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Abstract— In this paper, we apply the higher-order statistics 

parameter to automatically improve the performance of blind 

speech enhancement.  Recently, a method to suppress both 

diffuse background noise and late reverberation part of speech 

has been proposed combining blind signal extraction and Wiener 

filtering.  However, this method requires a good strategy for 

choosing the set of its parameters in order to achieve the 

optimum result and to control the amount of musical noise, 

which is a common problem in non-linear signal processing.  We 

present an optimization scheme to control the value of Wiener 

filter coefficients used in this method, which depends on the 

amount of musical noise generated, measured by higher-order 

statistics.  The noise reduction rate and cepstral distortion are 

also evaluated to confirm the effectiveness of this scheme. 

I. INTRODUCTION 

A hands-free speech recognition system provides the 

natural and efficient human-machine interaction.  On the 

other hand, since this system often uses a microphone array to 

pick up the target speech signal at a distance, its performance 

is limited by the adverse effect of background noise and 

reverberation.  Therefore, a method that can suppress the 

interference sound is required to improve the speech quality. 

Many microphone array techniques have been studied to 

solve this problem.  The method proposed in [1] has shown 

that frequency-domain independent component analysis (FD-

ICA) can estimate the diffuse background noise component 
better than the target speech one, thus combining FD-ICA as 

noise estimator and spectral subtraction (SS) as nonlinear 

postprocessing has been proved to be effective in improving 

the target sound quality.  However, this method does not 

suppress the effect of reverberation. 

It is known that there are two parts of reverberation: the 

early and late reverberation.  While the early reverberation is 

considered harmless to speech intelligibility, the late part can 

deteriorate the sound quality, depending on the length and 

strength of this reverberation [2].  Some of the authors have 

proposed a method that jointly suppresses diffuse background 

noise and the late reverberation part of the speech signal [3] 
(hereafter this method is referred to as joint method).  This 

method is based on frequency domain blind signal extraction 

(FD-BSE) [4] combined with two stages of multichannel 

Wiener filtering (WF) as nonlinear postfilters.  This method 

uses a priori knowledge of the room reverberation time (T60) 

to synthesize the late reverberation part.  Other researchers 

have published similar approach using different BSS 

algorithm [5], but although the method does not required 

estimation of T60, it does not consider the effect of 

background noise. There is also related research using linear 
prediction (LP) analysis combined with SS for suppressing 

late reverberation and WF to compensate background noise 

[6].  This method requires pre-recorded handclaps to estimate 

the late reverberation component and noise level. 

Another problem that arises in the nonlinear signal 

processing technique is artificial distortion called musical 

noise.  Some of the authors have reported that the amount of 

musical noise generated is strongly correlated with the 

difference between the higher-order statistics of the power 

spectra before and after nonlinear signal processing [7].  The 

theoretical analysis of the amount of musical noise generated 

in various types of WF has also been presented in [8]. 
The joint method proposed in [3] has been proved to be 

effective to improve the performance of automatic speech 

recognition system in term of word accuracy.  However, some 

parameter values are still chosen manually and the generation 

of musical noise has not been considered.  Therefore, in this 

paper, motivated by our previous works [7, 8] on musical 

noise assessment, an optimization scheme is presented, which 

can automatically choose the best set of parameters of the 

joint method.  Also, this assessment of musical noise 

generated can be performed blindly, and consequently our 

proposed system can be driven in the whole blind fashion.  
We also conduct objective evaluations to confirm the 

effectiveness of this scheme. 

This paper is organized as follows.  In Section II, we 

describe the related works on the joint method.  In Section III, 

we present the overview of the proposed scheme including the 

assessment algorithm of musical noise generated via the 

higher-order statistics.  We show the experimental results and 

evaluations in Section IV.  Finally, conclusions are provided 

in Section V. 

II. RELATED WORKS 

A. FD-BSE-Based Joint Noise Suppression and 

Dereverberation [3] 

In this subsection, we explain our previously proposed joint 

method for noise reduction and dereverberation based on FD-

BSE and WF postprocessing.  The architecture of this method 



is shown in Fig. 1.  In this system, the microphone array with 

m sensors is utilized to acquire the multichannel observations.  

The observed signal of m components,  ( ) , is the 

superposition of the speech contribution   ( ) and noise 

contribution  ( ), as given by 
 

   ( )     ( )   ( ), 

   ( )  (  ( )    ( ))   ( ), 

 

where  ( ),   ( ) and   ( )are the clean speech source, 
early and late parts of the room impulse response, respectively.  

