
3D Shape Retrieval from a 2D Image as Query
Masaki Aono∗ and Hiroki Iwabuchi∗

∗ Toyohashi University of Technology, Aichi, Japan
E-mail:aono@tut.jp Tel: +81-532-44-6764

Abstract—3D shape retrieval has gained popularity in recent
years. Yet we still have difficulty in preparing a 3D shape
by ourselves for query input. Therefore an easy way of doing
3D shape search is much awaited in terms of query input. In
this paper, we propose a new method for defining a feature
vector for 3D shape retrieval from a single 2D photo image.
Our feature vector is defined as a combination of Zernike
moments and HOG (Histogram of Oriented Gradients), where
these features can be extracted from both a 2D image and a
3D shape model. Comparative experiments demonstrate that our
approach exhibits effectiveness as an initial clue to searching for
more relevant 3D shape models we have in mind.

I. INTRODUCTION

In recent years, use of 3D shape models has been expanding
rapidly in a wide range of fields, including 3D movies, 3D
TVs, design of industrial products, and 3D medical imaging.
At the same time, in order to efficiently manage a 3D shape
model database, an innovative technology has become neces-
sary to search and retrieve, based on the contents of the shape
of a 3D model. However, in the research on 3D shape retrieval
in the past, most efforts have been devoted to providing a given
3D model as a query. If there is no 3D model at hand, it is
very difficult to search an appropriate 3D shape model with
high accuracy.

In this paper, we propose a method for 3D shape retrieval
from a photograph, taken by a digital camera, for instance, as
a query. As far as we know, there has been little research
on 3D model retrieval from 2D photo images. Ansary et
al [1] indicated one of such approaches to 3D shape model
retrieval from 2D photo images, using Zernike moments
generated from multiple viewpoints of silhouette images from
3D model. However, their approach has two drawbacks. First,
position and scale of a given object greatly affects the search
results. Second, searching for an object that contains surface
convexities and concavities (e.g. human face, car body shape)
might mislead the search results, because such a surface detail
might be hidden in the silhouette.

In our proposed method, we attempt to circumvent these two
problems. For the first problem, in order to align the position
and the scale of a given 2D image as a query, with the images
that are generated from 3D shape models through rendering
and kept in 3D shape database, we apply normalization to both
2D images and 3D shape models before extracting features.
For the second problem, we propose a composite feature vector
for representing both a 3D shape model and a 2D query
photo image. Specifically, we propose a composite feature
vector as a combination of Zernike moments which correspond
to silhouette images, and the HOG (Histogram of Oriented

Gradients) features which correspond to shaded depth-buffer
images. Naturally, by attempting to integrate multiple features,
the dimensions of combined feature vectors tend to become
large. We also have noticed that HOG feature vectors are
suitable for representing objects that have surface convexities
and concavities, but are not robust against rotation. Moreover,
we have reduced the number of dimensions, by applying
Principal Components Analysis (PCA) for each block of HOG
features, which we call PCA-HOG. As for the sensitivity to
rotation, we have generated multiple images from a single 2D
image, by rotating it little by little with respect to the center
of the image multiple times in advance. In addition, we have
generated mirror images of each rotated image with respect
to the vertical axis assuming the origin at the center of the
image.

We have conducted experiments to confirm the effectiveness
of our method against Ansary et al’s method. To evaluate our
method, we have used the Princeton Shape Benchmark [2], a
standard 3D shape benchmark widely used. As a result, we
have achieved significantly better search accuracy.

In the following sections, we will first describe normaliza-
tion of both 3D (pose normalization) and 2D (size normaliza-
tion). We will then describe feature alignment between a 2D
image and 3D shape models, followed by the similarity com-
putation from aligned features. Finally, we will demonstrate
our method through experiments in Experiment and Evaluation
section, and summarize our results in the Conclusion.

II. RELATED WORK

3D shape retrieval has gained popularity ever since a well-
known benchmark data called Princeton Shape Benchmark
(PSB) data [2] became available. Most of the previous research
on 3D shape retrieval has focused on encoding of 3D shape
features (or descriptors) [3], in terms of robustness, size,
position, and orientation.

