
OpenQoS: An OpenFlow Controller Design for
Multimedia Delivery with End-to-End Quality of

Service over Software-Defined Networks
Hilmi E. Egilmez∗, S. Tahsin Dane∗, K. Tolga Bagci∗ and A. Murat Tekalp∗

∗ Koc University, Istanbul, Turkey
E-mail: {hegilmez, sdane, kbagci, mtekalp}@ku.edu.tr

Abstract—OpenFlow is a Software Defined Networking (SDN)
paradigm that decouples control and data forwarding layers of
routing. In this paper, we propose OpenQoS, which is a novel
OpenFlow controller design for multimedia delivery with end-to-
end Quality of Service (QoS) support. Our approach is based on
QoS routing where the routes of multimedia traffic are optimized
dynamically to fulfill the required QoS. We measure performance
of OpenQoS over a real test network and compare it with the
performance of the current state-of-the-art, HTTP-based multi-
bitrate adaptive streaming. Our experimental results show that
OpenQoS can guarantee seamless video delivery with little or no
video artifacts experienced by the end-users. Moreover, unlike
current QoS architectures, in OpenQoS the guaranteed service
is handled without having adverse effects on other types of traffic
in the network.

I. INTRODUCTION

The Internet design is based on end-to-end arguments [1]
where the network support is minimized and the end hosts are
responsible for most of the communication tasks. This design
has two main advantages: Firstly, it allows a unified best-effort
service for any type of data at the network layer where service
definitions are made at the upper layers (hosts). Secondly, it
reduces the overhead and the cost at the network layer without
losing reliability and robustness. This type of architecture fits
perfectly to data transmission where the primary requirement
is reliability. Yet, in multimedia transmission, timely delivery
is preferred over reliability. Multimedia streaming applications
have stringent delay requirements which cannot be guaranteed
in the best-effort Internet. So, it is desirable that the net-
work infrastructure supports some means to provide Quality
of Service (QoS) for multimedia traffic. To this effect, the
Internet Engineering Task Force (IETF) has explored several
QoS architectures, but none has been truly successful and
globally implemented. This is because QoS architectures such
as IntServ [2] and Diffserv are built on top of the current Inter-
net’s completely distributed hop-by-hop routing architecture,
lacking a broader picture of overall network resources. Even
though MPLS [3] provides a partial solution via its ultra-fast
switching capability, it lacks real-time reconfigurability and
adaptivity.

Software Defined Networking (SDN) [4] is a paradigm shift
in network architecture where the network control is decoupled
from forwarding and is directly programmable. This migration
of control provides an abstraction of the underlying network

for the applications residing on upper layers, enabling them to
treat the network as a logical or virtual entity [5].

Among several attempts, OpenFlow is the first successful
implementation [6] of SDN which has recently started being
deployed throughout the world and has already attracted many
commercial vendors [7]. As proposed in SDN, OpenFlow
moves the network control to a central unit called controller;
while the forwarding function remains within the routers called
forwarders (see Fig.1). The OpenFlow controller is the brain
of the network where packet forwarding decisions are made
on per-flow basis and the network devices are configured
accordingly via the OpenFlow protocol, which defines the
communication between the controller and the underlying
devices. OpenFlow provides complete network visibility, re-
source monitoring, and network virtualization, allowing so-
phisticated network management solutions. In this paper, we
address a specific networking problem which is providing
QoS for multimedia delivery, and present an OpenFlow based
solution for it.

This paper proposes OpenQoS, a novel controller design
that enables QoS for multimedia delivery over OpenFlow
networks. In order to support QoS, we group the incoming
traffic as data flows and multimedia flows, where the multi-
media flows are dynamically placed on QoS guaranteed routes
and the data flows remain on their traditional shortest-path.
Our approach is different from current QoS architectures,
since we employ dynamic routing which is now possible
with OpenQoS. OpenQoS is based on our prior works in
[8], [9], [10], where the optimization framework and the
results presented in those papers are exploited. Here, we also
demonstrate the performance of OpenQoS on a real network
with commercial OpenFlow-enabled switches.

