
Accelerating Householder Bidiagonalization with

ARM NEON Technology

Wenjun Yang∗ and Zhenyu Liu

The Department of Computer Science and Technology, Tsinghua University, Beijing, China
∗yangwj10@mails.tsinghua.edu.cn

Abstract—Householder bidiagonalization is the first step of
Singular Value Decomposition (SVD) – an important algorithm in
numerical linear algebra that is widely used in video processing.
NEON is a general-purpose Single Instruction Multiple Data
(SIMD) engine introduced in ARMv7 architecture, which is
targeted to accelerate multimedia and signal processing on mobile
platforms. In this paper, we propose a NEON-based implementa-
tion and optimization of Householder bidiagonalization, aiming at
testifying the potential of NEON to handle with low-dimensional
macroblocks if applied to future computing-intensive video
codecs. Intrinsics and inline assembly, two most commonly used
ways to utilize NEON, are compared in performance. Solutions to
the problem of leftover elements in vectorization is also discussed.
Our study finally shows that with hand-coded inline assembly
and all kinds of optimization, our NEON implementation of
Householder bidiagonlization will gain a speedup of 2.3 over
the plain C version.

I. INTRODUCTION

Adaptive algorithms are increasingly applied to video

codecs nowadays due to the advantage of efficiency. For

instance, High Efficiency Video Coding (HEVC) [1], the on-

going next-generation video compression standard, has intro-

duced adaptive algorithms such as adaptive loop filter, adaptive

rounding offset and rate distortion optimized quantization

(RDOQ), to surpass H.264/MPEG-4 [2] on both video quality

and data compression ratio. Moreover, alternatives to existing

modules in current standards are proposed to be adaptive, in

order to evolve and specialize from input data, eliminating

bad cases in traditional static schemes. Mode-dependent Di-

rectional Transform (MDDT) [3] and its successors [4] are

examples of such alternatives, intended for a replacement

of Discrete Cosine Transform (DCT). Good results as they

provide, these algorithms also bring in significant increase on

computation, making them less attractive in practice. Our goal

is to accelerate these procedures.

Singular Value Decomposition (SVD) [5] is one of the most

important algorithms in numerical linear algebra because of

its broad applications. In fact, MDDT and its successors also

use SVD as a toolbox when they try to learn from the input

data. So if we can accelerate SVD, the overall performance

will be promoted. There are several methods to compute

SVD [6]. The most popular one is based on iterative QR

algorithm, which reduces the input matrix to a bidiagonal

form first before further decomposition. This reduction step

is called Householder bidiagonalization, and it could be very

computing-intensive. According to some references [7], the

Householder bidiagolization will consume over 50 percent of

the overall execution time of SVD computation.

Luckily, there exist large quantities of data-level parallelism

in this procedure, which is well suited for Single Instruction

Multiple Data (SIMD) acceleration. It’s quite common for

today’s CPUs to include an SIMD instruction extension, such

as Intel’s MMX/SSE, and ARM’s NEON [8] [9], etc. There-

fore we decide to exploit the parallelism with ARM’s NEON,

which is a 128-bit SIMD architecture extension to ARM

Cortex-A series processors, designed to provide better support

for multimedia and signal processing on mobile devices. The

reason why we choose NEON is because: 1) the demand

of multimedia processing on mobile devices is growing, and

ARM is the major instruction set architecture on mobile

platforms currently; 2) matrices processed in video codecs

are usually low dimensional macroblocks, exactly the main

targets that NEON is designed to handle with. Our study tries

to testify NEON’s potential application in future computing-

intensive video codecs.

The rest of this paper is organized as follows. In Section II

and III, we introduce some basics of the algorithms of House-

holder bidiagonailization and NEON architecture briefly. In

Sections IV, details about our implementations are discussed.

We evaluate our implementations with experiments and give

results in Section V and some concluding remarks are given

in the final section.