Most hidden-Markov-model (HMM)-based speech 

recognizers are capable to handle the effect of   ( ) up to 

certain time delay   , while the effect of   ( )  must be 

handled by array signal processing. 

This method uses the new FD-BSE proposed in [4] that 

utilizes the sparsity of the modulus of the target speech signal 

to estimate the diffuse background noise component. In 

frequency domain, the estimate  (   ) is obtained by 
applying extracting vector to the observed signal 

 

 (   )   ( ) (   )  
 

The vector  ( ) is updated using gradient decent method to 

minimize the cost function  ( ( )) that based on signal 

modulus sparsity, given by 

 

    ( ( ))   
 

 
  {| (   )|}   

                      {| (   )| }          
 

The estimated noise N(f,t) is obtained by applying projection 

back to the separated output vector Y(noise)(f,t) that contains 

only noise components (speech component is substituted with 

zero)   

  ̂(   )      ( ) (     )(   )  
 

After FD-BSE, a set of multichannel WF is applied to 

suppress the estimated noise components, as given by 
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where    is a parameter for controlling the strength of noise 

suppression. 

The late reverberation speech part is synthesized afterwards 

from the output of WF under assumption that the noise 

suppression was efficient.  A synthetic late reverberation filter 

is estimated using the information of     of the room, and the 

late reverberation part is suppressed in the same manner with 

noise suppression stage, as represented by  
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where   is a parameter for controlling the strength of 

dereverberation. 
After two stages of WF, the delay-and-sum beamformer 

(DS) is applied to the signal, using information of the 

estimated DOA  ̂ from the speech projection back.  Therefore, 
there are at least three parameters that should be estimated: 

WF coefficient for noise suppression stage (  ) , WF 

coefficient for dereverberation stage (  ), and    .  But the 

main problem in this method is that there are so many 

combinations of the parameters and we cannot know, in 

advance, which set of the parameters will lead to the best 

result.  

III. PROPOSED OPTIMIZATION SCHEME 

A. Problem and Motivation 

In the conventional method described in Sect. II, it is of 

great interest to realize a good optimization scheme for the 

internal parameters, namely,   ,    and    . The correct 

setting of these parameters will give optimum performance.  

However, we have to manually optimize and there is no 
efficient method to control the parameters automatically.  

Therefore, in this section, we propose a new optimization 

scheme for the parameters.  In particular, we introduce 

higher-order statistics in the system. 

Motivated by our previous study on relation between the 

higher-order statistics of power spectra and musical noise 

perception, we newly utilize kurtosis, the 4th-order-moment 

based statistics, for the assessment of musical noise generated 

after nonlinear postprocessing in WF parts.  The overview of 

the proposed assessment is as follows. 

1. Detect the speech-pause time period (noise-only time 

period) by comparing the temporal noise power 
estimated by FD-BSE in (6) and that of observed signal. 

2. In the detected speech-pause period, we can estimate the 

amount of generation of musical noise based on the 

kurtosis ratio. 

In the following subsections, we describe the details of the 

algorithm. 

 (10)

 

Fig. 1   Block diagram of joint blind noise suppression and dereverberation method. 
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B. Speech-Pause Detection Based on FD-BSE 

The authors of [1] have proved that under the diffuse 

background noise condition, an ICA method described by (3) 

performs better as noise estimator than as target speech 
estimator.  Assuming the estimation of noise is efficient, we 

can detect the speech activity within observed signal using the 

short-time power of noise estimation, given by 

 

  
 ( )

  
 

 
∑ ∑  ̂(   ) 

       

   

 

where   
 ( )

 is the power of noise estimation in the ith time 
frame where signal can be considered as stationary (about 25 

ms).  According to (1), signal power will become higher if 

there is speech part included.  Thus, by setting the maximum 

noise estimation power as threshold, we can divide the 

observed signal into two categories: time frames with power 

more than threshold will be regarded as speech-active frames, 

and the rest as speech-pause frames. 

Note that the estimation of noise may include some late 

reverberation, which we do not need in assessment of musical 

noise based on higher-order statistics.  Therefore, we only 
select noise frames that precede the first speech-active frame. 

C. Musical Noise Analysis via Higher Order Statistics 

The amount of musical noise is highly correlated to the 

number of isolated power spectral components and their level 

of isolation. These isolated components are called tonal 

components. Since such tonal components have relatively 
high power, they are strongly related to the weight of the tail 

of their probability density function (pdf). Therefore, 

quantifying the tail of the pdf makes it possible to measure the 

number of tonal components.  Kurtosis has been introduced in 

our studies to evaluate the tail of the pdf [9, 10], successfully 

showing the effectiveness of using the higher-order statistics. 

