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Abstract—This article introduces a new group delay repre-
sentation for periodic signals. The proposed method yields a
group delay representation that is free from interferences due to
repetitive excitation. Power spectrum-weighted averaged group
delay using shifted copies of the weighted group delay separated
by a half fundamental frequency is proven to have the desired
property.

I. INTRODUCTION

Instantaneous frequency [1] and group delay, which are
defined as the temporal derivative and the frequency derivative
of phase respectively, are better representations than phase
itself, because they are physically meaningful and do not
require unwrapping, which is a fragile operation [2]. How-
ever, abrupt changes and discontinuities, which are caused by
interference between constituent components prevented these
representations from potential applications. As the final piece
of the authors’ investigations for providing interference-free
representations of power spectrum [3], [4] and instantaneous
frequency [5], an interference-free representation of group
delay is introduced. It is derived from the group delay rep-
resentation, analogues to Flanagan’s instantaneous frequency
representation [6]. The interference-free group delay is defined
as the power spectrum weighted average of the shifted pair of
group delays 1/2 fundamental frequency apart.

II. CANCELLATION OF PERIODIC INTERFERENCE

This section starts from brief introductions to interference-
free representations of the power spectrum and the instanta-
neous frequency of periodic signals followed by the derivation
of the interference-free group delay representation.

A. Interference-free power spectrum
The simplest interference can be represented by taking two

neighboring harmonic components of periodic signals. Then,
it is general enough to assume one of the components, k-th
component this time, is normalized and the k+1-th component
have a different amplitude α and phase β.

x(t) = ejkω0t + αej(k+1)ω0t+jβ , (1)

where ω0 is the fundamental angular frequency and j =
√
−1.

Note that ω0 = 2π/T0, where T0 is the fundamental period.
Assume that the effective pass-band of the frequency do-
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to cover up to two harmonic components. It also is general
enough to assume k = 0. Then, the power spectrum of the
windowed signal is

P (ω, t) = |W (ω)|2 + α2 |W (ω − ω0)|2

+ 2αW (ω)W (ω − ω0) cos(ω0t + β) , (2)

where the third term represents the temporally varying com-
ponent, the periodic interference in the time domain.

Since it varies sinusoidally, adding a component having
the opposite polarity cancels this interference. Equation 2
indicates that two power spectra separated by a half-pitch
period have components with phase difference π, opposite
polarity. The interference-free power spectrum (TANDEM
spectrum) PT (ω, t) is defined by the average of these two
power spectra

PT (ω, t) =
1
2

[
P

(
ω, t − T0

4

)
+ P

(
ω, t +

T0

4

)]
. (3)

B. Flanagan’s instantaneous frequency equation

Before investigating interference on the instantaneous fre-
quency, it is worthwhile to revisit Flanagan’s instantaneous
frequency equation. It starts from the polar form of a complex
signal x(t)

x(t) = a(t)ejθ(t), (4)

where a(t) is the amplitude and θ(t) is the phase.
The instantaneous frequency ωi(t), defined by the time

derivative of phase θ(t), is also derived as the time derivative
of the imaginary part of the log-converted signal log(x(t)).

log(x(t)) = log(a(t)) + jθ(t) (5)

ωi(t) =
d ℑ[log(x(t))]

dt

= ℑ
[

1
x(t)

dx(t)
dt

]

=
ℜ[x(t)]ℑ

[
dx(t)

dt

]
−ℑ[x(t)]ℜ

[
dx(t)

dt

]
|x(t)|2

, (6)

where ℜ[x] and ℑ[x] represent the real part and the imaginary
part of a complex number x. The last representation is the
Flanagan’s equation. It does not consist of phase unwrapping,
which is necessary when calculating the instantaneous fre-
quency using its original definition.



It is convenient to define two spectral representations
S(ω, t) and Sd(ω, t) to implement Eq. 6.

S(ω, t) =
∫

w(τ − t)x(τ)e−jωτdτ (7)

Sd(ω, t) =
dS(ω, t)

dt
=

∫
dw(τ − t)

dt
x(τ)e−jωτdτ, (8)

where integration domain (−∞,∞) is not explicitly written
for visual simplicity (This convention is after Cohen [2].).

Substituting S(ω, t) and Sd(ω, t) into Eq. 6 yields the
following simpler form:

ωi(ω, t) =
ℜ[S(ω, t)]ℑ [Sd(ω, t)] −ℑ[S(ω, t)]ℜ [Sd(ω, t)]

P (ω, t)
.