II. HOUSEHOLDER BIDIAGONALIZATION

Householder bidiagonalization reduces an m × n input

matrix A into an upper bidiagonal form if m ≥ n:

UTAV = B =













α1 β2

α2
. . .

. . . βn

αn













. (1)

The reduction is realized by applying so-called Householder

transformations on columns and rows alternatively.

A. Householder Transformation

Householder transformation is an n× n orthogonal matrix

of the form

H = I−
2

vTv
vvT (2)

where I is an identity matrix, and v is called a Householder

vector.

Given an n-length vector x, Algorithm 1 computes the

corresponding Householder vector v and β = 2/vTv such



that H = I − βvvT and Hx = ‖x‖2e1, where ‖x‖2 is the

2-norm of x and e1 is a unit vector like (1, 0, . . . , 0)T .

Algorithm 1 [v, β] = householder(x)

1: n = length(x)
2: σ = x(2 : n)Tx(2 : n)
3: v =

(

1
x(2:n)

)

4: if σ = 0 then

5: β = 0
6: else

7: µ =
√

x(1)2 + σ
8: if x(1) ≤ 0 then

9: v(1) = x(1)− µ
10: else

11: v(1) = −σ/(x(1) + µ)
12: end if

13: β = 2v(1)2/(σ + v(1)2)
14: v = v/v(1)
15: end if

B. Householder Bidiagonalization

Now that we can eliminate elements except the 1st one

in a given vector with Algorithm 1, we can do the same to

any specified row or column of A, just by picking up the

proper parts of the vector and computing the corresponding v,

H in (2). That’s actually the basic principle of Householder

bidiagonalization. Algorithm 2 shows how it works:

Algorithm 2 Householder Bidiagonalization

1: for j = 1 : n do

2: [v, β] = householder(A(j : m, j))
3: A(j : m, j : n) = (Im−j+1 − βvvT )A(j : m, j : n)
4: if j ≤ n− 2 then

5: [v, β] = householder(A(j, j + 1 : n)T )
6: A(j : m, j + 1 : n) = A(j : m, j + 1 : n)(In−j −

βvvT )
7: end if

8: end for

III. ARM NEON TECHNOLOGY

SIMD computing is a classical way to exploit the data-

level parallelism in programs. With one single instruction and

multiple pieces of data loaded up, the same operation can be

finished over all the data simultaneously, saving both time and

energy. NEON is a 128-bit SIMD engine introduced in ARM

Cortex-A series processors, designed for better multimedia

support on mobile platforms. It has 32 vector registers of 64

bits that can also be viewed as 16 vector registers of 128

bits. This dual views enable efficient handling of data and

minimizing access to memory, especially when taking care

of leftover elements. Multiple data types are supported by

NEON, including signed/unsigned 8-bit to 64-bit integer and

32-bit single-precision floating point. That means a maximum

of 4 single-precision numbers can be processed by one sin-

gle NEON instruction. 16-bit half-precision floating point is

only used for a storage format and no arithmetic operations

supported at this time.

To benefit from NEON features, there exist four levels of

ways. The highest and the easiest level is to use libraries

optimized for NEON. The second is to rely on compilers to

perform automatic vectorization on C or C++ source code.

This looks convenient, but the effect is always limited because

of challenges for compilers have to “understand” the code

first and make sure automatic vectorization will not introduce

mistakes.

The next two levels are the most effective and commonly

adopted ways to use NEON. The higher one is NEON in-

trinsics, which include definitions of vector data types and

intrinsic functions as an extension to standard C library.

Intrinsic function calls are replaced by a sequence of NEON

instructions during compilation, which enables programmers

to control low-level instructions indirectly. Furthermore, com-

pilers can help with register allocation and other optimizations.

However, this method still brings in overheads, comparing

to the lowest and the hardest level – writing assembly code

directly. In our case, we implement the Householder bidi-

agonalization with both intrinsics and inline assembly and

compare the performance in quantitive way. Our experiments

show that inline assembly version is 1.26 times more efficient.

