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Abstract—In this paper, a multi-stream-based model adapta-
tion method is proposed for speech recognition in noisy or real
environments. The proposed scheme comes from our experience
about audio-visual model adaptation. At first, an acoustic feature
vector is divided into several vectors (e.g. static, first-order and
second-order dynamic vectors), namely streams. While adapta-
tion, a stream performing relatively high recognition performance
is updated for the stream only. Alternatively, a stream having
less recognition power is adapted using all the streams that
are superior to the stream. In order to evaluate the proposed
technique, recognition experiments were conducted using every
streams, and then adaptation experiments were also investigated
for various types of combination of streams.

I. INTRODUCTION

In order to overcome degradation of accuracy of Auto-
matic Speech Recognition (ASR), a lot of approaches have
been explored: signal enhancement such as beam forming,
signal and feature compensation like Spectrum Subtraction
(SS), acoustic model adaptation and audio-visual speech
recognition. Acoustic model adaptation, that converts model
parameters so as to match existing noises, is an essen-
tial technique for state-of-the-art ASR systems particularly
in real environments. Most adaptation techniques are cat-
egorized into posteriori-probability-based methods (e.g.[1]),
transformation-based schemes (e.g.[2]), and database-based
strategies (e.g.[3]). This paper focuses on the former two
approaches.

There is a remarkable research where static and dynamic
features were compared and it turned out that dynamic in-
formation is more effective in noisy circumstances [4]. The
authors further investigated a multi-stream recognizer that had
static and dynamic streams, then achieved the improvement by
controlling stream weights. This research indicates a possibil-
ity to improve recognition performance by treating an acoustic
feature as a combination of multiple streams, like audio and
visual streams in audio-visual speech recognition.

We have developed multi-modal (audio-visual) ASR which
uses speech data and visual data, i.e. mouth/lip images, and
model adaptation for audio-visual speech recognition was
investigated [5]. In general, the performance of acoustic stream
is better than that of visual stream except in heavily noisy con-
ditions. Then we proposed an adaptation technique for audio-
visual model, where audio model parameters are updated using
only acoustic features whereas visual model parameters are
adapted using audio-visual features. This scheme comes from
the idea that the superior modality helps the inferior modality

in the multi-modal adaptation, and improves the whole perfor-
mance of multi-modal ASR. Since the conventional acoustic
feature consists of static and dynamic parameters that have
different properties, the same adaptation scheme might be
applicable to audio-only ASR.

Inspired these researches, in this paper we propose a novel
adaptation method derived from a multi-stream technique;
an acoustic feature space is divided into several subspaces,
namely streams. Pre-recognition is performed in each stream
to evaluate the reliability. Model adaptation for a stream is
subsequently conducted using the streams that have better
performance than the current stream, before adapted models
are integrated. Recognition results are finally generated by the
adapted acoustic model. The improvement of recognition ac-
curacy is expected by exploiting superior streams and ignoring
inferior streams in model adaptation. Through an evaluation
corpus, the following recognition accuracies were estimated
and compared: original feature vector and every streams, those
after model adaptation, and our proposed adaptation strategy.

The rest of this paper is organized as follows: Section II
introduces conventional model adaptation methods as well
as our proposed model adaptation technique. Recognition
experiment and adaptation evaluation are presented in Section
III. Section IV concludes this paper.

II. MODEL ADAPTATION

A. Conventional methods

1) Maximum A Posteriori (MAP):

Maximum A Posteriori (MAP) is a method to re-estimate
model parameters using adaptation data. Let us denote a model
parameter set by θ, and a prior distribution of θ by g(θ).
Now assume a feature vector x is observed and denote its
probability by p(x|θ). A posteriori probability of θ is then
described as:

p(θ|x) =
p(x|θ)g(θ)∫
p(x|ϑ)g(ϑ)dϑ

(1)

MAP adaptation determines the model parameter so as to
maximize the posteriori probability as:

θ̂ = argmax
θ

p(x|θ)g(θ) (2)

MAP can achieve better performance than MLLR described
below, if enough adaptation data are available.
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Fig. 1. A summary of proposed multi-stream model adaptation technique.

2) Maximum Likelihood Linear Regression (MLLR):

Maximum Likelihood Linear Regression (MLLR) [2] has
been widely known in speech recognition. MLLR is typically
used so as to adapt model parameters in noisy environments.
Let us denote a D-dimensional mean vector of Gaussian
distribution at a state in a Hidden Markov Model (HMM) by
µ. MLLR projects the mean vector into an adapted vector µ̂
by the following linear regression:

µ̂ = Aµ + b (3)

where A is a D-dimensional square matrix and b is a bias
vector. The equation (3) can be rewritten as:

µ̂ = Wξ (4)

where ξ = (1 µ>)> and W =(b W ). The matrix W can be
obtained using adaptation data. Compared with MAP, MLLR
has an advantage that it requires relatively less adaptation data.

