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Abstract—A new voice activity detection (VAD) algorithm
using augmented statistical noise suppression is introduced. Sta-
tistical noise suppression is an effective tool for speech processing
under noisy conditions. It achieves the best VAD performance
when the noise suppression is augmented in various ways. The
speech distortion, which is usually a severe side effect of strong
noise suppression, does not affect the VAD performance, and the
correctly estimated signal power provides accurate detection of
speech. The performance of the proposed algorithm is evaluated
using CENSREC-1-C public database, and it is confirmed that
the proposed algorithm outperforms other algorithms such as
the switching Kalman filter-based VAD.

I. INTRODUCTION

Voice activity detection (VAD) is one of the key components

of various speech applications. It can be used to reduce

the bandwidth usage in communication systems. An accurate

VAD preprocessor can also increase the robustness of speech

recognition under noisy conditions. Moreover, an adaptive

system such as an echo canceller or an adaptive beamformer

needs to detect a noise-only period of the input audio stream

to update its configuration.

Traditional VAD algorithm was based on thresholding of

the instantaneous or short term power, which can be realized

even by an analog circuit. As the digital technology developed,

more sophisticated VAD algorithms have appeared. Some of

them introduced new features, such as the cepstral feature [1],

spectral entropy [2], periodic to aperiodic component ratio [3],

and so on. Other methods try to trace the state sequence using

statistical estimation [4], [5]. The latter approach, which has

the origin at MMSE-based statistical noise suppression [6],

has exhibited the better performance than the others, and it

could be attributed either to the accurate noise estimation by

the statistical model or to the precise state tracking.

In this paper, we start from the assumption that the accurate

noise estimation is the main cause of the good performance

of the state-of-the-art VAD algorithms, such as [4] and [5].

Accordingly, there are two points that would improve their

algorithms: developing an even better noise estimation module,

and optimizing the remaining part of the system after separat-

ing the noise estimation module. For the first point, we replace

the noise estimation module with the optimally-modified log

spectral amplitude (OM-LSA) speech estimator [7], which is

known to be one of the best statistical noise suppression algo-

rithms. Moreover, based on the empirical knowledge that over-

subtraction improves the accuracy of the spectral subtraction-

based VAD [8], we introduce some augmentation schemes in

Fig. 1. State transition topology

TABLE I
STATE TRANSITION RULES

Rule From condition To
No. p>P ls >L1 lp >L2

1 Silence yes Speech

2 Speech no no Silence

3 Speech no yes Pause

4 Pause yes Speech

5 Pause no yes E

noise suppression. For the second point, we separate two main

modules of the Sohn’s and Fujimoto’s algorithm, which are

noise estimation and likelihood ratio test. We use the first

module for noise suppression, and replace the second module

with a more conservative power-based VAD. The effectiveness

of combining these two approaches will be confirmed by the

experiments using real data.

The remainder of this paper is organized as follows. In

the next section, we briefly review the traditional power-

based VAD algorithm. The third section presents the outline of

statistical noise suppression, particularly the OM-LSA speech

estimator. More importantly, various augmentation techniques

to improve the VAD accuracy will be provided in this section.

The new VAD algorithm is evaluated using CENSREC-1-C

[9], a public database for VAD evaluation, and the results are

shown in Section 4 with reference to some published works.

The last section is for the concluding remarks.

II. REVIEW OF POWER-BASED VAD

The basic idea of the power-based VAD is simple. The input

audio stream is divided into short term frames (typically 20

ms long and half overlapping), and the power is calculated

for each of them. Finally, a frame is regarded as speech if its

power is larger than the threshold, noise (or silence) otherwise.

However, such a simple classification causes fragmentation of

the spoken utterances, because even a connected utterance may



include many short pauses. Such fragmentation can be avoided

by introducing a simple state transition model with additional

thresholds related to the duration.

Figure 1 shows a typical state transition topology, and Table

I shows the corresponding transition rules. Transition always

starts at Silence. If the power p, speech length ls, and pause
length lp satisfy the condition of a rule whose “From” state
matches the current state, then the current state changes to

“To” state. If no rule matches, the current state is kept. For

example, if the current state is Speech, p is not larger than
P , and ls is larger than L1, then the current state changes to

Pause (see Rule No. 3). In the above-mentioned process, the

speech length is incremented at every frame belonging to the

Speech or Pause state, and the pause length is incremented

at every frame belonging to the Pause state.

Finally, an speech segment candidate is made when the

transition reached E. The starting point of the segment cor-

responds to the last transition from Silence to Speech,

and the ending point corresponds to the last transition from

Speech to Pause. The candidate is discarded if it is too

short or too long. Otherwise, small margins are added to the

both sides of the segment if necessary, and the system tells

that a speech segment has been detected.