IV. IMPLEMENTATION

Discussion about our implementation includes two parts: 1)

basic implementation; 2) handling with leftovers.

A. Basic Implementation

According to Algorithm 2, the bidiagonal reduction can be

divided into several basic subroutines, from which we should

find data-level parallelism to exploit:

1) the householder function to calculate Householder vector

v and the corresponding β;

2) vector-matrix and scalar-vector multiplications to calcu-

late uT = βvTA(j : m, j : n);
3) matrix-vector and scalar-vector multiplications to calcu-

late u = βA(j : m, j + 1 : n)v;

4) outer-product update to calculate A(j : m, j : n)−v·uT

or A(j : m, j + 1 : n)− u · vT .

For 1), we notice that in Algorithm 1 there exist two simple

loops that we can make use of: one is to calculate σ by adding

all the squares of the elements in x starting from x(2), and

the other is to calculate v = v/v(1). The former can benefit

from NEON’s vector multiply-accumulate instruction, which

accumulates the products of corresponding elements of two

vectors into a destination vector. With this instruction, we can

calculate a vector of partial sums of products during the loop

and add them together finally. Currently NEON has no single

instruction to get the sum of all elements in a vector. The only

option is to use a sequence of vector pairwise-add instructions,

which can add adjacent pairs of elements in a vector. So

if the SIMD width is n, it takes ⌈lgn⌉ of these pairwise-

add instructions to get the overall sum of these elements.

This pairwise-add way is a little low efficient, because each



6

u

0

0

A

v

Multiply & Accumulate

Matrix-vector Multiplication

Pairwise Add7

u

0

0

Av

Multiply & Accumulate

Vector-matrix Multiplication

Q

6

0 8

6

0 6

0

7

0 3

0

6

0 1

D

T

Fig. 1. Vector-matrix and matrix-vector multiplication based on NEON

time the pairwise-add instruction are executed, the number of

meaningful values in the vector is halved, resulting in more

wasteful operations on meaningless values.

NEON has no vector division instructions, but offers the

instruction to calculate estimates of reciprocals instead. So the

latter loop in 1) can simply reduce the iteration times through

vector multiplication instruction.

For 2) and 3), conditions are a little more complex because

of the existence of multi-level loops, which, however, also

gives us more choices to maximize the utilization of NEON.

Our solution is shown as Fig. 1. In typical vector-matrix

multiplication, uj =
∑m−1

i=0 viaij , j = 0, 1, . . . , n − 1.

If we calculate uj one by one, then each process has the

same structure as the former loop in 1), which needs vector

multiply-accumulate instructions and additional low efficient

vector pairwise-add instructions. But if we calculate multiple

elements of adjacent columns at the same time, we don’t need

pairwise-add instructions any more, because each lane of the

vector is independent and belongs to different uj calculations.

Only multiply-accumulate instructions are used and all the

operations are necessary for the final results.

NEON supports vector load/store instructions that can

specify multiple continuous elements in memory. For low

dimensional matrices in our case, data are totally contained

in the cache, so the vector load/store will run faster than

multiple normal load/store. Another advantage of the multi-

column method is the high utilization of this feature because

multi-dimensional arrays in C/C++ are stored in row-major

order and elements of adjacent columns are continuous.

At the same time, row-major order also means that elements

of adjacent rows are not continuous in memory. So for matrix-

vector multiplication in 3), where typically ui =
∑n−1

j=0 aijvj ,

i = 0, 1, . . . ,m − 1, if we want to calculate multiple ui

simutaneously, we’ll have to access the elements of different

rows one at a time to fill them into one single vector register.

Moreover, the step and direction of memory accesses are not

as regular as those in 2): the base address pointer has to move

back and forth, which also introduce overheads to calculate

the varying steps.