Among many shape features, a group of researchers defined
theirs by means of multiple 2D projected images. The earliest
such approach was proposed by Chen et al [4], [5]. They are
also one of the precursors of using Zernike moments, while
Novotni et al [6] used Zernike moments around the same
time, for 3D shape retrieval. Defining 3D shape features from
multiple 2D images leads to the idea of searching 3D shape
models from 2D images. The early such approaches included
those of Mahmoudi et al [7] and Ohbuchi et al [8].

In their FOX-MIIRE 3D-Model Search Engine [9], [10],
Ansary et al [1] proposed an approach to 3D shape retrieval
from 2D images, where they used 49 dimensions of Zernike



moment coefficients generated from silhouette images, each
of which in turn was produced from a 3D model, by looking
at the model from different multiple viewpoints. In addition,
they introduced a probabilistic Bayesian method for indexing
3D models. With their search engine, it is possible to play
with 3D models, sketches, and photos as a query.

Since we will compare our approach with that of Ansary et
al, we will estimate their approach in more detail. Ansary et
al’s method first computes a unit sphere, and generates a set
of 320 uniformly spread points on the sphere, assuming these
points are the characteristic viewpoints to generate silhouette
images. Then, for each generated silhouette image, they com-
pute Zernike moments. Finally they cluster 320 views into the
best characteristic view set, using X-Means algorithm [11] and
Bayesian Information Criteria (BIC). However, their approach
has two drawbacks. First, the posture, position, and scale of
a given object as well as camera parameters for 2D photos
greatly affect the search results. Second, searching for an
object that contains surface convexities and concavities (e.g.
human face, car body shape) might end up in unintended
search results, because such surface detail might be hidden
in the silhouette.

As another example of 3D retrieval from 2D silhouettes,
Napoléon el al [12] conducted similar research with mul-
tiple silhouette images. Their query includes not only 2D
silhouettes, but hand-drawn sketches. They introduced several
interesting ideas including silhouette/contour alignment using
dynamic programming in a coarse-to-fine way for search
efficiency. Their approach does not account for 3D shape
retrieval from a 2D photo as a shaded query image.

III. NORMALIZATION

Before alignment of a set of 3D shapes and a 2D query
image, it is necessary to perform normalization of both 3D
shapes and a 2D image. The normalization can be regarded
as a preprocessing for feature alignment between 3D and 2D
features.

A. 3D Pose Normalization

One of the problems of the previous approach by Ansary et
al [1] is that the search result is susceptible to posture, location,
and scale variations of input query. To alleviate this problem,
we have applied normalizations to both 2D input query image
as well as 3D shape models. For 3D pose normalization, we
follow our previous work [13].

Most of the pose normalization methods proposed so far,
based on Principal Component Analysis (PCA), rely on com-
puting the principal axes from the collection of points on the
surface of a given 3D shape [14], [15]. We herewith call the
pose normalization method using the collection of points on
the surface PointSVD.

With PointSVD, we first randomly generate m points by
means of Osada’s method [16]. Specifically, to generate a
uniformly random point p on an arbitrary triangle composed
of vertices a, b, and c, we employ the following formula:

p = (1−√r1)a+
√
r1(1− r2)b+

√
r1r2c

In our implementation, two random variables r1 and r2 in the
above equation are computed by a Niederreiter [17] pseudo-
random number generator. We then compute the centroid p̄
and the orientation matrix Q. The centroid p̄ of a 3D triangle is
computed by taking the average of randomly generated points
on the triangle as follows:

p̄ =
1

m

m∑
i=1

p(i)

The generated points are translated in space so that the centroid
becomes the origin of the space, which is represented by point
transformation matrix P .

P =

⎛
⎜⎝
p
(1)
x − p̄x p

(2)
x − p̄x . . . p

(m)
x − p̄x

p
(1)
y − p̄y p

(2)
y − p̄y . . . p

(m)
y − p̄y

p
(1)
z − p̄z p

(2)
z − p̄z . . . p

(m)
z − p̄z

⎞
⎟⎠ ,

where P is decomposed by Singular Value Decomposition or
SVD as below:

P = UΣWT ,

where U and W are 3×3 orthogonal matrices, and Σ is a 3×3
diagonal matrix, having its singular values in descending order.
The rotation matrix Q is computed by taking the transpose of
left singular vectors as represented by U .

