. This method 

is a separating out independent sources from linearly mixed 

data, and belongs to the class of general linear models. Subse-

quently, ICA can be able to separate the underlying sources 

mixed in the raw MEG data. Due to the fact that magnetic 

fields of different bioelectric current sources superimpose 

linearly, the measured MEG data through of the SQUID array 

sensor can be modeled by mixing of a blind source [14]. The 

independent components (ICs) assumed to be mutually inde-

pendent,                           
 , and the observa-

tions of the mixed MEG data,      , can be modeled as 

 

            

 

   

       (1) 

 

where   is a mixing matrix dimension    . All observa-

tions are assumed to be mutually independent. The number of 

underlying signals is at most equal to the number of ICs 

   . The task of ICA is to determine the independent com-

ponents (ICs),      , from the observations by computing a 

separating matrix (or unmixing matrix),  , which can be 

defined as 

 

            (2) 

 

The estimated ICs, in case of MEG data, are supposed to be 

independent from each other, i.e., EOG, EKG, EMG, HAM, 

and so on. This definition is based on the concept of mutual 

information taht non-Gaussianity of the ICs is indispensable 

for identifying the model. In this study, we selected the ICA 

based on the fixed-point algorithm proposed by Hyvärinen 

and Oja [18], which is called FastICA
2
. This algorithm is for 

the estimation of ICs with Newton iteration to optimize an 

objective that measures independence from the observed data 

also shows a short computing time and to be less sensitive to 

white noise less than other ICA algorithms [26].  

 To determine the weight vectors in the separating matrix, 

we set the following parameters: maximum iteration 1,000 

runs, contrast function is a cubic function,     , because 

time, cost, and features show this function to be more suitable 

than any other functions [19], and error rate for reaching an 

optimal condition,         . In addition, there were two 

approaches for estimating the ICs, the deflation approach and 

symmetric approach. In this paper, we selected the deflation 

approach because it is more desirable in cases with specific 

ICs. After the process of ICA, the weight values in the sepa-

rating matrix can be presented as shown in Fig. 2. Also, we 

                                                           
2 FastICA is freely available at http://www.cis.hut.fi/projects/ica/fastica 

 

use the magnetic coil positions to construct the 3D ellipsoidal 

151-channel topography based MEG for source localization.  

 

 

 
 

Fig. 2. The 3D ellipsoidal 151-channel topography and its ICA process. 
 

 

 

Fig. 3. Thresholding of the normalized weight value at 17th channel (IC-017). 

 

 

Fig. 4. Typical example of histogram space to identify cardiac artifact.  
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D. Frontal Head Region (FHR) Thresholding  

 An ocular artifact (EOG) cause changes to the electric 

field around the eyes, e.g., eye blinking and eye movements. 

In measuring the MEG data, we are typically interested in the 

underlying neural potentials, which the recording is of the 

combination of neural and ocular artifacts. To remove such 

ocular artifact, FHR thresholding based on subject’s nearest 

distance to the eye was proposed. In (2), we selected the 

twenty MEG channels to identify ocular artifact by the fol-

lowing threshold 

 

      
                 

           

  (3) 

 

where      is the normalized weight vector of ICs at   th 

channel: 17,21,25,49,130,51,137,84,88,93,114,117,118,147, 

148,149,129,138,145 and 146. At least one normalized weight 

value in the specific   th channel that was greater than or 

equal to 0.8; it will considerably be artifact. For example, the 

normalized weight of ICs is detected at 17th channel (in this 

case       ) shown in Fig. 3. 

E. Kurtosis (K) 

 Kurtosis indicates the horizontal distribution of the obser-

vation comparing with the Gaussian distribution [25]. The 

kurtosis has been successfully used to detect ocular and cardi-

ac [15],[17]. In this paper, we used the kurtosis to detect 

HAM artifact. The normalized kurtosis of a distribution is 

defined as 
 

  
 

 

         

  
 (4) 

 

where   is the mean of  ,   is the standard deviation of  , and 

     represents the expected value. From (4), IC with kurtosis 

represents     for the Gaussian distribution. Distributions 

that are more outlier-prone than the Gaussian distribution 

have     whereas the distributions that are less outlier-

prone have    . 

F. Probability Density (PD) 

 A cardiac artifact or EKG is associated with the sharp 

peak R component at minimum and maximum points, ICA 

method can extract the IC that related to this artifact. In this 

study, PD was proposed to measure the sharp peaks. In (5), 

probability densities are computed on the basis of histogram 

space. In this study, the optimal bin size of histogram that was 

chosen actually a theoretical measure from Scott’s formula 

[21]:           
 

  where   is the bin width,   is the stand-

ard deviation and   is the number of data point length from 

the observed MEG dataset which can be defined by 
 

   
                   

       
 (5) 

 

where      is a probability density at interval input vector  , 

     and      are the minimum and maximum ranges of IC, 

respectively. Fig. 4 shows the typical example of PD feature 

related to the cardiac artifactual IC. 