As a result, our choice is still one single row at a time,

showed as Fig. 1, which may need additional pairwise-add

instructions but accelerate the procedure anyway by the usage

of vector load/store instructions.

For 4), vectorization is easier and more obvious, for there’s

no need to accumulate any partial results. All we have to do is

just going through the elements of A in row-major order and

updating them with the outer product of the two vectors. The

vector subtraction and multiplication instructions will help us

to do this in parallel.

B. Handling with Leftovers

From Algorithm 2 we can also see that the dimension of

vectors and matrices keeps reducing during different iterations

of Householder bidiagonalization. So when it is not a multiple

of the SIMD width, there will be leftover elements that

cannot be filled in the SIMD width. It’s not possible to load

these elements with one single NEON instruction because the

number is varying at runtime. Unlike memory, the position of

data in a vector register cannot be specified by a variable. So

leftovers cannot be loaded up by a loop, either.

The most direct solution is to deal with them one at a time

as scalar processing. Simplicity is its advantage, while NEON

is under-utilized and the overall performance is held back. An-

other solution is to set specialized code blocks corresponding

to each number of leftovers. Because the number is definite

and constant in each code block, it’s possible to determine how

many instructions are needed and which position to load each

piece of data into. The dual views of NEON register file are

helpful here because we’re able to access memory with finer

granularity. Then with one single SIMD instruction, all the

leftovers are processed in one iteration just like normal. Our

experiments shows that this solution will enhance the overall

performance by 5%, especially when the dimension of matrix

is low.

V. EVALUATION

We evaluate our different implementations of Householder

bidiagonalization on NUFRONT’s NuSmart 2816 based de-

velopment board, which has a dual-core ARM Cortex-A9

processor running at 800 MHz. GCC 4.4.5 on Ubuntu 10.10

is used to compile and optimize our plain C, NEON intrinsics,

and inline assembly codes. We also include a CLAPACK

version of Householder bidiagonalization as reference in our

experiments. CLAPACK is a C interface of the famous

FORTRAN77 library LAPACK [10] that implements major

numerical linear algebra subroutines.

The dimensions of matrices we choose in our experiments

are 4×4, 8×8, 16×16, 32×32, and 64×64, corresponding to

the macroblocks (or submacroblocks) in current and ongoing

video coding standards. In the following subsections, we will

present our performance results over these 5 dimensions.

A. Overall Performance

The overall performance of different implementations is

presented as Fig. 2. It shows that our utilization of NEON

can accelerate Householder bidiagonalization as expected. The

inline assembly way starts to take effect when the matrix is

larger than 4 × 4, and the intrinsics way does so when the

matrix is larger than 8× 8. The speedups keep growing with



0

50

100

150

200

250

300

350

400

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68
Matrix Dimension

M
fl
o
p
s/
s

CLAPACK

Plain C

NEON Intrinsic

Inline Assembly

Fig. 2. Speeds of different implementations

the dimension and have a good scalability comparing to the

plain C and CLAPACK version.

From Fig. 2 we can also see the difference in efficiency

between intrinsics and inline assembly. Although the compiler

can do more optimization such as register allocation for

intrinsics, the translation of intrinsic functions to the low

level still introduces redundant instructions, making the inline

assembly codes take the lead over all tests of 5 dimensions.

B. Performance of Different Subroutines

Fig. 3 gives us detailed information about the performance

of different subroutines. For each dimension, the subroutines

we vectorize are profiled separately and the execution time is

divided by the overall execution time of the plain C version,

by which we can not only compare the performance, but also

gain the proportions of these subroutines.

According to Fig. 3, our vectorization of the two simple

loops in the householder function shows no observable promo-

tion and even brings in tiny negative effects when dimension

is low, where the limited parallelism cannot counteract the

overheads of intrinsics or inline assembly.