Q = ÛT

Finally, we compute the reflection matrix F from rotated point
sets P ′, with P ′ = QP as follows:

F =

⎛
⎝sign(fx) 0 0

0 sign(fy) 0
0 0 sign(fz)

⎞
⎠

where

fx =

m∑
i=0

sign(p′(i)x )(p′(i)x )2 .

fy and fz are similarly defined. The size and location in-
variance is achieved by transforming the matrix V into V ′

with k number of points, where V is a matrix already having
rotational and reflective invariance as per below:

V =

⎛
⎜⎝
v
(1)
x − p̄x v

(2)
x − p̄x . . . v

(k)
x − p̄x

v
(1)
y − p̄y v

(2)
y − p̄y . . . v

(k)
y − p̄y

v
(1)
z − p̄z v

(2)
z − p̄z . . . v

(k)
z − p̄z

⎞
⎟⎠

V ′ = FQV.

It should be noted that the size invariance is achieved by
calculating the distance between the centroid and an arbitrary
point on the surface divided by the largest distance between the
centroid and the farthest point on the surface if we put the 3D
object in a unit sphere centered at the centroid. Our PointSVD
is different from Ohbuchi et al’s method [14] in the way we
resolve the reflective invariance. Specifically, in Ohbuchi et
al’s method, the distance computation between feature vectors
is carried out by considering the reflective ambiguity, whereas
the method is heavily dependent on their own feature vectors,



which make it difficult to apply to other feature vectors.
On the other hand, as one of earlier pose normalization
methods, “Continuous PCA” by Vranic et al [15] determines
the principal axes with an ordinary Principal Component Anal-
ysis (PCA) accompanied by the approximation of numerous
points on the surface. Continuous PCA resolves the reflective
ambiguity by using these approximate points on the surface.
Because the method relies on approximation and is sensitive to
surface tessellation, it often happens that almost similar objects
end up with significantly different pose normalizations.

Our PointSVD first generates random points on the surface
as usual, then analyzes the principal axes and resolves reflec-
tive ambiguity. The reflective ambiguity is resolved similar
to Ohbuchi et al’s method, yet our method does not depend
on feature vectors similar to Vranic et al’s method [15]. In a
sense, PointSVD combines the advantages of the two methods.

B. 2D Image Normalization

In addition to the pose normalization of 3D shape models,
2D query image has to be normalized to make it independent
of size, location, and orientation of the object in the 2D image.
We first enclose the object in the 2D image by a bounding box
to trim the background. We then make the resolution of the
remaining image be size 256 by 256.

IV. FEATURE ALIGNMENT BETWEEN 2D IMAGE AND 3D
SHAPE MODELS

Our proposed 3D shape retrieval system is illustrated in
Fig. 1. Unlike one of the previous works by Ansary et
al [1], we have a composite features extracted and kept in
the database (DB) as shown in Fig. 1.

One of the problems with the previous approach by Ansary
et al [1] is that the surface convexities and concavities are
lost during the feature alignment between 2D images and
3D shape models. This is especially true of shapes such as
car bodies and humans, where complex surface bumps are
abundantly observed. Technically, this is due to the fact that
only silhouette projections have been used, attempting to align
features between 2D images and 3D shape models.

For better feature alignment in order to provide the search
system with better clues to similarities between 2D images
and 3D shape models, we have taken the approach with a
composite feature that accounts for surface convexities and
concavities faithfully to some extent.

It should be noted that in order to align 2D and 3D features,
they have to be identical in terms of dimensions and semantic
meaning. As we will describe later, our features are two-
fold. One of the features comes from Zernike moments [18],
similar to the approach of Ansary et al. On the other hand,
we introduce HOG (Histogram of Oriented Gradients) [19], as
another feature, attempting to account for surface convexities
and concavities. These features will be elaborated in the
following sections.