The rest of the paper is organized as follows: Section
II presents the OpenQoS design that supports QoS over
OpenFlow networks. The OpenFlow test network and the
OpenQoS implementation are discussed in Section III. Section
IV presents the results showing the performance of OpenQoS
over the test network. Future directions and application areas
of the OpenQoS are proposed in Section V. Concluding
remarks are given in Section VI.



Fig. 1. OpenFlow Architecture

II. OPENQOS: CONTROLLER DESIGN

In this section we introduce OpenQoS. We first discuss its
architecture, and then we present the optimization framework
for dynamic QoS routing. The organization of this section
is as follows: In Section II-A, we present the proposed QoS
architecture and OpenQoS running on top. Section II-B dis-
cusses the routing mechanism in OpenQoS. The optimization
framework for QoS routing is given in Section II-C.

A. QoS Architectures and OpenQoS Design

There is a continuing debate on how to evolve the Internet
in order to provide QoS for multimedia traffic. Currently, there
is no QoS architecture that is successful and globally im-
plemented. Some researchers argue that fundamental changes
should be done to fully guarantee QoS, while others think
slight changes are enough to have soft guarantees which will
provide the requested QoS with high probability. So, we can
group the QoS architectures into two major categories:
• Integrated Services (IntServ) architectures provide

hard QoS guarantees via resource reservation (bandwidth,
buffer) techniques. The mechanism is similar to circuit
switched networks (e.g. ATM), and data transmission
starts after an end-to-end connection is established. The
major problem of IntServ based architectures is that they
require fundamental changes in the network core.

• Differentiated Services (DiffServ) architectures pro-
vide soft QoS guarantees via scheduling (priority queu-
ing). Unlike IntServ, DiffServ requires changes in the
edge of the network. Edge routers should have packet
classification functionality, and core routers should for-
ward the packets based on their priorities.

In terms of routing, DiffServ applies the same routing
mechanism as the Internet does. On the other hand, IntServ
uses the Resource Reservation Protocol (RSVP) [11] which
inter-operates with any routing protocol to reserve resources
along the calculated path. For each connection, QoS routing
is performed only once for connection establishment and
that connection remains until teardown. In IntServ, applying
dynamic QoS routing is hard, since it introduces latency due
to reconnection establishment.

Fig. 2. OpenQoS Controller Design

With OpenQoS, we propose a new prioritization scheme
which is based on routing. In order to fulfill the required
end-to-end QoS, we propose dynamic QoS routing for QoS
flows (multimedia traffic) while other flows (data) remain on
their shortest path. Our approach is different from the current
QoS architectures since we use neither resource reservation
nor priority queuing (i.e. rate shaping). The main advantage
of not using these methods is that the adverse effects of
QoS provisioning on non-QoS flows, such as packet loss
and latency, are minimized. Complete comparison between
OpenQoS and the current QoS architectures is presented in
Table I.

OpenQoS is an extension of the standard OpenFlow con-
troller which provides multimedia delivery with QoS. As
depicted in Fig.2, OpenQoS offers various interfaces and
functions to enable QoS. The main interfaces of the controller
design are:
• Controller - Forwarder Interface: The controller attaches

to forwarders with a secure channel using the OpenFlow
protocol to share necessary information. The controller
is responsible for sending flow tables associated with
data flows, requesting network state information from
forwarders for discovering the network topology, and
monitoring the network.

• Controller - Controller Interface: The single controller
architecture does not scale well when the network is large.
As the number of the OpenFlow nodes increases, multiple
controllers are required. This interface allows controllers
to share the necessary information to cooperatively man-
age the whole network.

• Controller - Service Interface: The controller provides an
open, secure interface for service providers to set flow
definitions for new data partitions and even to define
new routing rules associated with these partitions. It also
provides a real-time interface to signal the controller
when a new application starts a data flow.

The controller should also manage several key functions:
• Topology management: This function is responsible

for discovering and maintaining network connectivity
through data received from forwarders.



