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Abstract— In this paper, to reduce the response time of 

computer-aided diagnostic (CAD) systems, we proposed a 

feature selection algorithm that utilizes BI-RADS which is the 

standard clinical considerations for radiologists to illustrate the 

visual characteristics of breast tumors. We first apply the 

association rule mining technique to the medical database 

annotated with BI-RADS lexicons by doctors, to find out the 

interesting BI-RADS lexicon values. Then, we select the image 

processing algorithms which effectively represent the chosen BI-

RADS lexicon values. Finally, the features obtained from the 

selected image processing algorithms are used to build our 

classifier using Support Vector Machine (SVM) to predict 

whether each tumor is benign or malignant. Our experimental 

result shows that our classifier is accurate with fast execution 

time. 

 

I. INTRODUCTION 

According to American Cancer Society, it is reported [1] 

that breast cancer is the second leading cause for cancer death 

in women. It is also reported in [2,3] that early detection and 

treatment of breast cancers increase significantly the survival 

rates of breast cancer patients. The ultrasound diagnostic has 

been utilized widely by radiologists to detect breast cancers 

early. However, false positive interpretations by radiologists 

result in many unnecessary biopsies with benign outcomes. 

To reduce a high number of unnecessary breast biopsies, 

several computer-aided diagnostic (CAD) systems [12] have 

been recently developed to assist radiologists in displaying 

suspicious lesions on medical images by visual analysis and 

in predicting the malignancy of the lesions by classifying the 

characteristics of the lesions.  

Classification of a breast tumor image in CAD systems is to 

predict the breast biopsy outcome of its patient, which is 

either benign or malignant. Such classification tasks consist of 

three steps [2-7] which are (1) the tumor segmentation, (2) the 

feature extraction and (3) the tumor classification. In the 

tumor segmentation step, tumor regions are selected from an 

original image. In the feature extraction step, feature sets are 

calculated from the segmented tumor regions by using many 

image processing algorithms. Finally, in the classification step, 

by using the extracted feature sets, a classifier predicts 

whether each tumor in the image is benign or malignant.  

The response time of CAD systems is also important as 

well as their accuracy when radiologists examine patients 

interactively with CAD systems which requires to produce 

and process a lot of images that should be classified. The 

problem is that a lot of algorithms would be examined in the 

classification step. If we extract many features to improve the 

accuracy of classifiers in the step (2), many corresponding 

algorithms should be executed and the response time may 

suffer.  Fortunately, some features are irrelevant or have 

redundant information to other features and thus hardly 

contribute to the performance of classifiers. Identifying and 

removing such features reduce the dimensionality of the data 

and may allow classifiers to operate faster and more 

effectively. Actually we found that the feature subset 

selection method called CFS in [9] improves the accuracy of 

classification. However, such a feature subset selection 

method does not consider the total execution times of 

processing extraction algorithms to generate the chosen 

features. In this paper, we focus on how to choose effective 

feature extraction algorithms to reduce the response time of 

CAD system.  

Since radiologists analyze medical images based on the 

visual characteristics, the tumor classifiers of CAD systems 

should be modeled according to the clinical reasoning process 

by radiologists. The Breast Imaging-Reporting and Data 

System (BI-RADS)[16] provides the standard clinical 

considerations for radiologists to illustrate the visual 

characteristics of breast tumors. As it reduces errors in breast 

imaging interpretations, it is widely used by radiologists. In 

BI-RADS for ultrasounds images, there are standardized 

lexicons for describing the characteristics of a tumor. For 

example, the shape of a tumor can be represented by a “shape” 

BI-RADS lexicon and the value of the lexicon can be one of 

“irregular”, “round”, “oval” and “lobular”. We provide a 

breast image table annotated with BI-RADS lexicons 

produced by doctors in Table I.  

 
TABLE I. A BREAST IMAGE TABLE ANNOTATED WITH 

BI-RADS LEXICONS  
Image Id Shape Margin Orientation Diagnostic 

1 Irregular Indistinct Not Parallel Malignant 

2 Irregular Angular Not Parallel Malignant 

3 Round Circumscribed Parallel Benign 

4 Round Circumscribed Parallel Benign 

 

Radiologists actually classify the type of a tumor in an 

ultrasound image as malignant if its shape is irregular.  The 

first and second records in Table I show examples of such 

diagnoses. In real world, radiologists diagnose the malignancy 

of each tumor based on not only a single value of BI-RADS 



lexicon but also the combinations of several values of BI-

RADS lexicons. Thus, in order to build a classifier with good 

accuracy for breast cancer diagnosis, it would be beneficial to 

build a classifier using important combinations of BI-RADS 

lexicons values. Unfortunately, the inputs of CAD systems are 

not BI-RAD lexicon values but ultrasound images. Thus we 

should extract suitable features from ultrasound images which 

describe BI-RAD lexicon values well.  