A. Feature Computation from 3D Shape Models

Unlike ordinary feature definitions for 3D shape search, it
is extremely difficult to preserve compatibility between 3D
and 2D features. Our main idea is to maintain a composite
of two different features, common to both 3D and 2D, which
makes it possible to compute the similarity between 3D shapes
preprocessed and kept in our system database, and a given 2D
image as a query.

Specifically, we first introduce a collection of shaded depth-
buffer images rendered from 3D shape models, by projecting
each 3D shape to a view-plane after pose normalization.
Because depth-buffer images have “depth” information as
gray scale pixels, it is theoretically possible to cope with the
surface convexities and concavities. However, to align features
obtained by depth-buffer images with a 2D image having
unknown orientation, it is natural to think of maintaining a
collection of depth-buffer images; otherwise, predicting a 2D
query image becomes a formidable task. The question that
remains is how many viewpoints (i.e. projected view planes)
are sufficient to deal with a given 2D query image of unknown
orientation. This problem is by no means easy to resolve.

After trial and error, we have decided to apply depth-shaded
rendering to obtain depth-buffer images from 26 distinct
viewpoints as illustrated in Fig. 2. This process has to be done
in advance to construct “Feature set 1” in Fig. 1. An example
of 26 depth-buffer images is shown in Fig. 3. From these
depth-buffer images, we will compute the HOG features [19]
discussed in the next section.

On the other hand, another common feature we have
adopted is a collection of Zernike moments [18]. These
moments have a salient feature of rotational invariance, which
consists of an orthogonal set of moments with polar represen-
tation. In our approach, Zernike moments are extracted from
binary silhouette images, in the way similar to Ansary et al [1]
and Chen [4]. Actually we adopt the same number of dimen-
sions (49 dimensions) for Zernike moments with Ansary et al’s
approach, because in the Experiment section we will compare
our approach with that of Ansary et al. However, since there is
a symmetry of views for binary silhouette images, we reduce to
14 viewpoints as illustrated in Fig. 4, instead of 26 viewpoints
for shaded depth-buffer images as shown in Fig. 3 generated
by the 26 distinct viewpoints illustrated in Fig. 2. Zernike
moments computed from silhouette images thus far are kept
in our database as “Feature set 2” in Fig. 1. The overall 3D
composite feature vector generation is depicted in Fig. 5.

It is by now straightforward to make two separate features
from a given 2D image as illustrated below in Fig. 1. The
basic idea here is that we regard a given 2D query image as
a projected image from a virtual 3D shape object similar to
those kept in our 3D shape database. The only difference is
that a 2D query image is assumed to be just a single snapshot,
instead of taken from either 26 or 14 different viewpoints. Still,
it is possible to extract both the HOG features and the Zernike
moments, so that we can compare the similarity between the
2D query image with those kept in our 3D shape database.



Fig. 1. System concept: 3D shape retrieval from 2D image

Fig. 5. Flow of computing proposed composite feature vectors from a 3D model

V. SIMILARITY COMPUTATION FROM ALIGNED FEATURES

In this section, we describe how we compute the similarity
between a given 2D query image and 3D shape models, where
both of them have two separate features. Before showing how
it is going to be done, we would like to briefly overview what
the actual features are expressed mathematically and how they
are computed.

A. Zernike moments as a feature from silhouette images

The basic procedure for computing Zernike moments as a
feature is summarized as follows:

1) Determine ρ (a parameter in the radial direction) and θ (a
parameter in the angular direction) from polar expression
of Zernike polynomial in a unit circle

2) Compute real and imaginary parts of Zernike moments
from ρ and θ from Zernike polynomial

3) From N by N binary (silhouette) image, compute
Zernike moments of size n by m, assuming that the
degree be denoted by n and the repetition number be
denoted by m.