TABLE I
COMPARISON OF QOS ARCHITECTURES

Flow Support Type of Guarantee Complexity Effects on other flows Mechanism

IntServ Individual flows Hard & end-to-end High High (due to reservation) Resource reservation

DiffServ Aggregated flows Soft & hop-by-hop Medium Medium (priority queuing) Scheduling, priority queuing

OpenQoS Multiple flows Soft & end-to-end Low Low (only based on routing) Dynamic QoS routing

• Route management: This function is responsible for de-
termining the availability and packet forwarding perfor-
mance of routers to aid the route calculation. It re-
quires collecting the up-to-date network state from the
forwarders on a synchronous or asynchronous basis.

• Flow management: This function is responsible for col-
lecting the flow definitions received from the service
provider through the controller-service interface, and ef-
ficient flow management by aggregation.

• Route calculation: This function is responsible for cal-
culating and determining routes for different types of
flows. Several routing algorithms can run in parallel to
meet the performance requirements and the objectives of
different flows. Network topology and route management
information are input to this function along with the
service reservations.

• Call admission: This function denies/blocks a request
when the requested QoS parameters cannot be satisfied
(i.e. there is no feasible route), and informs the controller
to take necessary actions.

• Traffic policing: This function is responsible for determin-
ing whether data flows agree with their requested QoS
parameters, and applying the policy rules when they do
not (e.g. pre-empting traffic or selective packet dropping).

B. Per-Flow Routing in OpenQoS

The current Internet does not allow routing on per-flow
basis. When a packet arrives at a router, it checks the packet’s
source and destination address pair with the entries of the
routing table, and forwards it according to predefined rules
(e.g. routing protocol) configured by the network operator. On
the other hand, OpenFlow provides the flexibility of defining
different types of flows to which a set of actions and rules
can be associated. For example, one type of flow may be
forwarded using a shortest path routing algorithm while the
other flows may follow manually configured routes over the
network. So, each flow (i.e. packet) can be treated differently
at the networking layer.

In OpenFlow, we can define flows in many ways. Flows
can contain same or different types of packets. For example,
packets with the TCP port number 80 (reserved for HTTP)
can be a flow definition, or packets having RTP header may
indicate a flow which carries voice, video or both. In essence,
it is possible to set flows as a combination of header fields
as illustrated in Fig.3, but the network operator should also
take the processing power limitations of the network devices

Fig. 3. Flow identification fields in OpenFlow

Fig. 4. Flow tables and their pipelined processing

(routers or switches) into account. In order to avoid complex
flow table lookups, flow definitions should be cleverly set
and aggregated if possible. In OpenFlow, network devices
store the flows and their associated rules in flow tables which
are processed as a pipeline shown in Fig.4. The goal of the
pipelined processing is to reduce the packet processing time.

OpenQoS exploits OpenFlow’s flow-based forwarding
paradigm so that we can differentiate data and multimedia
traffic. Multimedia flows may be determined by using the
following packet header fields or values:
• Traffic class header field in MPLS,
• TOS (Type of Service) field of IPv4,
• Traffic class field in IPv6,
• If multimedia server is known, source IP address,
• Transport source and/or destination port numbers.

It is desirable to define flows according to lower layer (L2, L3)
packet headers since the packet parsing complexity is lower
compared to processing up to upper layers (L4). Therefore,
we propose to define multimedia flows using fields in MPLS
which is considered in between data link and network layer
(L2.5), and provides ultra-fast switching capability. But, in
some cases upper layer header fields may also be required
for better packet type discrimination, and OpenFlow allows
the flexibility of defining flows using upper layer (L4) header
fields. Besides, flow definitions may not rely on current IP.
Any addressing scheme with service level information can be
used to define multimedia type flows.

In order to calculate the QoS routes, it is essential to collect
up-to-date global network state information, such as delay,



bandwidth, and packet loss rate for each link. The performance
of any routing algorithm is directly related to how precise the
network state information is. Over large networks, collecting
the network state globally may be challenging due to the scale
of the network. The problem becomes even more difficult in
the Internet because of its completely distributed (hop-by-
hop) architecture. OpenFlow eases this task by employing
a centralized controller. As illustrated in Fig.1, instead of
sharing the state information with all other routers, OpenFlow
forwarders directly send their local state information to the
controller. Then, the controller collects the forwarders’ state
information and computes the best feasible routes accordingly.