We first apply the association rule mining technique [8] to 

the medical database annotated with BI-RADS lexicons by 

doctors, to find out the subset of interesting BI-RADS lexicon 

values and their combination reflecting the important clinical 

considerations by doctors for deciding malignancy of breast 

tumors. We next remove redundant information to get a 

compact set of BI-RADS lexicon values to be used. Then we 

select some image processing (feature extraction) algorithms 

which effectively represent the compact BI-RADS lexicon 

values from a given set of image processing algorithms. 

Finally, the features obtained from the selected image 

processing algorithms are used to build our classifier using 

Support Vector Machine (SVM) [11] to predict whether each 

tumor is benign or malignant. 

II. PRELIMINARY 

We introduce the association rule mining technique [8] 

which will be used to find out the critical BI-RAD lexicons 

reflecting the clinical considerations by doctors. Consider an 

example of a breast image table annotated with BI-RADS 

lexicons produced by doctors in Table I. Let I={i1, i2,…, im } 

be the set of items where an item is a pair of a BI-RAD 

lexicon and its value. For instance, (Shape: Irregular) is an 

item where “Shape” is a BI-RAD lexicon and “Irregular” is its 

value. Let D be a set of records where each record R is a set 

of items such that R⊂I. We say that a record R contains a set 

of items X if X⊂R.  

An association rule has the form of XY, where X⊂I, 

Y⊂I and X∩Y = Φ. In a rule XY, X is called its condition 

set and Y is the consequence. The rule XY holds in D with 

the confidence c if the rule XY holds in the c % of the 

records containing X in D. The rule XY has the support s in 

D if the rule XY holds in the s % of the records in D. We 

refer to the support and confidence of the rule XY as 

support (XY) and confidence (XY) respectively. For 

example, support(R1) and confidence(R1) of the following 

rule R1 from Table I are 50% and 100% respectively. 

R1: (Shape:Irregular)&(Diagnostic:Malignant)(Orientation:Not Parallel) 

Given a set of records D, the problem of mining association 

rules is to produce all association rules whose supports and 

confidences are at least the user-specified minimum support 

and minimum confidence respectively. The two classical 

association rule mining algorithms are the Apriori [8] and FP-

growth [14]. 

Among the association rules of the form XY, we refer to 

the association rules with Y = (Diagnostic: Malignant) or Y = 

(Diagnostic: Benign) as diagnostic rules. The rule R2 shown 

below is an example of a diagnostic rule. 

R2:(Shape:Irregular)&(Orientation:Not Parallel) (Diagnostic:Malignant) 

Similarly, the problem of mining diagnostic rules is to 

produce all diagnostic rules satisfying minimum support and 

minimum confidence thresholds.  

III. GENERATION OF A CLASSIFIER FOR TUMOR 

DIAGNOSIS  

A. Selection of Interesting BI-RAD Lexicon Values 

There are many image processing algorithms which 

generate the features to be used as input for classifiers of 

breast cancer diagnosis. However, we want to provide only a 

small number of important features to our classifier as input 

since invoking image processing algorithms to generate all 

possible features is very expensive. Thus, we decided to select 

the features related to the BI-RADS lexicon values which 

capture the important clinical knowledge used by radiologists. 

However, for classification purposes, some of BI-RADS 

lexicon values may not be useful in the diagnosis of breast 

cancer. Thus, we next investigate how to find out the critical 

BI-RADS lexicon values appearing in the diagnostic rules.  

We will generate a lot of diagnostic rules by association 

rule mining and select a small number of diagnostic rules 

which can capture the important clinical knowledge used by 

radiologists. When the condition set of a rule ri is a subset of 

the condition set of another rule rj, we want to keep the rule rj 

only if the rule rj has a significantly better confidence since it 

captures more important clinical knowledge than ri. 