G. Central Moment of Frequency (CMoF) 

 To measure the frequency response, fast Fourier trans-

form (FFT) with a spectral resolution of 0.1Hz was applied, 

We propose the first order CMoF that can be determined by 
 

     
 

 
       

    

       

 (6) 

 

where    is a normalized power spectral density (PSD) which 

can be computed by          and   is the number of 

frequency values. This feature is used to measure the most 

influent frequency response from the ICs such as EMG arti-

facts. 

H. Spectral Entropy (SpecEn) 

 In order to quantify the flatness of the frequency spec-

trum, several studies have already applied SpecEn to analyze 

EEG and MEG [1],[13]. Therefore, SpecEn is computed to 

determine the spectral changes in time domain. SpecEn based 

on Shannon’s entropy can be defined as 
 

       
  

    
   

    

       

               (7) 

 

In (6) and (7),      and        are then scaled from 0 to 1. 

I. Fractal Dimension (FD) 

 This method is nonlinearly determined by the Hurst ex-

ponent,  , for dealing with complex systems. A method of 

estimating dimension has been widely used to describe com-

plexity of a pattern or the quantity of information especially 

embodied in biological process as well as since it has been 

found useful for the analysis of physiological data especially 

EEG and MEG [27]–[29]. The basic idea of calculation is 

based on the power law relationship between the variance of 

the amplitude increments of the observation, which was pro-

duced by a dynamic process over time. In this study, we se-

lected the variance fractal dimension (VFD) for estimating the 



  

  

   
   

 
  

   

   

   

 
 

 

   

Fig. 5. Example of the processed MEG artifact identification based on the proposed features. (Left column) MEG source location by ICA method and FHR 

thresholding; (Middle column) IC-027, IC-016, IC-005 and IC-109 in time domain are identified as ocular artifact (EOG), cardiac artifact (EKG), sudden high-

amplitude noise (HAM) and detected MEG component, respectively; (Right column) Radar plots of the normalized features corresponding to the ICs. 
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FD of MEG data since the main advantage of VFD was its 

support of the real-time computation [20] and has been used 

successfully in EEG classification [19]. The amplitude incre-

ments of a datum over a time interval    adhere to the follow-

ing power law relationship                       
   , the 

Hurst exponent can be calculated by using a log–log plot then 

given by 

 

     
     

 
 

 

                 

        
    (8) 

 

The variance in each window per stage k can be calculated as 

follows 
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The least-square linear fitted line corresponds to the slope of 

the plot    
 
     and    

 
          ,       where s is the 

obtained slope. Finally, FD can be estimated as 

 

      (11) 

 

The process of calculating the FD essentially involves seg-

menting the entire input time series data into numerous sub-

sequence (or window). The values   represents the integer 

range chosen such that each window of size    contains a 

number       of smaller windows of size           . 
In the experiment, we set                . Then, the 

normalized FD is given by       . 

J. Artifact-free MEG Data Reconstruction 

 The output results of all features based on linear and 

nonlinear approaches were used to identify the actual ICs 

regarded as MEG data and the artifactual ICs regarded as 

noises. From (1) and (2), the identification was used to create 

the  -th component of the diagonal matrix   as 
 

                      (12) 
 

Equation (12) is the artifact-free reconstruction in which the 

artifacts were clearly subtracted from MEG recordings,  

     , with the weight values of inverse separating matrix  . 

The selection of each element of   will be set equal to 1 if the 

component is identified as noise, and equal to 0 component is 

identified as MEG signal. 

III. EXPERIMENTS AND RESULTS 

 Raw 151-channel MEG data were processed by 50-trial 

ICA computations. As a priori knowledge, the identification 

at the first process was done by manual inspection. The re-

sults showed that this approach revealed different feature 

between MEG and other artifacts, which led a future useful 

identification method. All features present the different pat-

terns individually with artifact contaminations as shown in 

Fig. 5. In this experiment, we tested all MEG data from ten 

subjects to show the performance and effectiveness of the 

proposed features. The obtained results are shown in Table I. 

Figs. 6 to 10 show the distinction of actual MEG signal and 

artifact, we determined the statistically significant results by 

using a one-way analysis of variance (ANOVA). 

  

TABLE I. COMPARISON RESULTS OF THE AVERAGE VALUE AND 

STANDARD DEVIATION IN BRACKET FOR ALL FEATURES 

Component K PD CMoF SpecEn FD 

EKG 
5.8627 

(3.0493) 

0.2516 

(0.0465) 

0.4585 

(0.0376) 

0.9568 

(0.0129) 

0.9582 

(0.0132) 

EOG 
1.3830 

(0.4913) 
0.0205 

(0.0279) 
0.4522 

(0.0354) 
0.9468 

(0.0146) 
0.9651 

(0.0161) 

HAM 
6.3029 

(4.5864) 

0.0484 

(0.0389) 

0.4301 

(0.0325) 

0.9382 

(0.0115) 

0.9598 

(0.0152) 

MEG 
1.2189 

(0.1384) 
0.0148 

(0.0053) 
0.4590 

(0.0315) 
0.9494 

(0.0126) 
0.9684 

(0.0135) 

 

 
Fig. 6. Result of the normalized kurtosis, K.  