C. Optimization of Dynamic QoS Routing

We pose the dynamic QoS routing as a Constrained Shortest
Path (CSP) problem. It is crucial to select a cost metric
and constraints where they both characterize the network
conditions and support the QoS requirements. In multimedia
applications, the typical QoS indicators are packet loss, delay
and delay variation (jitter). However, some QoS indicators may
differ depending on the type of the application, such as:
• Interactive multimedia applications that have strict end-

to-end delay requirements (e.g. 150-200 ms for video
conferencing). So, the CSP problem constraint should be
based on the total delay.

• Video streaming applications that require steady network
conditions for continuous video playout; however, the
initial start-up delay may vary from user to user. This
implies that the delay variation is required to be bounded,
so the CSP problem constraint should be based on the
delay variation.

In our formulation, a network is represented as a directed
simple graph G(N,A), where N is the set of nodes and A is
the set of all arcs (also called links), so that arc (i, j) is an
ordered pair, which is outgoing from node i and incoming to
node j. Let Rst be the set of all routes (subsets of A) from
source node s to destination node t. For any route r ∈ Rst

we define cost fC and delay fD measures as,

fC(r) =
∑

(i,j)∈r

cij (1)

fD(r) =
∑

(i,j)∈r

dij (2)

where cij and dij are cost and delay coefficients for the arc
(i, j), respectively. The CSP problem can then be formally
stated as finding

r∗ = argmin
r
{fC(r) | r ∈ Rst, fD(r) ≤ Dmax} (3)

that is, finding a route r which minimizes the cost function
fC(r) subject to the delay variation fD(r) to be less than or
equal to a specified value Dmax. We select the cost metric as
follows,

cij = gij + dij ∀(i, j) ∈ A (4)

Fig. 5. OpenFlow Test Network

where gij denotes the congestion measure for the traffic on
link (i, j) and dij is the delay measure. OpenQoS collects
necessary parameters gij and dij using the route management
function.

The CSP problem stated in (3) is known to be NP-complete,
so there are heuristic and approximation algorithms in the
literature. For the route calculation function of OpenQoS,
we propose to use the Lagrangian Relaxation Based Ag-
gregated Cost (LARAC) algorithm which is a polynomial-
time algorithm that efficiently finds a good route without
deviating from the optimal solution in O([n+mlogm]2) time
[12]. When the route management function updates the QoS
indicating parameters or the topology management function
detects a topology change, the route calculation function runs
the LARAC algorithm to solve the CSP problem of (3). Then,
the controller updates the forwarders’ flow tables accordingly.
Hence, the QoS routes are dynamically set.

III. OPENFLOW TEST NETWORK AND OPENQOS
IMPLEMENTATION

A. Test Network

We deployed the OpenFlow test network composed of
three OpenFlow enabled Pronto 3290 switches, one controller
and 3 host computers. As shown in Fig.5, the switches are
connected in a triangular shape to have path diversity. The
video streaming server and the client are connected to different
switches, while the traffic loader inserting cross-traffic into
the network is connected to the same switch that the server
connects. Each switch initiates a secure connection to the
controller using the OpenFlow protocol (see dashed lines
in Fig.5). The controller runs our OpenQoS implementation
which is described in detail in Section III-B.

B. Implementation of OpenQoS

We implement OpenQoS over a standard OpenFlow con-
troller, Floodlight [13]. There are also several standard con-
troller alternatives such as NOX [14], Beacon [15], Maestro
[16] to implement OpenQoS, but currently Floodlight is the
most stable controller. Floodlight is an open source controller



written in Java. It provides a modular programming environ-
ment so that we can easily add new modules on top and decide
which existing modules to be run.