III. STATISTICAL NOISE SUPPRESSION-BASED VAD

A. OM-LSA Speech Estimator for Power-based VAD

Statistical noise suppression takes place in the frequency

domain, in which each time-frequency bin is identified by

the frequency index k and frame index l. Once the noise-
suppressed signal X̂(k, l) is obtained, the power of the l-th
frame, which is to be used in the state transition judgment, is

calculated as

p(l) =
K−1
∑

k=0

w(k)|X̂(k, l)|2 (1)

where K is the number of frequency bins, and w is a weight
vector. According to the preliminary experiment results, an

A-weighting filter is used as w.

Noise suppression by the OM-LSA speech estimator is

defined as

|X̂(k, l)|2 = G(k, l)|Y (k, l)|2. (2)

where Y (k, l) denotes the observed noisy signal, and G(k, l)
is the gain function. First, the gain function of the LSA

algorithm, GH(k, l), can be obtained by applying the MMSE
criterion to the log-spectral amplitude error function. The

solution is expressed as follows.

GH(k, l) = f(ξ(k, l), γ(k, l)) (3)

f(ξ, γ) =
ξ

1 + ξ
exp(

1

2

∫

∞

γξ/(1+ξ)

e−t

t
dt) (4)

γ(k, l) =
|Y (k, l)|2

ασ2
m(k, l)

(5)

ξ(k, l) = c1G
2
H(k, l−1)γ(k, l−1)

+(1−c1)max{γ(k, l)−1, 0} (6)

where ξ, γ, and α are called a priori SNR, a posteriori
SNR, and subtraction coefficient respectively. The OM-LSA

algorithm takes into account the speech presence probability

p(k, l), and modifies GH(k, l) to obtain the better form of
G(k, l).

G(k, l) = [GH(k, l)]p(k,l)G
1−p(k,l)
min (7)

p(k, l) = [1+c2(1+ξ(k, l))e−ν(k,l)]−1 (8)

ν(k, l) = γ(k, l)ξ(k, l)/(1+ξ(k, l)) (9)

In the equations above, c1, c2, and Gmin are adjustable

parameters, and their values are fixed as 0.99, 0.25, and 0.01

throughout this paper.

B. Augmentation of Noise Suppression

When we use noise suppression for VAD, the top priority

should be given to removing any unreliable components,

regardless of the possibility to cause signal distortion. To

further pursue the preference for noise removal instead of

signal reconstruction, we apply some augmentation techniques

for the OM-LSA speech estimator.

The first step of augmentation is realized by using a large

α in eq.(5). It is known that the optimal value of α for speech
recognition is smaller than 1.0 [10], because a large α causes
distortion of the speech. However, distortion does not affect

VAD severely, and it is known in the spectral subtraction case

that over-subtraction is more favorable for VAD. It suggests

that we should use much larger value of α.
The second step is the augmentation of the gain function.

Since a smaller value of G(k, l) means that the power of this
frequency bin is less reliable, it is reasonable to lower the

contribution of such bins by modifying eq.(2) as

|X̂(k, l)|2 = Gβ(k, l)|Y (k, l)|2 (10)

where β should be larger than 1.0. If we use large β, only
the speech-dominant frequency bins contribute to the frame

power.

The third augmentation aims at avoiding a false acceptance

caused by very strong noises. Although it is difficult to remove

such noises completely, the fact that a prominent frequency

component exists indicates that the prominent component itself

is made of noise. It is because some noises such as electrical

beep and musical instrument noise have strong peaks at limited

frequencies. Therefore, such prominent components should be

removed, which modifies eq.(10) again as

|X̂(k, l)|2 =

{

Gβ(k, l)|Y (k, l)|2 rank(k) ≥ ηK
0 otherwise

(11)

where rank(k) is the number of frequency components in
the same frame whose magnitude is larger than the k-th
component.

After the augmentation by introducing large α, β, and η,
the resulted audio signal is sometimes heavily distorted and

not quite recognizable. However, one should use the output of

eq.(11) only for VAD and prepare another noise-suppressed

signal for speech recognition using a more conservative set-

ting.
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Fig. 2. ROC curve of baseline SNS algorithm.

IV. EVALUATION EXPERIMENTS USING CENSREC-1-C

A. Experimental setup

The proposed VAD algorithm was evaluated using

CENSREC-1-C, a public database for evaluation of VAD al-

gorithms. We used so-called real set of CENSREC-1-C, which

was recorded in real noisy environments. The test data consist

of four subsets, Restaurant/High-SNR, Restaurant/Low-SNR,

Street/High-SNR, and Street/Low-SNR, each of which consists

of 345 utterances in 36 files. The 8 kHz downsampled data

were distributed with the correct endpoint labels. Some scripts

to calculate the false acceptance rate (FAR) and false rejection

rate (FRR) were also included in the distribution.