B. Proposed adaptation method

We have investigated audio-visual interaction in model
adaptation for audio-visual ASR (AVASR) [5]; how audio
information affects visual adaptation, or how visual features
contribute audio model adaptation. The conclusion in the
work is that the superior modality (usually audio stream)
helps the adaptation of the inferior modality (visual stream)
since the superior stream have still significant information to
discriminate compared with another stream. Consequently the
performance of AVASR can be improved.

Motivated by the previous research, in this paper we propose
a multi-stream adaptation technique for conventional audio-
only ASR. Figure 1 illustrates the procedure of the proposed
method, that is also explained in detail as follows:

1) Divide an input feature vector xt into N partial vectors
(called streams) x1,t, · · · , xN,t:

xt
> =

(
x1,t

>, · · · , xN,t
>)

(5)

where t is a frame index and N ≥2. An acoustic feature
vector often consists of multiple streams: Mel Frequency
Cepstrum Coefficients (MFCCs) and power parameters,
or, static features and dynamic information. In the latter
case, for example, a feature vector is divided into static
and dynamic vectors.

2) Build an acoustic model Mi for each stream xi,t. An
acoustic model M for original vectors xt as well as
a model for any combination of streams may be also
required in the following processes.

3) In an i-th stream, perform speech recognition to estimate
recognition accuracy (denoted by ai). Obtained recog-
nition transcriptions are used in 5) to 7).

4) Compare the accuracies among all the streams, and sort
the streams according to the accuracies. In the following
explanation, a(j) denotes the j-th highest accuracy score,
and i(j) shows a stream index of a(j). For example,
a(1) indicates the highest accuracy, then the index i(1)

corresponds to the stream that achieved the highest
performance.

5) When adapting an i(1)-th stream, use only adaptation
data xk,t where k = i(1), as well as an acoustic model
Mk for xk,t. The adaptation for the stream is then done
using the adaptation data and the model, to obtain an
adapted model M ′

i(1) .
6) For adaptation of an i(2)-th stream, the following adap-

tation data yk,t should be used:

yk,t
> =

(
xk1,t

>, xk2,t
>)

(6)

where k1 = i(1) and k2 = i(2). An acoustic model My

for the stream yk,t obtained in 2) is also chosen. Using
the data and the model, the model adaptation for the
stream yk,t is performed. Afterwards, the adapted model
parameters M ′

i(2) for xi(2),t are obtained.
7) Similarly, adapting i(m)-th stream requires feature vec-

tors xk1,t, xk2,t, · · · , xkm,t, as well as a corresponding
acoustic model. The adapted model parameters M ′

i(m)

for the stream xi(m),t are extracted after the adaptation.
8) Through the last processes 5), 6) and 7), adapted model

parameters M ′
i for each stream are obtained. All the

model parameters are subsequently assembled to con-
struct an adapted model M ′.

9) Using the adapted model M ′ and the original features
xt, recognition is finally performed to obtain a recogni-
tion result.
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Fig. 2. Recognition accuracies of an original acoustic feature and its stream
vectors (without adaptation).

TABLE I
ACOUSTIC STREAMS (VECTORS) USED IN SECTION III.

Name Dim. Parameter
orig 39 12 MFCCs, E, their ∆ and ∆∆
static 13 12 MFCCs and E
deriv 13 12 ∆MFCCs and ∆E
accel 13 12 ∆∆MFCCs and ∆∆E
mfcc 12 12 MFCCs
deriv+accel 26 12 ∆MFCCs, 12 ∆∆MFCCs,

∆E and ∆∆E
† E means a low-power coefficient.

III. EXPERIMENT

A. Database

In order to evaluate the proposed adaptation, Japanese
connected-digit speech corpus CENSREC-1 (AURORA-2J)
[6] was utilized. The training data set consists of 8,440
clean utterances made by 110 speakers (55 females and 55
males). The test data include not only clean but also noisy
speech waveforms; eight kinds of noises (subway, babble, car,
exhibition, restaurant, street, airport and station) were added to
the clean speech at six SNR levels (20dB, 15dB, 10dB, 5dB,
0dB and −5dB), respectively. The test data set for each noise
condition contains 1,001 utterances spoken by 104 speakers
(52 females and 52 males). Each training or test utterance
includes up to seven digits. Note that there are nine or ten
utterances for each test speaker.

B. Experimental setup

Conventional HMM was employed as an acoustic model,
which was built using the training data. An HMM was
prepared for each word (digit or silence), having 16 states
and 20 mixtures for digit, while 3 states and 36 mixtures for
silence. The number of word HMMs was 13: “one”, “two”,
· · · , “nine”, “zero”, “oh”, silence and short-pause. Any other
experimental conditions were the same as those of the baseline
system in CENSREC-1.