The assessment of musical noise is done by applying the 

kurtosis ratio to noise-only part (speech-pause time period 

detected using (11)) of the observed signal [7].  This measure 

is defined as 

 

kurtosis ratio = kurtproc/kurtorg , 
 

where kurtproc is the kurtosis of the processed signal and 

kurtorg is the kurtosis of the observed signal.  Kurtosis is 

defined as 

 

kurt = μ4/μ2
2, 

 

where μn is the nth-order moment, given by 

 

   ∫    ( )  
 

 

   

 
where P(x) is the probability density function of a signal x. 

In this paper, we measure the amount of musical noise 

generated by calculating the frequency subband-wise kurtosis 
[8] as given by 

 

    ( )   
(   )∑ ∑ (| (   )| ) 

       

{(   )∑ ∑ (| (   )| ) 
       

} 
 

 

where kurt(i) is the ith subband kurtosis of a signal x.  Fi and T 

represent subband time-frequency grid indexes to be 

 (11)

 (12)

 
Fig. 2  Time-frequency domain noise-only signal for calculation of 

subband kurtosis. 

 

 

 

Fig. 3  Noise Reduction Rate and  kurtosis ratio behavior of joint method. 
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evaluated, which have been detected in (11), while M is the 

total number of grids in each subband.  We use 250-Hz-width 

Fi and T of 5 s, which are taken from noise-only time-

frequency region preceding a speech utterance.  See Fig. 2 for 

the example of the subband procedure. 

D. Objective Evaluations of Joint Method 

The previous work only evaluates the word accuracy rate of 

speech recognition system.  Also, the combination of 

parameters value is set manually by simulation of several 

combinations and the ones who give optimum result is chosen.  

In this subsection, we study the effect of choice of parameters 

to the sound quality of the input signal. 

We use kurtosis ratio, noise reduction rate (NRR) and 

cepstral distortion (CD) as objective evaluation measures.  

NRR is defined as the difference of the SNR before and after 

processing.  The SNR of a signal is represented by  
 

           

   ( )  

   ( )  
   

 

where  ( ) and  ( ) are the speech and noise component of 

signals, respectively.  Since high SNR indicates good signal 

quality, high NRR result is preferable. 

CD is a measure of how the target signal is distorted after 
processing, define as 

 

   (       )√ ∑ (  ̂    )  
    , 

 

where    is the kth cepstrum coefficient.  To compensate the 

early reverberation speech part that was left unprocessed in 

this method, the signal convoluted with early room impulse 

response is used as reference signal. 
Fig. 3 shows the behavior of kurtosis ratio for joint method. 

As one can expect, large value of    will suppress large 

amount of noise, thus increase the NRR.  However, the 

kurtosis ratio value is also increased, which means more 

amount of musical noise generated.  Note that for signal with 

high level of SNR (in this case is 20 dB), small value of WF 

coefficients already results in high NRR and kurtosis ratio.  

This is logical since the amount of interference signals to be 

suppressed are very low.  Since both of NRR and kurtosis 

ratio increase with the increasing WF coefficient, we can 

maximize the NRR automatically by setting the largest 
possible WF coefficient under a certain kurtosis ratio 

constraint.  Note that after some point the increase of NRR 

and kurtosis ratio become slower and insignificant. By 

assuming that this indicates the noise suppression has been 

optimum, we can also limit the processing when the 

difference between the updated value and the previous value 

of kurtosis ratio has reached a certain threshold. 

The behavior of CD and the effect of T60 value choice is 

shown in Fig. 4.  We can see that the CD value decreases as 

the NRR increases.  However, at some points, it starts to 

increase.  This happens because the late reverberation distorts 

the cepstrum of the original signal, causing a signal with 

strong reverberation to have high CD. WF suppresses the late 

reverberation part, thus results in lower CD.  On the other 

hand, if the WF coefficient is too strong, not only the late 

reverberation part but also the original speech part will be 

suppressed.   Furthermore, it is also shown that the value of 

T60 does not significantly affect the result.  This is possible 

because the effect of mismatched T60 can be compensated by 

the choice of the WF coefficient parameter. 

While theoretically the signal processing is done in two 

stages, in practice the WF in noise suppression stage also acts 
as dereverberation filter, as can be seen in Fig. 5.  This is due 

to the mixing model of signals used in FD-BSE which 

includes some amount of late reverberation in noise [3].   On 

the other hand, the WF part in the dereverberation stage also 

partly acts as a noise suppression filter, indicated by increased 

NRR corresponding to the increasing   .  According to these 

characteristics, we choose to optimize the WF coefficient 

separately.  