(9)

C. Interference-free instantaneous frequency
Equation 9 simplifies the averaged instantaneous frequency

ωAi(ω, t1, t2) because the denominator of Eq. 9 is the power
spectrum P (ω, t) and is canceled by the weights used in
Eq. 10, where t1 and t2 are two window locations.

ωAi(ω, t1, t2) =
P (ω, t1)ωi(ω, t1) + P (ω, t2)ωi(ω, t2)

P (ω, t1) + P (ω, t2)
, (10)

Substituting Eq. 9 into Eq. 10 yields the simplified form of
the numerator of Eq. 10, R(ω, t1, t2):

R(ω, t1, t2)

= ℜ[S(ω, t1)]ℑ [Sd(ω, t1)] −ℑ[S(ω, t1)]ℜ [Sd(ω, t1)]

+ ℜ[S(ω, t2)]ℑ [Sd(ω, t2)] −ℑ[S(ω, t2)]ℜ [Sd(ω, t2)] ,
(11)

The first term and the their term share the same form. They
are represented by the following equation for the test signal (
Eq. 1) input.

ℜ[S(ω, t)]ℑ[Sd(ω, t)]
= W (ω)Wd(ω) + α cos(ω0t + β)

(W (ω)Wd(ω − ω0) + Wd(ω)W (ω − ω0))
+ α2Wd(ω − ω0)W (ω − ω0) cos2(ω0t + β). (12)

Similary, the second term and the fourth term are repre-
sented by the following equation for the test signal ( Eq. 1)
input.

−ℑ[S(ω, t)]ℜ[Sd(ω, t)]
= α2W (ω − ω0)Wd(ω − ω0) sin2(ω0t + β). (13)

By using the constant relation (sin2 θ + cos2 θ = 1) the
numerator is reduced to the following form.

ℜ[S(ω, t)]ℑ [Sd(ω, t)] −ℑ[S(ω, t)]ℜ [Sd(ω, t)]

= W (ω)Wd(ω) + α2W (ω − ω0)Wd(ω − ω0)

+ α cos(ω0t + β)·
(W (ω)Wd(ω − ω0) + Wd(ω)W (ω − ω0)), (14)

where the third term is the time varying component. This term
can be cancelled by averaging terms calculated at one half
pitch period apart. Note that the denominator of Eq. 10 is
the TANDEM spectrum when this condition holds. Therefore,
the averaged instantaneous frequency weighted by the power
spectra calculated at two locations one half pitch period apart
yields the interference-free instantaneous frequency [4].

D. Group delay without phase unwrapping
In this section, a group delay equation having the similar

form to the Flanagan’s equation is derived, by starting from
the spectral representation X(ω, t). The group delay is defined
by the negative frequency derivative of the phase of X(ω, t).
It is equivalent to calculate the derivative of the imaginary part
of the log-converted spectrum log(X(ω, t)).

−τg =
d ℑ [log(X(ω, t))]

dω

= ℑ
[

1
X(ω, t)

dX(ω, t)
dω

]

=
ℜ[X(ω, t)]ℑ

[
dX(ω,t)

dω

]
−ℑ[X(ω, t)]ℜ

[
dX(ω,t)

dω

]
|X(ω, t)|2

, (15)

To simplify Eq. 15, two spectral representations X(ω, t) and
Xd(ω, t) are defined.

X(ω, t) =
∫

w(τ)x(τ − t)e−jωτdτ (16)

Xd(ω, t)=
dX(ω, t)

dω
=

∫
w(τ)x(τ − t)

de−jωτ

dω
dτ (17)

= −j

∫
τw(τ)x(τ−t)e−jωτdτ, (18)

Substituting X(ω, t) and Xd(ω, t) into Eq. 15 yields the
simpler form.

− τg(ω, t) =
ℜ[X(ω, t)]ℑ[Xd(ω, t)]−ℑ[X(ω, t)]ℜ[Xd(ω, t)]

|X(ω, t)|2
, (19)

This is the counterpart of the Flanagan’s equation for the
group delay. Equation 19 also does not require phase unwrap-
ping.