In our implementation of OpenQoS, we add two major
modules to enable route management and route calculation
functions discussed in Section II-A. The topology management
function has already been implemented in Floodlight and we
directly used that module in OpenQoS. These functions are
essential building blocks of our controller design which makes
dynamic QoS routing possible. Yet, the OpenQoS imple-
mentation is still incomplete. Firstly, controller-to-controller,
controller-to-service interfaces must be defined, and then
the functions using these interfaces (flow management, call
admission, traffic policing) must be implemented. Since we
concentrate on QoS in this paper, we left these open issues as
future works.

1) Route Management: The route management module
provides one of the key functions in the OpenQoS controller.
It collects the up-to-date network state information such as
link speed, available bandwidth and packet drop counts from
the forwarders. The controller requests various statistics from
forwarders by sending FEATURE_REQUEST messages, and
in return forwarders send FEATURE_REPLY messages con-
taining requested statistics. These messaging mechanisms are
described in detail in OpenFlow specification v1.0 [17].

In order to support dynamic QoS, it is essential to keep
the network state information up-to-date. The performance of
the route calculation depends on the accuracy of the collected
data. So, OpenQoS controller periodically collects available
bandwidth for each link. The period is set to 1s since it has
been shown that the Internet traffic behaves like independent
Poisson distribution in sub-second time scales [18].

After receiving the available bandwidth measures from the
forwarders, the route management module
• detects whether there is a congestion event in any of the

links.
• determines link cost parameters to be used in the opti-

mization problem stated in (3).
Each link can be in two states: congested or non-congested.
In practice, a link is assumed to be congested if the utilization
of that link exceeds 75% - 85%. We consider that a link is
congested if that link is 70% bandwidth utilized. The link costs
are determined by using the exact same formula in (4), where
the congestion measure is found as,

gij =


Tij−0.7×Bij

Tij
, 0.7×Bij < Tij

0, 0.7×Bij ≥ Tij

(5)

where Tij is the total measured traffic amount in bps and
Bij is the max achievable bandwidth in bps on link (i, j).
Note that, in (5), the non-congested links have 0 congestion
measure value. The delay parameter dij in (4) is set to 1 which
simply corresponds to hop-count. This is because the current
OpenFlow switch implementations do not have any support on
collecting delay related statistics (total delay, jitter).

In order to add an event based dynamicity to the QoS
routing, the route manager signals forwarders when QoS
routes need to be rerouted. This signalling can be achieved
by deleting a specific flow entry. After a QoS flow entry is
deleted, the forwarders cannot match newly coming packets,
therefore they ask the controller to define new flow entries
which causes multimedia packets to be rerouted. The flow
deletion is triggered in two cases: (1) If a previously non-
congested link is now congested, we delete the flow entries
matching multimedia (QoS) packets in the flow tables of the
forwarders. (2) If a previously congested link is non-congested
in the last 3 periods, we again delete the flows accordingly.
We require 3 periods of non-congested state to ensure there
are no fluctuations in the traffic rate on the links.

2) Route Calculation: In Floodlight, route calculation is
done when a PACKET_IN message arrives to the controller.
It calculates the shortest path route and pushes flow definitions
to the switches along that path accordingly. On the other hand,
OpenQoS first checks if it is a multimedia packet or not, based
on pre-defined flow setups described in Section II-B. Then,
the route calculation module calculates two paths between the
source and destination pair of the incoming packets. One path
is the QoS optimized path and the other is the shortest path.
Note that the QoS routes are calculated using the LARAC
algorithm as described in Section II-C. Currently, we only
detect multimedia packets but it can be easily modified to add
new routing policies to new type of services.

IV. RESULTS

To demonstrate the performance of our OpenQoS imple-
mentation, we built a video streaming environment over a real
OpenFlow test network shown in Fig.5. Throughout the tests,
we used a well-known test sequence “in to tree” having 500
frames with the resolution of 1280×720. We looped the raw
video sequence reversely once to have 1000 frames lasting
about 40s. We then encoded the looped sequence in H.264
format using the ffmpeg encoder (v.0.7.3) [19] at three different
average bit-rates to have
• Stream 1 at 1800 kbps (32.55dB),
• Stream 2 at 900 kbps (30.57dB),
• Stream 3 at 450 kbps (28.75dB).