E. Optimization of WF Coefficient 

Based on the objective evaluation results from the joint 

method, we can conclude that setting appropriate value of βN 

and βR is more important than T60.  Therefore, we focus on 

optimization of these parameters and set T60 to be fixed value.  

We use the amount of musical noise generated, corresponds to 

kurtosis ratio as constraints.  The procedure is described as 

follow. 

Step 0:  First, set initial     and     to a low value. 
Step1:  Next, apply the WF for noise suppression to the input 

signal (after BSE processing) using the value of   . 

  (16)

 (17)

 
Fig. 4  Cepstral distortion behavior and effect of choice of T60 to 

input signal with SNR of 10 dB 
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Fig. 5  Cepstral distortion behavior of noise suppression stage.  
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Step 2:  Apply DS beamformer to the output signal, then 

calculate the kurtosis using (4).  Obtain kurtosis ratio by 

dividing kurtosis of the output signal by the kurtosis of 

observed signal. 

Step 3:  Increase the value of    by a certain amount △βN.  

Return to Step 1 until the kurtosis ratio value reaches the 
given limit, or until the difference between updated value and 

previous value of kurtosis ratio is below certain threshold.  

Step 4:  Apply the WF for dereverberation to the output 

signal of noise suppression stage (before DS beamformer is 

applied), and update the    in the same manner as updating 

the   .  

IV. EXPERIMENTAL EVALUATIONS 

A. Experimental Setup 

We used a 20K-word Japanese dictation from the database 

JNAS [11] as the source signals, with Julius 4.2 [12] as the 

decoder for recognition task.  An eight-channel microphone 

array (inter microphone spacing of 2.0 cm) was used to record 

the diffuse background noise from the railway station, and 

room impulse response at various distance between 

microphone and speaker at a large lecture room.  The 

estimated T60 value is 500 ms.  
The clean speech with sampling frequency of 16000 Hz is 

convoluted with room impulse response, and was mixed with 

noise signal at SNR 0 dB, 10 dB and 20 dB.  For the time-

frequency domain processing, the short time Fourier 

transform is implemented with 1024 point FFT size, hanning 

window, and 50% overlap.  The separation is performed by 

600 iterations of BSE method with adaptation step of 0.3.  For 

every 200 iterations, the adaptation step will be updated into 

half of its current value.  For dereverberation stage, the τd 

value is set to 75 ms.  This corresponds to the effect of room 
impulse response that still can be handled by most HMM-

based speech recognizer.  

We compare the output signals of proposed scheme with 

the speech estimation from FD-BSE and the output of FD-

BSE with noise suppression WF proposed in [4].  For input 

signals with high level of SNR, we also compare the 

performance of the proposed scheme with the simple 

 
TABLE   I 

OBJECTIVE EVALUATIONS FOR DIFFERENT METHODS 

 

SNR (dB) 0 dB 

distance (m) 1 m 2 m 3 m 4 m 5 m 

  BSE 
BSE + 

w 
opt BSE 

BSE + 

w 
opt BSE 

BSE + 

w 
opt BSE 

BSE + 

w 
opt BSE 

BSE + 

w 
opt 

NRR (dB) 4.67 8.27 9.05 1.79 7.42 7.62 4.02 6.13 6.17 2.01 6.90 8.06 4.73 7.41 8.06 

CD 6.26 6.41 5.96 8.15 6.34 6.31 6.51 6.48 6.23 8.23 6.32 6.01 6.48 6.61 6.36 

KR 1.18 1.36 1.39 1.16 1.31 1.51 1.16 1.37 1.45 1.23 1.36 1.51 1.22 1.42 1.39 

SNR (dB) 10 dB 

distance (m) 1 m 2 m 3 m 4 m 5 m 

  BSE 
BSE + 

w 
opt BSE 

BSE + 

w 
opt BSE 

BSE + 

w 
opt BSE 

BSE + 

w 
opt BSE 

BSE + 

w 
opt 

NRR (dB) 5.37 10.20 10.05 4.56 12.28 9.44 3.73 7.19 8.02 2.75 7.13 7.71 3.20 6.18 7.06 

CD 4.70 4.91 4.75 4.91 5.39 5.06 5.08 5.37 5.21 5.09 5.33 5.06 5.40 5.77 5.71 

KR 1.15 1.32 1.35 1.16 1.37 1.38 1.13 1.30 1.36 1.14 1.28 1.34 1.19 1.33 1.48 
 

 