E. Interferences on group delay caused by repetition
When defining a signal x(t) to test interference to the group

delay, it is general enough to assume that the one of the
excitation is normalized and the amplitude of the following
repetition is modified by a constant number α.

x(t) = δ

(
t − T0

2

)
+ αδ

(
t +

T0

2

)
, (20)

where T0 is the interval between the repetitions. The spectral
representation S(ω, t) calculated by the short term Fourier
transform is

S(ω, t) = w

(
t − T0

2

)
e−jω(t−T0

2 )

+ w

(
t +

T0

2

)
αe−jω(t+

T0
2 ), (21)

where w(t) is the time windowing function.
The power spectrum P (ω, t) of this test signal is

P (ω, t) =
∣∣∣∣w(

t − T0

2

)∣∣∣∣2 + α

∣∣∣∣w(
t +

T0

2

)∣∣∣∣2
+ 2αw

(
t − T0

2

)
w

(
t +

T0

2

)
cos

(
2π

ω

ω0

)
, (22)



where the third term is the spectral interference caused by
the repetition. The interference is a sinusoid with the period
ω0 = 2π/T0 on the frequency axis.

This interfering term can be cancelled by averaging two
shifted versions of the power spectra ω0/2 apart on the
frequency axis and yields the interference-free power spectrum
PF (ω, t).

PF (ω, t) =
P

(
ω − ω0

4 , t
)

+ P
(
ω + ω0

4 , t
)

2
, (23)

where the suffix F of PF (ω, t) indicates that the interference-
free power spectrum this time is defined on the frequency axis.

F. Interference-free group delay
Since the group delay equation Eq. 19 has the power spec-

trum in its demoninator, power spectrum weighted averaging
cancels it. Define the weighted average group delay τgA(ω, t)
by

τgA(ω, t) =
τg1(ω, t)|S1(ω, t)|2+ τg2(ω, t)|S2(ω, t)|2

|S1(ω, t)|2+ |S2(ω, t)|2 , (24)

Simplification starts from the numerator of this equation.
1) Simplification of numerator: Let S(ω, t) represent the

short term Fourier transform of the test signal x(t) using a
windowing function w(t)

S(ω, t) =w
(
t − T0

2

)
e
−jω

(
t− T0

2

)
+ w

(
t +

T0

2

)
αe

−jω
(

t+
T0
2

)
= w(t1) cos(−ωt1) + jw(t1) sin(−ωt1)

+ w(t2)α cos(−ωt2) + jw(t2)α sin(−ωt2), (25)

where　 t1 = t − T0

2
, t2 = t +

T0

2
.

The frequency derivative of S(ω, t) is denoted by Sd(ω, t)

Sd(ω, t) = −j
[
wd(t1)e

−jωt1 + αwd(t2)e
−jωt2

]
= −jwd(t1) cos(−ωt1) + wd(t1) sin(−ωt1)

− jwd(t2)α cos(−ωt2)+wd(t2)α sin(−ωt2), (26)

Using S(ω, t) and Sd(ω, t), the first term of the numerator
of the group delay equation yields

ℜ[S(ω, t)]ℑ[Sd(ω, t)] =

− wd(t1)w(t1) cos2(−ωt1) − α2wd(t2)w(t2) cos2(−ωt2)

− αwd(t2)w(t1) cos(−ωt1) cos(−ωt2)

− αwd(t1)w(t2) cos(−ωt1) cos(−ωt2), (27)

and the second term yields

ℑ[S(ω, t)]ℜ[Sd(ω, t)] =

wd(t1)w(t1) sin2(−ωt1) + α2wd(t2)w(t2) sin2(−ωt2)

+ αwd(t2)w(t1) sin(−ωt1) sin(−ωt2)

+ αwd(t1)w(t2) sin(−ωt1) sin(−ωt2). (28)

Using the constant relations sin2 θ + cos2 θ = 1 and
cos A cos B + sinA sinB = cos(A − B) to simplify the
numerator yields

ℜ[S(ω, t)]ℑ[Sd(ω, t)] −ℑ[S(ω, t)]ℜ[Sd(ω, t)] =
− wd(t1)w(t1) − α2wd(t2)w(t2)

− α (wd(t1)w(t2) + wd(t2)w(t1)) cos
(
2π

ω

ω0

)
, (29)

Fig. 1. Group delays calculated by positioning the time window center at 0,
1, 2, 3 ms from one of the pulse position. The test signal is a pulse train with
a 110.25 Hz fundamental frequency. (Left plot) Conventional group delay.
(Right plot) Interference-free group delay

where the third term is the interfering term on the frequency
axis. This sinusoidal variation can be cancelled by calculating
the weighted average of the shifted versions ω0/2 apart on the
frequency axis. The denominator in this case is PF (ω, t), the
interference-free power spectrum on the frequency axis.

2) Interference-free group delay: Based on derivations
above, the power spectrum weighted average of two frequency
shifted versions of group delay yields the interference-free
group delay τdF (ω, t).