These three H.264 video streams are used in two test scenarios
presented in the next subsections.

A. Streaming over UDP

We created a scenario where two copies of the Stream 1 are
sent from the server residing at 192.168.110.100 to the client
with the IP address 192.168.110.101 (see Fig.5). The server
uses VLC media player [20] to stream videos using RTP/UDP.
One copy of the video is sent to the destination port 5004 while
the other copy is sent to port 5005. To show the performance
difference in terms of QoS, we matched the multimedia flows
(QoS flows) to the transport port number, 5004. Thus, the
video packets destined to port 5004 are identified as being
part of a multimedia flow by the OpenQoS controller and
routed accordingly, while the other video (destined to port



Fig. 6. Best case result of UDP streaming

Fig. 7. One case result of UDP streaming

5005) is considered as a data flow which has no QoS support
(i.e. best-effort). In each test, 10 second long cross-traffic is
sent from the loader (192.168.110.102) to the client once at
a random time. The client runs two VLC player sessions,
listening RTP/UDP packets at ports 5004 and 5005, to save
the received videos. We expect to see distortions in the video
received on port 5005 during the cross-traffic while the other
video received on port 5004 will be rerouted and affected little
or not at all in terms of video quality.

We decode the received videos using ffmpeg and measure
their qualities using the peak signal to noise ratio (PSNR)
values with respect to the original raw video. The results are
given in Figs.6 and 7 which are in terms of received video
quality (PSNR) versus time. The vertical dashed lines mark
the start and end times of the cross-traffic.

The best case result is shown in Fig.6 where the video with
QoS support (w/ QoS) is not affected from the cross traffic
and approaches full video quality, while the video without
QoS support (w/o QoS) has significant amount of quality
loss. However, in Fig.7, the video with QoS also suffers, it
is recovered in less than 1s. After repeating the scenario 20
times, we observed that the average loss recovery period is
0.76s. Most of the time the user watching the video is not
disturbed from the quality loss in such a small interval even
if we use UDP which does not guarantee reliable delivery at
all.

B. HTTP-based Adaptive Streaming

We built a test scenario similar to the one discussed in
Section IV-A where TCP is employed as a transport protocol

Fig. 8. Adaptive HTTP streaming result

instead of UDP. The server sends
• Stream 1 with QoS support,
• a video without QoS support chosen adaptively among

Stream 1, 2 and 3.
For adaptive video streaming we used Adobe Flash Media
Server 4.5 [21]. At the server side, each video stream (Stream
1, 2 and 3) is fragmented into 4 second long sub-streams and
an associated m3u8 playlist is created. At the client side, the
VLC player first downloads the m3u8 playlist and then selects
an appropriate sub-stream rate-adaptively. While the loader
(see Fig.5) applies 10 second cross-traffic, the video with QoS
(i.e. Stream 1) is rerouted, and the video without QoS is rate
adapted. Fig.8 illustrates the quality difference between the
rate adaptation (w/o QoS) and the QoS rerouting (w/ QoS) of
a sample test. We repeat the same test scenario over 30 times,
and we do not observe any quality loss in the video with QoS.

V. FUTURE DIRECTIONS

In this section, we present some future application areas of
the proposed OpenFlow based architecture.

A. Video Streaming with Multiple Description Coding

Multiple description coding (MDC) is a technique [22] that
encodes a source into multiple bitstreams (descriptions), where
each description is independently decodable. Receiving only
one description is sufficient for continuous playout, while
the quality improves as the number of received descriptions
increase. However, the loss of compression efficiency, the
transmission overhead and high encoder/decoder complexity
are the major drawbacks of MDC.