Given a minimum improvement threshold δ (δ>0), we say 

that a rule ri  dominates a rule rj if (1) the condition set of ri is 

a subset of the condition set of rj, and (2) confidence(rj) - 

confidence(ri) < δ holds. Given a set of diagnostic rules SD, a 

compact diagnostic rule set SC with δ is a maximal subset of 

SD where (1) every rule in Sc is not dominated by all other 

diagnostic rules in SC and (2) every rule in (SD – SC) is 

dominated by a rule in SC. The goal of generating compact 

diagnostic rules with δ is to find distinctive and 

complementary rules enough to capture doctors’ clinical 

knowledge. 

To compute the compact diagnostic rule set with δ from a 

set of diagnostic rules SD, a brute-force algorithm may 

enumerate every possible subset SC of SD and check whether 

SC is a compact diagnosis rule set. However, it takes 

exponential time and is thus unpractical to be used. Thus, we 

next develop the greedy algorithm GEN-CDR(SD, δ) which is 

shown in Figure I. 

The GEN-CDR works as follows: A min-heap is built from 

all diagnostic rules, which satisfy the minimum support and 

confidence thresholds, using the number of items in the 

condition set of each diagnostic rule as the key.  A min-heap 

is a complete binary tree [17] such that the rule contained in 

each node has a smaller number of items in its condition set  

than the rules in its child nodes. The rule with the minimum 

number of items in the condition set is placed at the root node 

in the min-heap. If a pair of rules has the same number of 

items in their condition sets, the rule with a larger confidence 

has higher priority in our min-heap. 



 

Figure 1. GEN-CDR(SD, δ) 

 After the min-heap is built, a rule R with the highest 

priority is extracted from the min-heap (line4) by invoking the 

procedure extract-min and is added to RESULT (line5), while 

the min-heap is not empty. Note that the rule R has the 

minimum number of items in the condition set and is not 

dominated by any other rule in the min-heap. We next check 

whether the rules in the min-heap, which contain the 

condition set of R, are dominated by the rule R or not. The 

rules dominated by the rule R are removed from the priority 

queue (line 8). We guarantee that the rule to be extracted in 

the next iteration will not be dominated by any other rule in 

the current RESULT. When the min-heap becomes empty, we 

return RESULT as a compact diagnostic rule set. 

To select the interesting BI-RAD lexicon values from the 

computed compact diagnostic rules, we first rank compact 

diagnostic rules based on their confidences and supports. A 

compact diagnostic rule CDR1 is ranked higher than another 

compact diagnostic rule CDR2, iff (1) confidence(CDR1) > 

confidence(CDR2) holds or (2) confidence(CDR1) = 

confidence(CDR2) and support(CDR1) > support(CDR2) holds. 

The top-J compact diagnostic rules, denoted by TopCDRJ, 

are the top-J highest ranking compact diagnostic rules. An 

example of TopCDR3 of compact diagnostic rules generated 

by GEN-CDR in Section III.A is shown in Table II. 

 
TABLE II. AN EXAMPE OF TopCDR3 

Rule Support  Confidence 

Shape:irregular  Malignant  51.86% 99% 

EchoPattern:homogeneous & 

Margin:circumscribe  Benign 

28.26% 99% 

Margin:speculated Malignant 16.43% 99% 

 

After TopCDRJ are selected, we compute a set of important 

BI-RADS lexicon values that is the union of the condition sets 

of CDRs in TopCDRJ. We refer to the important BI-RADS 

lexicons and their values as BDVJ.  

BDVJ = ∪ CDR∈ TopCDRJ {v | v ∈ condition set of CDR } 

For example, the BDV3 of the TopCDR3 in Table II is 

{Shape:irregular, Margin:circumscribe, EchoPattern:homogeneous, 

Margin:speculated} 

B. Selection of  Effective Image Processing Algorithms 

Intuitively, the features related to BDVJ will improve the 

accuracy of tumor malignancy classification. Thus, we choose 

the image processing algorithms with descriptive features for 

BDVJ.  

To measure the describability of an image processing 

algorithm for BDVJ, we exploit one of classification 

techniques such as SVM [11]. Let IPA be an image 

processing algorithm. We first extract the feature vectors from 

a given set of images D and represent each image with its 

extracted feature vector. Then for each BI-RADS lexicon 

value in BDVJ, we train and test a classifier on D with the 

existence/absence of the value as the class label. For a 

classifier C, the describability of IPA to a value v in BDVJ , 

denoted by descC(IPA, v), is defined as  

descC(IPA, v) = The ratio of images that are correctly 

classified as v by the classifier C 

Then, the describability of IPA to BDVJ is defined as the 

average describability of every value in BDVJ.  

descC(IPA, BDVJ) = avg v∈ BDV_J (descC(IPA, v)) 

To use a smaller number of expensive image processing 

algorithms, we decided to use the above describability. 