In the subsequent description, we use notation from Amayeh
et at [20]. Zernike polynomial denoted by Vn,m(x, y) is a



Fig. 2. 26 viewpoints selected after pose normalization

Fig. 3. Depth-buffer images obtained by rendering a collection of 3D shape
models projected onto viewplanes from 26 different viewpoints

complex polynomial with an orthogonal basis in a unit circle.
Mathematically, it is represented by the following formula:

Vn,m(x, y) = rn,m(ρ)ejmθ(0 ≤ ρ ≤ 1, 0 ≤ θ < 2π),

where n represents the degree of polynomial, m is a repetition
number having the property that n−|m| is even and |m| ≤ n.
ρ =

√
x2 + y2 is a distance from the center to (x, y), and

θ = tan−1(y/x) is an angle between x axis and a vector

Fig. 4. 14 viewpoints for silhouette images

(x, y). rn,m(ρ) is expressed per below:

rn,m(ρ) =

(n−|m|)/2∑
s=0

(−1)s(n− s)!ρn−2s

s!((n+ |m|)/2− s)!((n− |m|)/2− s)!

Zernike moment An,m with degree n and repetition number
m is expressed by the following formula:

An,m = Cn

∫ ∫
E

f(x, y)V ∗
n,m(ρ, θ)dxdy,

where Cn = (n+1)/π and the pixel value at (x, y) is denoted
by f(x, y). By digitizing this continuous form, we obtain the
following:

An,m = Cn

∑
(x,y)∈E

f(x, y)V ∗
n,m(ρ, θ)

E = {(x, y)|x2 + y2 ≤ 1}
In our approach, we compute Zernike moments for each

circular area of radius R, expressed by x2 + y2 ≤ R2, where
(x, y) denotes a pixel coordinate. Since the unit circular area
is represented by x2 + y2 ≤ 1, we transform pixel (x, y) by
x ← x/R and y ← y/R. It is also noted that if we assume
the origin to be at (0, 0), the central pixel value may not be
considered. To avoid this situation, we pick up a subpixel
coordinate (1/2, 1/2) as the origin. From these considerations,
two parameters ρ and θ are defined as follows:

ρ =
√
(x−R − 1/2)2 + (y − R− 1/2)2

θ = tan−1 y −R− 1/2

x−R− 1/2

The actual Zernike moments are computed by the next equa-
tion with real and imaginary part 90 degree phased:

An,m = Cn[Re(x, y)− jIm(x, y)]

Re(x, y) =
∑

(x,y)∈E

f(x, y)rn,m(ρ) cosmθ

Im(x, y) =
∑

(x,y)∈E

f(x, y)rn,m(ρ) sinmθ

B. HOG as a feature from shaded depth-buffer images

For a shaded image projected on a plane, it is well-known
that there are a variety of ways to extract shape features
for shape matching. Examples include Scale Invariant Feature
Transform (SIFT) [21], [22] and Speeded-Up Robust Features
(SURF) [23]. These are classified into local shape features,
and often referred to as “bag of keypoints” (BOK) [24] or
“bag of visual words” (BOVW) [25]. In particular, SIFT
has a salient feature of robustness to most image transforms
including rotation. It should also be noted that local features
tend to be verbose, which makes dimensionality reduction such
as PCA fit very well. Examples include PCA-SIFT [26].

On the other hand, in the area of general shape recogni-
tion such as human shape recognition, HOG (Histogram of
Oriented Gradients) reportedly behaves better than PCA-SIFT



and wavelets such as Haar-like features [19]. Our 3D shape
database includes quite a few human shapes and animals as
illustrated in the Experiment section, and we have adopted
the HOG as another feature that corresponds to shaded depth-
buffer images for 3D shape as well as a 2D (shaded) snapshot
given as a query. HOG is known to be robust to geometric and
photometric transformations, except object rotation. Unlike
other local features, HOG is computed on a dense grid of
uniformly spaced cells and uses an overlapping set of cells
called a block. A block is a unit of our normalization of HOG
features.