The main objective of MDC is to provide error resilience to
packet losses by utilizing independent paths. Each description
should be sent over different routes; because, in general,
average route behaviour provides better performance than the
behaviour of any individual random route. However, current
Internet determines a single route (or single multicast tree)
for source and destination pairs, so MDC cannot have path
diversity when there is a single multimedia source (server).
In order to take the advantage of MDC in the Internet,
different descriptions have to be distributed over different
sources to enable multi-path diversity. Hence, current MDC-
based multimedia delivery proposals are limited to peer-to-
peer (P2P) and content distribution networks (CDNs). On the



(a)

(b)

Fig. 9. Streaming three MDC descriptions to a client (a) over the Internet
from multiple servers, (b) over OpenFlow from a single server

other hand, OpenFlow removes this limitation with its per-flow
routing capability. In OpenFlow, each MDC description can be
defined as a different flow and therefore, descriptions can be
placed on disjoint or partially disjoint routes even if there is a
single multimedia server. The routes of each description can be
found using k-disjoint shortest path or can be further optimized
by using constrained based disjoint routing algorithms. Unlike
current works in literature, MDC streaming over OpenFlow
does not require distributing descriptions among servers placed
around the network, as illustrated in Fig.9.

B. Load Balancing in Content Distribution Networks (CDNs)

Load balancing is a networking methodology that distributes
the workload across the network elements. The purpose of
load balancing is providing a service from multiple servers by
choosing an appropriate server. Therefore, it is essential for
networking technologies such as content delivery networks
(CDN), domain name systems (DNS) and newly emerging
cloud services. It is usually implemented by a load balancing
switch (i.e. load balancer) which forwards a request coming
from a client to one of the servers which, in general, replies
to the load balancer. This operation is done without the client
which is unaware of the presence of the load balancer and
other backend servers. A load balancer selects a server by
using a variety of scheduling algorithms which may consider
factors such as servers’ reported load, servers’ up/down fre-
quencies, location of the servers (i.e. propagation delay), type
of the requested content and the amount of traffic assigned to
a server.

(a)

(b)

Fig. 10. Load balancing (a) over the Internet is limited to server selection, (b)
over OpenFlow allows the joint selection of servers and routes

Content delivery networks are distributed system of servers
that serve contents such as web objects, documents and
multimedia to end-users with high availability and high per-
formances. Especially, most of the current state-of-the-art
multimedia streaming applications (e.g. live and on-demand
streaming) over the Internet rely on CDNs, and load balancing
is an integral part of the CDN. However, in the Internet, only
server-based load balancing is possible. We can overcome this
deficiency by using OpenFlow. In OpenFlow load balancing
can be considered as a network primitive which does not
require additional equipment that implements load balancing
functions. Also, OpenFlow (Aster*x controller [7]) enables
joint optimization of server and route selection which is not
possible in the Internet, as illustrated in Fig.10.

C. Enabling Cross Layer Design in the Internet and Open-
Flow Wireless

In the literature there are cross-layer designs for QoS routing
over wireless networks (e.g. ad-hoc and sensor networks)[23],
[24], but they cannot be implemented on wired networks.
The Internet is a closed environment where researchers cannot
easily experiment their ideas related to the core network such
as routing. This is because, current Internet router vendors
provide a hardware and associated software which is not open
to its users. OpenFlow removes the boundaries of the tradi-
tional Internet; it provides completely open and programmable
networking environment to the operators, enterprises, indepen-
dent software vendors and users. It also allows researchers
to develop their ideas similar to the cross-layer approaches



as in wireless networks. Even though our focus is on wired
networks in this paper, there is an initial implementation of
wireless extension of OpenFlow (OpenRoads)[25] on which
OpenQoS can be implemented with a little effort.

VI. CONCLUSION

OpenQoS is a novel approach to stream video over Open-
Flow networks with QoS. It is different from the current QoS
mechanisms since we propose dynamic QoS routing to fulfill
end-to-end QoS support which is possible with OpenFlow’s
centralized control capabilities over the network. Unlike other
QoS architectures, OpenQoS minimizes the adverse effects
(such as packet loss and latency) on other types of flows.
Inspection of our experimental results yields the following
observations:
• OpenQoS working along with TCP outperforms the state-

of-the-art, HTTP-based multi-bitrate adaptive streaming,
under network congestion.

• OpenQoS can guarantee seamless video delivery with
little or no disturbance experienced by the end users even
if an unreliable transport protocol, such as UDP, is used.