An original acoustic feature vector consisted of 12-
dimensional MFCCs and a log power, their ∆ and ∆∆ (de-
noted by orig). This 39-dimensional feature vector was di-
vided into three partial vectors: 13-dimensional static elements
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Fig. 3. Proposed MLLR adaptation matrix for 39-dimensional acoustic
feature vectors (static, deriv and accel).

(static), 13 first-order dynamic coefficients (deriv) and
13 second-order dynamic parameters (accel), respectively.
Table I summarizes the acoustic features used in this section.

C. Pre-recognition experiment

Figure 2 depicts recognition accuracies of every acoustic
features (orig, static, deriv and accel) at six SNR
levels as well as clean condition. For comparison, two ad-
ditional features were also tested; mfcc had only 12 static
MFCC coefficients, deriv and accel were combined into
deriv+accel. The accuracy of static was much de-
graded in noisy environments mainly due to a static log-
power coefficient. Suppressing the power (mfcc) recovered
the accuracy to an extent, however, the accuracy was still
lower than that of orig. On the other hand, dynamic features
(deriv and accel) were relatively robust against noise.
Furthermore, deriv+accel achieved the best performance
among all the features (slightly better than deriv).

It is also found that the order of recognition accuracies was
almost consistent in noisy environments:

static < mfcc < orig
< accel < deriv < deriv+accel (7)

In the following experiments, the fixed order denoted in (7) is
adopted.

D. Model adaptation setup

The preliminary experiment shows that the most reliable
stream is deriv followed by accel, whereas static
is not powerful to distinguish digits in noisy environments.
Therefore, our proposed adaptation technique employed the
following strategy; mean vectors in a Gaussian distribution for
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Fig. 4. Recognition accuracies with/without model adaptation.

static were updated using 39-dimensional audio features
(orig). Mean vectors for the first-order and second-order
derivatives were adapted using deriv and deriv+accel
parameters, respectively. Both unsupervised MAP-based and
MLLR-based methods were investigated; all the utterances
in each speaker were pre-recognized to obtain a recognition
result, subsequently the adaptation was executed using the
same speech data and the recognition result. Afterwards, the
utterances were finally recognized using the adapted model.
Regarding MLLR, global adaptation was applied in this paper.
MLLR adaptation employed in the following experiment is
illustrated in Figure 3.

E. Experimental result

Figure 4 shows adapted recognition results of each stream
(orig, static, deriv, accel and deriv+accel) in
addition to the proposed adaptation technique (denoted by
proposed). Each entry means the average of recognition
accuracies at the seven noise conditions. It is observed that
static was obviously lower than the other streams. When
conducting MAP, orig recovered the accuracy, however,
there were few improvements in deriv and accel. This
may be caused due to lack of adaptation data. In contrast, the
performances of MLLR results were successful. For example,
deriv+accel achieved 21.0% and 13.8% absolute improve-
ments compared to orig without/with MLLR, respectively.

Regarding the proposed scheme, 3.4% relative error re-
duction on average was achieved in MLLR, compared with
deriv+accel. Since this might seem not to be a significant
improvement, we conducted a further analysis. Figure 5 shows
MLLR-applied recognition performances of proposed as
well as its source streams orig, deriv and deriv+accel
in ten noise conditions. proposed succeeded in seven condi-
tions (maximally 19% relative error reduction from deriv or
deriv+accel), however, it could not recover the accuracy
in the other cases (babble, restaurant and airport). In such
the cases, it is found that orig performance is quite low;
the accuracy was sometimes below zero at low SNR circum-
stances. This means the adaptation did not work well due to
corrupted transcriptions. Since the proposed method used the
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Fig. 5. Recognition accuracies of our proposed method and every streams
after MLLR in noise conditions.

degraded model for static coefficients, the performance fell
down from the deriv and deriv+accel. It is thus crucial
to use more reliable transcription (e.g. deriv+accel) to
adapt a corrupted stream (e.g. static). In addition, it seems
that the proposed scheme worked well in relatively stationary
noises (e.g. subway and car), on the other hand, the method
suffered from non-stationary environments (e.g. babble and
restaurant). In such the environments, incremental or frame-
by-frame adaptation may be effective.

IV. CONCLUSION

This paper proposes a multi-stream model adaptation; an
input feature vector is divided into several streams. When
adapting, model parameters in each stream are updated using
streams where their performances are superior to the cur-
rent stream. Recognition experiments for static and dynamic
streams were conducted, followed by adaptation experiments.
The recognition accuracy drastically increased from 46.2%
(baseline) to 68.3% (using proposed adaptation). From the
results, it is concluded that the superior audio stream is helpful
to adapt the inferior audio stream in model adaptation, as same
as the multi-modal model adaptation we previously reported.

As our future work, we would like to deeply explore the
mechanism and factor of further improvement. For example,
instead of choosing appropriate streams, introducing stream
weight factors in model adaptation might be investigated.
Estimation of stream confidence in order to determine the
stream order or to choose effective streams is also expected.
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