Our HOG feature is computed by the following steps:
1) Compute gradient magnitude m and gradient orientation

θ
2) Compute a histogram by taking gradient orientation as

horizontal axis
3) Normalize features for each block

Gradient magnitude m and gradient orientation θ are defined
by the following formula:

m(x, y) =
√
fx(x, y)2 + fy(x, y)2

θ(x, y) = tan−1 fy(x, y)

fx(x, y)
,

where

fx(x, y) = L(x+ 1, y)− L(x− 1, y)

fy(x, y) = L(x, y + 1)− L(x, y − 1)

and L(x, y) denotes the image value at pixel (x, y).
In HOG, as suggested above, we usually define a cell,

a collection of pixels. In our case, we define a cell as
the 16 × 16 square pixel region shown in Fig. 6. Fig. 7
illustrates how original L(x, y) (shaded depth-buffer image)
is associated with a cell. As suggested by Dalal [19], we
divide the gradient orientation into 9 bins for 0-180◦ (i.e. by
20◦ for each bin). This makes it possible to represent a HOG
feature by a 9 dimensional vector per cell, or f(cell[i, j]) =
[f1(i, j), f2(i, j), ..., f9(i, j)]. A feature vector for a cell as
well as the derived histogram is illustrated in Fig. 6.

Fig. 6. Definition of a histogram and a cell composed of 16 by 16 pixels

In the third step, we normalize the histogram illustrated
in the rightmost graph in Fig. 6. Gradient magnitudes vary

Fig. 7. For each cell, we can define a HOG feature vector with nine dimensions

Fig. 8. When normalization has taken place, we allow block overlaps

over a wide range owing to local variations in illumination
and foreground-background contrast. Therefore, effective local
contrast normalization turns out to be essential for good perfor-
mance. However, instead of normalizing a cell, we normalize
a block, consisting of q × q cells. Through trial and error, we
let q = 3. Thus, a block consists of 3 × 3 cells. It should be
also noted that the normalization works very well if we permit
overlapping blocks as illustrated in Fig. 8.

Let v be the unnormalized block vector. The normalized
block vector ṽ with L2-norm is computed per below:

ṽ =
v√

(
∑q×q×bin

k=1 v(k)2) + ε2
,

where ε denotes a small constant for smoothing, and bin
denotes the number of bins for gradient orientation. In our
implementation, bin = 9. Since we adopt a shaded depth-
buffer image resolution of 256 × 256 pixels, a cell of 16 × 16
pixels, a block of 3 × 3 cells, and a block overlapping nearby
blocks, both horizontal and vertical directions need to shift 14
(= 16 - 2 outmost cells ) times to sum up a HOG feature vector,
which results in 14 × 14 blocks. In total, a HOG feature vector
can be expressed by the following formula:

f(cell[i, j])k = [f1,k(i, j), f2,k(i, j), ..., f9,k(i, j)],



where k is a block index 1, ..., 14 × 14, and i and j are the
cell indices taking values 1, 2, and 3, respectively. Thus, the
dimension of a HOG feature vector amounts to 15,876 (= 14×
14× 3).

C. Enhancement to HOG

We have noticed that there are two major problems with
a naı̈ve way of producing a HOG feature vector. It may be
summarized per below:

• A naı̈ve HOG generates a large feature vector. This might
have redundant information and might suffer from the
curse of dimensionality.

• A HOG is known to have rotational sensitivity.

To cope with these problems, we have taken the following
countermeasures.

1) Avoiding large dimensions of HOG: Redundant informa-
tion as well as the curse of dimensionality that might occur
with a high-dimensional HOG feature vector can be circum-
vented by dimensionality reduction. We have observed that
most of the redundancy occurs since we allow block overlaps.
It is therefore natural to apply dimensionality reduction each
time block is generated. Although there are many sophisticated
nonlinear dimensionality reductions [27] known to date, we
have applied the simplest linear dimensionality reduction,
Principal Component Analysis (PCA), to each block, inspired
by Kee’s PCA-SIFT [26]. To hold important information, we
use the largest k components so that cumulative proportion
becomes over 0.90 (90%) as a rule of thumb.

2) Rotational sensitivity: A HOG turns out to be one of
the good local features for capturing surface convexities and
concavities by means of edge gradients. However, we must
solve the problem of rotational sensitivity to some extent. The
key to alleviating this problem is to prepare a priori images
rotated by 45 degrees as well as their mirror images as shown
in Fig. 9. Note that this treatment is only applied to a 2D
query image.