Furthermore, we remove the BI-RADS lexicon values from 

BDVJ which do not satisfy a user-defined accuracy threshold 

for the all IPAs. Then, we simply choose IPAs with K highest 

describabilities from a set of IPAs and call it the K-effective 

IPAs represented by EIPAk. 

The experimental evaluation show that the classifier trained 

by the outcomes of EIPAk has faster execution time and 

comparable accuracy to a classifier trained by every features 

created by twenty IPAs[7] and selected by traditional feature 

selection algorithms such as CFS[9].  

IV. EXPERIMENTAL EVALUATION  

To show the effectiveness of our proposed algorithms, we 

conducted a performance study. All experiments reported in 

this section were performed on the machine with Intel(R) 

Xeon(R) CPU 2.93GHz and 16GB of main memory running 

64 bit Windows operating systems. For our experiments, we 

use a data set which contains 5,252 images of tumors with 

biopsy results. In the dataset, 2,745 cases are benign results 

and 2,507 cases are malignant results. For each tumor region, 

all BI-RADS lexicons are annotated by professional medical 

doctors and a contour line of the region is automatically 

segmented by our image processing tool.  

We utilized WEKA [10,13] to generate diagnostic rules 

from the BI-RADS lexicons of a data set. We set the 

minimum support and minimum confidence as 10% and 90% 

respectively. We also set δ used by GEN-CDR as 2%. For the 

extraction of features from the automatically segmented 

tumor images, twenty IPAs[7] are implemented. The EIPA5 

generated from TopCDR3 in Table II is shown in Table III in 

the non-increasing order of IPAs’ describability. 

 

 

Procedure GEN-CDR(SD, δ) 

Input: SD is a set of Diagnostic rules 

Output: Compact diagnosis rules 

δ: The minimum improvement threshold 

PQ: A min-heap for Diagnostic rules.  

1: Insert all Diagnostic rules into the PQ 

2: RESULT = { } 

3: while PQ is not empty do 

4:     Rextract-min (PQ) 

5:     RESULT = RESULT ∪ {R} 

6:     for each rules S ∈ PQ do 

7:          if (R dominates S) then 

8:     Remove S from PQ 

9: return RESULT 



 
TABLE III. EIPA5 

ID IPA for feature extraction 

IPA1 Spatial gray-level dependence matrix (SGLD) [2] 

IPA2 Fourier with centroid distance (Magnitude) [7] 

IPA3 The average gray changes between tissue area and mass area 

IPA4 The number of depressions [2] 

IPA5 Fourier with shape context [7] 

 
TABLE IV. COMBINATIONS OF EIPA5 

ID Combination of IPAs ID Combination of IPAs 

G1 All IPAs G5 IPA1, IPA2 , IPA3 

G2 Apply the CFS to G1  G6 IPA1, IPA2 , IPA3, IPA4 

G3 IPA1 G7 IPA1,IPA2 ,IPA3,IPA4,IPA5 

G4 IPA1, IPA2   

 

We conducted our performance study for each combination 

of EIPA5 in Table IV using the implementation of SVM [11] 

in the library of LIBSVM [15] with RBF kernel (γ= 1/the 

number of features). When we perform our evaluation, we test 

the classifier with 10-fold cross-validation. The classification 

accuracy for each combination of EIPA5 in Table IV is shown 

in Figure 2. The execution time of each combination of EIPA5 

is shown in Figure 3. 

In Figure 2, the accuracy is the ratio of correctly classified 

the images out of all test images. The combination of IPA1 

and IPA2, represented by G4, shows comparable accuracy to 

the combination of all IPAs denoted by G1.  

 

 

 

 

Figure 2. The classification accuracy for 

each combination of EIPA5 of Table IV  
Figure 3. The execution time for each 

combination of EIPA5 of Table IV 

 

In Figure 3, the execution time shown is the time spent by 

all IPAs in each combination. We found that G3 is the fastest 

one and G4 is the second best one. Note that G4 suggested by 

our technique is a lot faster than G1 with comparable 

accuracy for the ultrasound CAD systems. 

V. CONCLUSION 

We proposed a feature selection algorithm that utilizes the 

compact diagnostic rule set and developed a classifier for 

breast cancer diagnosis. Our experimental result shows that 

our classifier is accurate with fast execution time.  
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