TABLE  I I 

OBJECTIVE EVALUATIONS OF DIFFERENT METHODS FOR INPUT SIGNALS WITH SNR 20 DB 

 

SNR (dB) 20 dB 

distance 

 (m) 
1 m 2 m 3 m 4 m 5 m 

  BSE 
BSE + 

w 

BSE + 

r 
opt BSE 

BSE + 

w 

BSE + 

r 
opt BSE 

BSE + 

w 

BSE + 

r 
opt BSE 

BSE + 

w 

BSE + 

r 
opt BSE 

BSE + 

w 

BSE + 

r 
opt 

NRR (dB) 2.08  6.27  0.68  6.39  1.55  5.68  0.68  6.15  1.64  1.15  1.82  2.98  0.48  0.95  1.38  2.02  (6.32) 2.73  7.24  10.42  

CD 3.69  3.94  4.06  3.90  4.22  4.42  4.40  4.39  4.65  4.75  4.44  4.25  4.87  4.88  4.60  4.53  6.96  5.42  4.83  5.30  

KR 1.05  1.17  1.03  1.18  1.04  1.15  1.03  1.17  1.02  1.01  1.05  1.07  1.02  1.02  1.07  1.16  1.22  1.13  1.50  1.54  

 

 
Fig. 6  Recognition result of input signals with SNR 10 dB  
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combination of FD-BSE and dereverberation.   This is done 

under assumption that for high SNR signals, the late 

reverberation is stronger than the background noise, therefore 

we would like to seek for the possibility to skip the noise 

suppression stage.  In this method, the late reverberation 

speech part is synthesized from the speech estimation of FD-

BSE, assuming that even if the separation process is not 

effective, WF in dereverberation stage still can suppress some 

amount of noise according to our previous study. 

B. Experimental Results 

 The comparison of objective evaluation results for input 

signals with SNR level 0 dB and 10 dB is given in Table I.  

The results from FD-BSE are displayed in column ‘BSE’, 

while the objective evaluations of FD-BSE with noise 

suppression WF are displayed in column ‘BSE + w’ and the 

proposed scheme in column ‘opt’.  The ‘NRR’, ‘CD’, and 
‘KR’ indicate noise reduction rate, cepstral distortion, and 

kurtosis ratio, respectively. 

For input signal with SNR level of 0 dB, the optimized 

method gives the best performance in each distance, indicated 

by higher NRR and lower CD than that of other methods. 

However, the results for input signal with SNR level of 10 dB 

are varied. While for far speaker distances, the proposed 

scheme outperforms other method, for close speaker distances 

FD-BSE with noise suppression WF shows better 

performance in terms of NRR. But in terms of CD, the FD-

BSE gives best results in almost every condition. This may be 

because the value of βN is too strong that the original speech is 
already distorted.  

Table II shows the performance comparison for input 

signals with SNR level 20 dB.  In addition to method 

displayed in Table I, the objective evaluation results of FD- 

BSE with dereverberation WF are displayed in column ‘BSE 

+ r’. Again, the proposed scheme gives the best performance 

in every condition in terms of NRR. However, the results of 

CD are varied correspond to the speaker distance. For close 

speaker distances, the FD-BSE still gives better CD than other 

method, while for far speaker distances, the proposed scheme 

and FD-BSE with dereverberation WF give the best results.  
The word accuracy results with comparison to other 

method are shown in Fig. 6. In this figure, ‘Obs.’ represents 

the observed signal that is left unprocessed, while ‘BSE’, 

‘BSE + noise supp.’, and ‘Joint’ are speech estimation from 

FD-BSE, output of FD-BSE with noise suppression stage, and 

output of the proposed scheme, respectively. It is shown that 

our proposed method improved the recognition performance 

more than other methods. 

Although in almost all condition the proposed scheme gives 

higher KR compare to other method, it will not have 

significant effect in output quality, since we have set the limit 

that minimalizes the amount of generated musical noise. 

V. CONCLUSIONS 

 In this paper, we proposed an optimization scheme to 

obtain the best combination of parameters used in BSE and 

WF based joint suppression of noise and late reverberation.  

We confirmed the effectiveness of this scheme with objective 

evaluations.  The experimental results show that this 

algorithm, which is based on the measure of higher order 

statistics, performs well in almost every condition compare to 

previous methods.  Also, the proposed scheme still opens 

many possibilities to improve the parameter setting strategy 

for further development.  After all, this proposed scheme has 

great potential to be implemented in real environment. 
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