D. Similarity Computation

Once two feature vectors are set, we are ready to perform
similarity computation between a given 2D query image and
3D shape models kept in the database. Instead of doing direct
similarity computation, it is much easier to perform dissimilar-
ity computation by defining distance between a pair of objects
represented by a composite of feature vectors. In the following,
we describe dissimilarity computation for each feature, and
then define our proposed dissimilarity computation as a whole.

1) Dissimilarity computation for Zernike moments: Assum-
ing x and y to be Zernike moment features from a 2D query
image and a silhouette image projected from a 3D shape
model, dissimilarity between x and y is represented by the
following equation:

dZ(x,y) =

N∑
k=1

|xk − yk|

Normalized dissimilarity is thus represented with L1-norm by

d̃Z(x,y) =
dZ(x,y)

‖dZ(x,y)‖1 + ε
.

2) Dissimilarity computation for PCA-HOG: Unlike
Zernike moments, feature vectors for HOG (or PCA-HOG)
are defined to each block of cells, consisting of a collection
of histograms based on gradient magnitude and gradient orien-
tation. We therefore need to know the proportion of overlaps
at each element of feature vector, and also need to skip from
further computation for the sake of efficiency, if either of the
elements is zero. It is therefore reasonable to first introduce
a measure of similarity, instead of dissimilarity, which takes
care of overlaps and zero-element skips with Bhattacharya’s
coefficients [28] as follows:

simH(x,y) =

N∑
k=1

√
xkyk

Normalized similarity can be represented with L1-norm by

˜simH(x,y) =
simH(x,y)

‖simH(x,y)‖1 + ε
.

It is now straightforward to define the dissimilarity per below:

d̃H(x,y) = 1− ˜simH(x,y)

3) Dissimilarity computation as a whole: Given dissimilar-
ities for Zernike moments and PCA-HOG, all that remains is
how we combine them to make a dissimilarity measure as a
whole. We propose to define a linear combination of the two
dissimilarities as expressed by the following formula:

d(x,y) = αd̃Z(x,y) + βd̃H(x,y),

where α + β = 1. To determine these weights, we adopt the
so-called purity selection method [29]. The purity selection
method tries to measure the “coherence” of the retrieved
objects in the first positions of the ranking, at the cost of giving
multiple queries in advance as a learning phase to generate
similarity rankings for the queries.

VI. EXPERIMENTS AND EVALUATIONS

In this section, we will describe comparative experiments
with the previous approach by Ansary et al [1]. The ex-
periments have been conducted by a PC with Intel Core
i7 920 CPU, 16GB memory, and Debian Linux operating
system with Java 1.6. Princeton Shape Benchmark (PSB) data
have been used [2]. Query 2D photo images as shown in
Fig. 10 were collected from the Internet. We selected those
2D photo images which have clear backgrounds, trying to
avoid extra preprocessing to identify what objects sitting in
the background must be removed.



Fig. 9. Rotational sensitivity of HOG can be alleviated by having rotated images in advance as well as their mirror images

A. Evaluation Measures

The evaluation measures we selected include Recall, Pre-
cision, First Tier (1-Tier), Second Tier (2-Tier), and Nearest
Neighbor (NN) [2], [30]. Let rel(x) be the number of objects
that are relevant among the top x rankings, let K be the
number of closest matches returned, and let C be the number
of objects in the category belonging to a query. Then, the
evaluation measures are given by the following formula:

Recall =
rel(K)

C

Precision =
rel(K)

K

First Tier =
rel(C − 1)

C − 1

Second Tier =
rel(2(C − 1))

C − 1

Nearest Neighbor = rel(1)

Micro-averaged values [31] are calculated by constructing
a global contingency table (where table has category (row)
by category (column) size) and then calculating evaluation
measures using these sums. We avoided macro-average, since
macro-averaged scores are calculated by first computing evalu-
ation measures for each category and then using their average.
Some of the categories in PSB have only a few shape models,
which makes macro-average have a large variance across
different categories.

B. Overall Results

The averaged comparison result of our proposed method
against the “baseline” method of Ansary et al [1] is shown in
Fig. 11. Their ranking results can be verified by FOX-MIIRE
3D-Model Search Engine [32].