B. Baseline experiments

First, the baseline statistical noise suppression (SNS) algo-

rithm was applied to CENSREC-1-C. Various values of the

threshold P of TABLE I were tried, while L1 = 50ms and
L2 =800ms were fixed. Segment candidates shorter than 100
ms were discarded, and the other segments were accepted,

however long they are. Noise suppression was executed using

64 ms half-overlapping frames, but the frame power p was
re-calculated using 20 ms half-overlapping frames. It should

also be noted that eq.(11) was applied after the second framing

was performed in the experiments described later.

Figure 2 shows the receiver operating characteristic (ROC)

curve of the baseline SNS algorithm, obtained by various

thresholds. The output of VAD was scored by the frame-

by-frame basis using the attached script. The results of

CENSREC-1-C baseline VAD script and ITU-T G.729 An-

nex B [11] were also plotted. The former was included in

CENSREC-1-C for reference, and the latter is a standard VAD

which is commonly used in many VoIP applications. From this

figure, it is clear that the SNS algorithm improves the VAD

accuracy of standard algorithms greatly.

C. Augmentation of Noise Suppression

Next, the effects of various augmentation were tested.

Figure 3 shows how the VAD accuracy changes as α increases.
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Fig. 3. Results of over-subtraction experiments.
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Fig. 4. Results of gain augmentation experiments.
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Fig. 5. Results of prominent component removal experiments.

The vertical axis represents the average of FAR and FRR.

There is a very large improvement of the accuracy from α=1
to α = 2, and then it becomes stable with larger α. Figure 4
shows the results obtained by α=5.0 and various β, in which
a small but clear improvement was obtained by β larger than
1.1. Figure 5 shows the results obtained by α=5.0, β=1.4 and
various η. We also observed great improvement from η=0.01
to η=0.05, and it becomes stable with larger η, although there
is a small degradation.

We have investigated the augmented statistical noise sup-

pression (ASNS) algorithm in more detail, with the best

parameter setting (α=5.0, β =1.4, and η =0.07). Table II is
the detailed results in the spread sheet provided by CENSREC-

1-C, where the threshold P was adjusted to get approximately
equal values of FAR and FRR. Although these results were

obtained with the carefully adjusted parameters, Figs. 3, 4, and

5 show that the improvements are stable with large α, β, and η.
For example, we obtained FRR=9.62% and FAR=10.07%,



TABLE II
FRAME-LEVEL EVALUATION OF ASNS WITH THE OPTIMAL PARAMETER

SETTING.

Real Data
False Rejection Rate [%]

Remote Microphone

Restaurant Street Average

High SNR 4.80 5.40 5.10 

Low SNR 13.60 13.70 13.65 

Average 9.20 9.55 9.38 

Real Data
False Acceptance Rate [%]

Remote Microphone

Restaurant Street Average

High SNR 11.00 1.20 6.10 

Low SNR 25.90 1.60 13.75 

Average 18.45 1.40 9.93 

False 
Rejection 
Rate [%]

False 
Acceptance 

Rate [%]

which are comparable to the results of Table II, with rather

ill-tuned parameters of α=8.0, β=1.8, and η=0.1.

Figure 6 shows comparison results between ASNS and

other state-of-the-art algorithms, including the ones mentioned

earlier in this paper. First, the algorithm based on high order

statistics (HOS) [12] is a simple unsupervised VAD algorithm.

However, as reported in [12], it was designed to discriminate

close-talk and far-field speech, and could not detect remote

microphone speeches correctly (although it is much better than

CENSREC-1-C baseline and G.729 Annex B). The algorithm

based on conditional random field (CRF) [13] integrates

various features using CRF. It requires a speech model to be

trained beforehand, but the VAD accuracy is notably improved.

The obtained combination of FAR and FRR is approximately

on the ROC curve of SNS. Finally, Fujimoto’s SKF-based

algorithm, which also requires a pre-trained speech model and

was known to outperform Sohn’s algorithm when evaluated

by CENSREC-1-C [5], is slightly less accurate than SNS.

However, it was reported that introducing Gaussian pruning

(GP) makes the SKF-based algorithm more accurate [14]. As

shown in Fig. 6, SKF/GP resulted in better performance than

SNS. Finally, the ROC curve of ASNS lies far from others on

the lower-left side, indicating the very promising performance

of the new algorithm.

V. CONCLUSIONS

In this paper, we proposed a new VAD algorithm, which is

based on augmented statistical noise suppression. The noise

suppression is based on the OM-LSA speech estimator, but

various augmentation techniques were introduced to improve

the VAD accuracy. Traditional power-based algorithm was

combined with noise suppression, instead of the likelihood

ratio test. The proposed algorithm is robust under various noisy

conditions, and has the advantage that any speech or noise

model need not be trained beforehand. Evaluation experiments

using CENSREC-1-C public database demonstrated that the

proposed algorithm has better performances than many known

algorithms.
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