 

 
Fig. 7. Result of the probability density, PD. 
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Fig. 8. Result of the central moment of frequency, CMoF 

 
 

 
Fig. 9. Result of the spectral entropy, SpecEn. 

 

 

 
Fig. 10. Result of the normalized fractal dimension, FD.  

 

IV. DISCUSSIONS 

 By using ICA method based on FastICA, the residual of 

ICs that out of the optimal condition is supposed to be white 

Gaussian noise (WGN) since FastICA requires pre-whitening 

and it is sensitive to WGN. In this experiment, approximately 

10–20% of selected ICs based on the selection of setting pa-

rameters become WGN. These ICs were excluded automati-

cally by the process of ICA method. By using ANOVA to 

determine statistical significant results between artifact and 

non-artifact (or supposed to be MEG), the results showed the 

all features present        . This means we can effectively 

utilize them in identifying artifactual ICs from MEG record-

ing. Since the artifact-free MEG signal is not known, a uni-

versal filtering method for determining the success of auto-

matic artifact removal in MEG data is needed. In our experi-

mental results, the optimal performance of our proposed 

method depended on the choice of all features we need to use 

an appropriate thresholding for identifying MEG data and 

noise are as: 

 FHR Thresholding: in (3), we selected the twenty MEG 

channels to identify EOG artifact on the basis of the most 

EOG occurrence that intuitively comes from the MEG nearest 

positions to the eyes. In our experiment, the optimal threshold 

value to be 0.8 the reason for this was that in (2) normalized 

weight values in separating matrix presented at least 80% of 

amplitude which relatively correlated to the EOG artifactual 

component in time domain. This value was also used to iden-

tify the topography based MEG for source localization. 

  : this parameter was used in FastICA, order and sorting 

K, the optimal condition we used the Bayesian model, i.e., an 

empirical Bayesian thresholding posterior densities of deci-

sion thresholds estimated if the normalized value in (4) is to 

be judged by WGN, then the   is one. This happens because 

in practice the HAM artifact is often occurred electrically by 

sensors. Empirically, we found that the optimal value of 

choosing K between            for the identification of 

MEG component since the actual MEG component in resting-

state relatively closes to WGN. However, some ICs in the 

optimal range can be detected as artifact, i.e., EOG artifact, by 

FHR thresholding. In Fig.11, the increase of   presents the 

HAM artifacts that there was some      while the IC with-

in optimal range presents actual MEG component. 

   : we proposed this parameter to detect cardiac artifact 

(EKG). In the experiment, we found that the maximum PD 

was the optimal value to present EKG component. For the 

combination of all features, we found that the optimal condi-

tion is          . Figure 12 shows the example of PD 

based EKG signal detection from 10-channel MEG data and 

the artifact removal. 

     : this proposed parameter was used to measure the 

most influent frequency component due to muscular (EMG) 

artifacts or other environmental noise. If the normalized value 

in (6) was to be judged by perfect flatness of spectrum in 

frequency domain, then the      is 0.5, we found that the 

optimal condition is                . 

       : this parameter was on the basis of frequency 

approach for quantifying the flatness of spectral response 

from MEG artifact because the EMG has typical spectra with 

the entire frequency range of interest [15]. We found that the 

optimal condition is                  . 

   : the usefulness of this parameter is to measure irregu-

larity of data especially for the MEG resting state. We found 

that the optimal condition is              .  
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Fig.11 Distribution of K values between artifact and non-artifact. 
 

 
 

Fig. 12. The EKG artifact removal by using optimal PD. (Black line) Detect-
ed artifactual MEG from 10-channel; (Red line) Cleaned MEG. 

 

A common increase of     ,       , and    were close to 

the WGN when recording the normal resting state of MEG 

data. Moreover, the combination of using all features made 

the automatic artifact removal become available. To confirm 

this, the result of artifact-free MEG data reconstruction by 

applying Equation (12) with the above suggested parameters 

is shown in Fig. 13. Based on the obtained results, these fea-

ture information could be used in categorizing artifactual ICs. 

In this paper, the EMG artifacts from motor movements could 

not be identified because the MEG recording was carried out 

for only resting state. However, in this case, the specific se-

lection of ICs that regarded as muscular artifacts over motor 

area, i.e., premotor and sensorimotor cortexes, can be used as 

feature. 

V. CONCLUSIONS 

 We proposed the simple method for automatic artifact 

removal from MEG based on linear and nonlinear features 

including kurtosis, probability density, central moment of 

frequency, spectral entropy, and fractal dimension to identify 

artifactual ICs. The results showed that the proposed features 

could provide different patterns for reconstructing MEG data 

from noisy environment and could remove artifact effectively 

for potential MEG based applications. For the future work, we 

plan to investigate MEG responses of children with their 

cognitive-behavioral skills and optimizing these features with 

other classification algorithms in detecting artifacts while 

preserving actual MEG data. 
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