Fig. 10. Sample 2D input query images crawled from the Internet

Table I summarizes the average behavior of other evaluation
measures. Our proposed method outperforms the baseline
method by 11.2% in First Tier (1-Tier), 9.1% in Second Tier
(2-Tier), and 26.2% in Nearest Neighbor (NN). This means
that our idea of the composite features with Zernike moments
and HOG (or PCA-HOG) are effective with respect to PSB
data set, compared with Ansary et al’s method. Table II shows
the experimental results of the dimensionality reduction of
HOG by PCA (PCA-HOG), against a plain HOG. PCA-HOG
turns out to be better in 1-Tier and NN. The dimension of
the original HOG was 15,925 (15,876 for HOG itself plus 49
for Zernike), while the dimension of PCA-HOG was 3,536.
The reduction ratio is approximately 78%. As mentioned
previously, the dimension of PCA-HOG was determined by
the cumulative proportion of principal components becoming
over 90%, corresponding to the largest k eigenvalues of HOG
feature vectors.

C. Feature Statistics

Since our proposed features consist of HOG and Zernike
moments, it is only natural to elucidate which one is more
effective if we separately apply the two features to 3D shape
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Fig. 11. Average recall-precision graph of our proposed method and baseline
method of Ansary et al [1]

TABLE I
COMPARISON OF OUR PROPOSED METHOD AND BASELINE METHOD IN

TERMS OF 1-TIER, 2-TIER, AND NN

Method 1-Tier (%) 2-Tier (%) NN (%)
Baseline 14.3% 24.2% 16.7%
Proposed 25.5% 33.1% 42.9%

retrieval. Fig. 12 shows the recall-precision graph of three
results; proposed composite approach, HOG-only approach,
and Zernike-only approach. Obviously, HOG is more effective
than Zernike moments. However, it should be noted that this is
accomplished at the cost of consuming much more dimensions
than Zernike moments.
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Fig. 12. Recall-precision graph comparing our proposed, HOG-only, and
Zernike-only approaches

TABLE II
COMPARISON OF HOG AND PCA-HOG IN TERMS OF 1-TIER, 2-TIER,

NN, AND DIMENSIONS

Method 1-Tier (%) 2-Tier (%) NN (%) Dim.
HOG 23.1% 37.5% 41.3% 15,925

PCA-HOG 25.5% 33.1% 42.9% 3,536
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Fig. 13. Recall-precision graph of human category with respect to our
proposed method and baseline method

D. Selected Category Comparison

Fig. 13 shows an averaged recall-precision graph for human
category in PSB, given a collection of 2D human photo images
such as those included in Fig. 10. As shown in Fig. 14,
the top 5 ranking results reveal that the baseline method
lists three completely different objects, while our proposed
method lists human shapes in the first four out of five.
We investigated why this behavior occurred in the baseline
method, and conjectured that something as depicted in Fig. 15
might have occurred. Specifically, the baseline method relied
on the similarity of two objects from silhouette images, while
our proposed method took advantage of both silhouette and
shaded depth-buffer images, which we consider makes for the
remarkable difference.

Fig. 14. Top 5 ranked search results of baseline and our proposed method



Fig. 15. One reason why baseline method fails to have good top 5 results. The
helicopter silhouette looks similar to the silhouette of a man with his hands
wide open, while our proposed method use shaded depth-buffer images, which
make a difference between the two features.

VII. CONCLUSION

We proposed a new composite feature definition for 3D
shape retrieval from a single 2D query photo image. Our
feature was composed of a weighted combination of Zernike
moments from silhouette images and HOG (Histogram of
Oriented Gradients) features from shaded depth-buffer images.
Given the 3D shape database, in advance we computed these
two features separately using multiple projections and incor-
porated them into our system. Then, given a 2D snapshot
photo, we assumed it as a single projection of a 3D shape
and computed its Zernike moments and HOG features. Finally,
we proposed the method of combining the two features into
a composite feature vector and computed the similarity (or
dissimilarity) between the feature and those kept in our 3D
shape database. Through our comparative experiments, we
demonstrated that our proposed method outperformed the
previous method by Ansary et al.

In the future, we plan to investigate more about the optimal
features for 3D shape retrieval from a collection of 2D query
images.
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