However, for the other 3 subroutines, our vectorization

is successful, especially for the vector-matrix and matrix-

vector multiplication, both of which enhance the performance

instantly over all the 5 dimensions and keep enlarging their

speedups as the dimension grows. For 64 × 64 matrices, the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Plain C

Intrinsic

Assem
bly

Plain C

Intrinsic

Assem
bly

Plain C

Intrinsic

Assem
bly

Plain C

Intrinsic

Assem
bly

Plain C

Intrinsic

Assem
bly

Householder
VecMatMul
MatVecMul

MatUpdate
Others

dim = 64dim = 32dim = 16dim = 8dim = 4

Fig. 3. Speedups of different subroutines

maximal speedups of 3.36 for vector-matrix and 3.04 for

matrix-vector multiplication are reached. These values are

close to the theoretically optimal taking into consideration the

SIMD width and the existence of leftovers.

The vectorization of the outer-product update subroutine

does work, but not so notably as the two above. The maximal

speedup of 1.84 is achieved when processing 64×64 matrices.

The reason for the stagnancy is because this subroutine is

memory-bound relatively. Although the numbers of arithmetic

operations are almost the same, vector-matrix or matrix-vector

multiplication only stores n elements, while outer-product

update will stores n2 elements, assuming that the dimension

is n. This higher order of memory accesses conceal NEON’s

acceleration on arithmetic operations and hold back the overall

performance.

Moreover, since the complexity of arithmetic operations

is O(n2), the same order as memory accesses, the ratio of

memory accesses will not drop like vector-matrix and matrix-

vector multiplication, which can explain why the overall

performance in Fig. 2 improves slower when the dimension is

growing.

VI. CONCLUSIONS

Our study shows that Householder bidiagonalization can

be accelerated by ARM NEON Technology. Operations on

macroblocks larger than 8× 8 can benefit from NEON inline

assembly. For smaller macroblocks, the speedup are limited

by the higher proportion of leftovers, while for larger ones,

the bound of memory accesses is the bottleneck.

ACKNOWLEDGMENT

This work is funded by TNList cross-discipline founda-

tion, the Nature Science Foundation of China under Grant

No. 60833004, 60970002, and the National 863 High-Tech

Programs of China (No.2012AA010905, 2012AA012609).

REFERENCES

[1] G.J. Sullivan and J.R. Ohm. Recent developments in standardization of
high efficiency video coding (hevc). In Proc. SPIE, volume 7798, pages
7798–30, 2010.

[2] I.E.G. Richardson. H. 264 and MPEG-4 video compression, volume 20.
Wiley Online Library, 2003.

[3] Y. Ye and M. Karczewicz. Improved h. 264 intra coding based
on bi-directional intra prediction, directional transform, and adaptive
coefficient scanning. In Image Processing, 2008. ICIP 2008. 15th IEEE

International Conference on, pages 2116–2119. IEEE, 2008.
[4] O.G. Sezer, R. Cohen, and A. Vetro. Robust learning of 2-d separable

transforms for next-generation video coding. In Data Compression

Conference (DCC), 2011, pages 63–72. IEEE, 2011.
[5] G.H. Golub and C. Reinsch. Singular value decomposition and least

squares solutions. Numerische Mathematik, 14(5):403–420, 1970.
[6] G.H. Golub and C.F. Van Loan. Matrix computations, volume 3. Johns

Hopkins Univ Pr, 1996.
[7] H. Ltaief, P. Luszczek, and J. Dongarra. High performance bidiagonal

reduction using tile algorithms on homogeneous multicore architectures.
Submitted to ACM Transactions on Mathematical Software, 2011.

[8] ARM Architecture Reference Manual, armv7-a and armv7-r edition,
2010.

[9] Cortex-A9 NEON Media Processing Engine Technical Reference Man-

ual, 2011.
[10] E. Anderson, Z. Bai, and C. Bischof. LAPACK Users’ guide, volume 9.

Society for Industrial Mathematics, 1999.