• If a reliable transport protocol, such as TCP, is used,
OpenQoS can guarantee full video quality.

REFERENCES

[1] J. H. Saltzer, D. P. Reed, and D. Clark, “End-to-end arguments in system
design,” ACM Transactions on Computer Systems, vol. 2, no. 4, Nov.
1984.

[2] R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet
architecture: an overview,” RFC 1633, Internet Engineering Task Force,
June 1994.

[3] E. Rosen and Y. Rekhter, “BGP/MPLS VPNs,” RFC 2547, Internet
Engineering Task Force, 1999.

[4] Open Networking Foundation. [Online]. Available:
http://opennetworking.org

[5] Open Networking Foundation (ONF), “Software defined networking:
the new norm for networks,” 2012. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/openflow/wp-
sdn-newnorm.pdf

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[7] OpenFlow Consortium. [Online]. Available: http://openflowswitch.org
[8] H. E. Egilmez, S. Civanlar, and A. M. Tekalp, “An optimization

framework for qos-enabled adaptive video streaming over OpenFlow
networks,” IEEE Trans. on Multimedia, to appear.

[9] H. E. Egilmez, B. Gorkemli, A. M. Tekalp, and S. Civanlar, “Scalable
video streaming over OpenFlow networks: an optimization framework
for QoS routing,” in Proc. IEEE International Conference on Image
Processing (ICIP), Sept. 2011, pp. 2241–2244.

[10] H. E. Egilmez, S. Civanlar, and A. M. Tekalp, “A distributed QoS routing
architecture for scalable video streaming over multi-domain OpenFlow
networks,” in Proc. IEEE International Conference on Image Processing
(ICIP), Sept.-Oct. 2012, pp. 2237–2240.

[11] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource
reservation protocol (rsvp) – version 1 functional specification,” RFC
2205, Internet Engineering Task Force, September 1997.

[12] A. Juttner, B. Szviatovski, I. Mecs, and Z. Rajko, “Lagrange relaxation
based method for the QoS routing problem,” in Proc. IEEE INFOCOM,
vol. 2, Apr. 2001, pp. 859–868.

[13] Floodlight. [Online]. Available: http://floodlight.openflowhub.org
[14] Nox. [Online]. Available: http://noxrepo.org
[15] Beacon controller. [Online]. Available:

https://openflow.stanford.edu/display/Beacon/Home

[16] Z. Cai, A. L. Cox, and T. S. Eugene Ng, “Maestro: balancing fairness,
latency and throughput in the OpenFlow control plane,” Rice University
Technical Report TR11-07, 2011.

[17] OpenFlow switch specification v1.0. [Online]. Available:
http://openflow.org/wp/documents/

[18] V. Frost and B. Melamed, “Traffic modeling for telecommunications
networks,” IEEE Communications Magazine, vol. 32, no. 3, pp. 70–81,
Mar. 1994.

[19] ffmpeg. [Online]. Available: http://ffmpeg.org
[20] VLC media player. [Online]. Available: http://videolan.org/vlc
[21] Flash media streaming server 4.5. [Online]. Available:

http://www.adobe.com/products/flash-media-streaming.html
[22] V. Goyal, “Multiple description coding: compression meets the network,”

Signal Processing Magazine, IEEE, vol. 18, no. 5, pp. 74 –93, sep 2001.
[23] S. Misra, M. Reisslein, and X. Guoliang, “A survey of multimedia

streaming in wireless sensor networks,” Communications Surveys Tu-
torials, IEEE, vol. 10, no. 4, pp. 18–39, quarter 2008.

[24] Q. Zhang and Y.-Q. Zhang, “Cross-layer design for qos support in
multihop wireless networks,” Proceedings of the IEEE, vol. 96, no. 1,
pp. 64 –76, jan. 2008.

[25] K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan,
N. Handigol, and N. McKeown, “Openroads: empowering research in
mobile networks,” SIGCOMM Comput. Commun. Rev., vol. 40, no. 1,
pp. 125–126, Jan. 2010.