τdF (ω, t) = − 1

PF (ω, t)
·

[ℜ[S(ω1, t)]ℑ[Sd(ω1, t)]−ℑ[S(ω1, t)]ℜ[Sd(ω1, t)]

+ ℜ[S(ω2, t)]ℑ[Sd(ω2, t)]−ℑ[S(ω2, t)]ℜ[Sd(ω2, t)]] , (30)

where ω1 = ω − ω0

4
, ω2 = ω +

ω0

4

3) Implementation: The spectral shift operation ±ω0/4 on
the frequency axis is implemented by multiplying e±jω0t/4 to
the windowing function in the time domain.

III. NUMERICAL EXAMPLES

This section illustrates how the proposed method works for
typical signals. Tested signals are a periodic pulse train, a
synthetic vowel /a/, and a natural vowel /a/. All test signals
are sampled at 44,100 Hz. The Hann windowing function is
used in the following tests.

A. Periodic pulse train
A 110.25 Hz pulse train was analyzed using a time window

of length 17 ms. Figure 1 shows the results. The center of
the windowing function was positioned at 0, 1, 2, and 3 ms
behind from one of the pulse. The left plot shows the group
delay calculated using Eq. 19, the conventional method. The
right plot shows the group delay calculated using Eq. 30, the
interference-free group delay. Note that the periodic variation
found in the left plot is completely cancelled in the right plot.

B. Synthetic vowel /a/
A synthetic vowel /a/ was generated. The first four formant

frequencies (Fn, where n represents the order) and band widths
(Bn) used were F1:800 Hz, B1:90 Hz, F2:1,200 Hz, B2:45 Hz,
F3:2,700 Hz, B3:120 Hz, F4:3,500 Hz, B4:240 Hz. Figure 2
shows the waveform and the power spectra. The left plot also
shows an example of windowing function positioning. The
right plot shows the conventional power spectrum (thin line)



Fig. 2. (Left plot) Waveform of a synthetic speech /a/ and an example of
window positioning. (Right plot) Stabilized power spectrum (thick line) using
window positioning with 3 ms displacement from the excitation location and
usual power spectrum (thin line)

Fig. 3. Group delays calculated by positioning the time window center at 0, 1,
2, 3 ms from one of the excitation pulse position. The test signal is a synthetic
vowel /a/ with a 110.25 Hz fundamental frequency. (Left plot) Conventional
group delay. (Right plot) Interference-free group delay

and the (frequency domain) interference-free power spectrum
PF (ω, t) (thick line). Note that periodic variations found in the
conventional power spectrum are virtually completely removed
in the interference-free representation.

Figure 3 shows the group delays. The left plot shows
the conventional group delay and the right plot shows the
interference-free group delay. Note that strong periodic vari-
ations in the conventional group delay are effectively sup-
pressed in the interference-free group delay.

C. Natural vowel /a/

A natural vowel /a/ spoken by a Japanese male was ana-
lyzed. Figure 4 shows the waveform and the power spectra.
The fundamental frequency of the signal was 127.5 Hz.
The left plot also shows an example of windowing function
positioning. The right plot shows the conventional power spec-
trum (thin line) and the (frequency domain) interference-free
power spectrum PF (ω, t) (thick line). The window location
in the left plot was set with a 3 ms displacement from the
one of the glottal closure instances (GCIs) [7]. Note that
periodic variations found in the conventional power spectrum
are effectively removed in the interference-free representation.

Figure 5 shows the group delays. The left plot shows
the conventional group delay and the right plot shows the
interference-free group delay. Note that strong periodic vari-
ations in the conventional group delay are effectively sup-
pressed in the interference-free group delay. Note that the left
plot suggests that another repetition about 1 ms interval exists.

Fig. 4. (Left plot) Waveform of a natural vowel /a/ and an example of window
positioning. (Right plot) Stabilized power spectrum (thick line) using window
positioning with a 3 ms displacement from the one of the GCIs and usual
power spectrum (thin line)

Fig. 5. Group delays calculated by positioning the time window center at 0,
1, 2, 3 ms from one of the GCIs. The test signal is a natural vowel /a/. The
fundamental frequency was 127.5 Hz. (Left plot) Conventional group delay.
(Right plot) Interference-free group delay

IV. CONCLUSIONS

A new interference-free representation of the group de-
lay is proposed based on a similar form to the Flanagan’s
instantaneous frequency equation. The proposed method is
useful for investigating detailed temporal structure of voice
excitation signals and will lead to improvement of the voice
quality of synthetic speech signals. The proposed method is
also generally applicable to any periodic signals.
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