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Abstract—Retargeting pyramid (RP) is an alternative method
for multiscale image decomposition to the well-known Laplacian
pyramid (LP). RP can be obtained by replacing the low-pass
filtering process in LP with content-aware image resizing (a.k.a.
retargeting), which is a developing technique for computer
vision researches. Furthermore, we use RP for contourlet-based
directional image decomposition. In experimental results, the
proposed decomposition outperforms the LP-based contourlet
transform for image denoising.

I. INTRODUCTION

Images often have textures and/or edges laying toward
diagonal orientations as well as horizontal/vertical directions.
Since it is also well-known that multiscale decomposition, e.g.,
by wavelet transform [1], is a strong tool for image signal
analysis, multiscale-multidirection (MSMD) image decompo-
sition is highly desired and a number of these transforms have
been proposed. Without being exhaustive, contourlet [2]–[5],
directionlet [6], [7], and curvelet [8], [9] are key methods
for MSMD decomposition. As applications, they are used in
a wide area of image processing; denoising, enhancement,
interpolation, and image coding. They often outperform the
conventional separable wavelet-based approach.

In this paper, we propose a new MS image decomposition
technique named retargeting pyramid (RP). Its downsam-
pling process is quite different from Laplacian pyramid (LP)
[10], a widely-used MS decomposition method. Generally LP
is obtained by the separable low-pass filtering along both
horizontal and vertical directions followed by the explicit
downsampling by M . Strictly speaking, LP’s downsampling
matrix Q = diag(M,M). Instead of the explicit approach,
RP is constructed by the implicit donwsampling and filtering
by utilizing a developing computer vision technique, content-
aware image resizing, a.k.a. image retargeting [11]–[21].

The technique whose concept is the same as RP was
proposed in [22]. It is based on quad mesh-based retargeting
and yields a MS pyramid. However, its deformation is sepa-
rable, i.e., all deformed meshes still keep rectangular shapes.
Furthermore, effective applications have not been shown. In
contrast, RP is based on nonseparable mesh deformation: a
deformed mesh is allowed to have a (convex or concave)
quadrilateral shape. Additionally, to obtain MD decomposition
as well as MS one, we combine RP with directional filter
bank (DFB) [23], [24] to construct a MSMD decomposition

similar to that of the contourlet transform. The proposed
MSMD decomposition is applied to image denoising and it
outperforms the conventional contourlet transforms.

II. CONTOURLET TRANSFORM

The contourlet transform [2] can be divided into two phases;
MS and MD decomposition phases. First, an input image is
decomposed by LP which produces a (redundant) MS pyramid
of the image. Then, directional filter bank (DFB) [23], [24] is
applied to each level of the pyramid to obtain the full MSMD
decomposed image.

Let x0 be the input image signal. The i-th level (i is a
nonnegative integer) output xi and x̂i by LP is formalized as
follows:

xi+1 = Lxi (1)

x̂i = xi − L−1xi+1 (2)

where L is the LP operator. The LP operator is further divided
into

L = (↓ 2)F (3)

where F is 2-D low-pass filtering and (↓ 2) is a downsampling
by 2 for both horizontal and vertical directions. In the con-
tourlet transform, the residual signal x̂i is further transformed
by DFB:

ŷi = Di,nx̂i (4)

where Di,n is i-th level DFB decomposition with 2n direc-
tional subbands. Finally, the J-level full MSMD image can be
obtained by xJ and a set of ŷi (0 ≤ i ≤ J−1). The contourlet
decomposition is illustrated in Fig. 1.

In the original contourlet transform, the separable wavelet
transform is used for F. To improve MS decomposition
performance, a new contourlet transform with sharp frequency
localization was proposed [3]. It changes L in the original
contourlet transform as follows:

xi+1 = L̃xi (5)

x̂i = G̃xi (6)

where
L̃ = (↓ d)G̃ (7)

and G̃ is a high-pass filter making the perfect reconstruction
pair with L̃. Furthermore, the downsampling factor d may



next level

Fig. 1. The contourlet transform with Laplacian pyramid.

be different from 2. The modified contourlet transform shows
better performance than the original one for denoising.

III. MSMD IMAGE DECOMPOSITION WITH RP

In this section, we present RP as an alternative to LP. As
mentioned in Section II, the donwsampling factors of the
contourlet transforms are fixed to 2 or d. In other words, every
part of the low-pass filtered signal is uniformly downsampled
by 2 or d at the downsampling process. It leads to that
every portion of the image is considered to have the same
significance. Generally speaking, some regions in an image
are more prominent than others, since we usually focus on
the foreground quality rather than the background clarity. To
reflect this assumption correctly, we replace the explicit low-
pass filter and downsampling in the contourlet transform with
a more sophisticated signal-oriented downsizing, so-called
retargeting.

A. Retargeting Pyramid

RP is represented as follows:

xi+1 = Rxi (8)

x̂i = xi −R−1Rxi. (9)

The operation L in LP is replaced by a retargeting R. In (9),
R−1 referred to as the inverse signal mapping corresponding
to R. Any size of the retargeted image can be permitted unless
the width/height does not exceed the original size. As a result,
RP gives more flexibility about the redundancy ratio of the
pyramid-based MS image decomposition.

The operation R can be an arbitrary retargeting method,
such as seam carving [11], [12]. In this paper, we customize
one of retargeting methods based on mesh deformation, scale-
and-stretch [14].

Note that R cannot be decomposed into the low-pass
filtering and downsampling operation, since they are integrated
with retargeting. Instead, R can be divided into the following
two phases:

R = ΛΦ (10)

where Φ is a mapping of the original pixel position p
represented as

Φ : p → p′ (11)

where p′ is the deformed pixel position. Then Λ picks up the
(interpolated) data points at the uniform grid positions η =
[η0, η1]T (0 ≤ η0 ≤ Wt − 1, 0 ≤ η1 ≤ Ht − 1, in which Wt

and Ht are the target width and height, respectively) of the
deformed image.

B. Mesh-based Retargeting

Our implementation of image retargeting is summarized
below.

1) Calculate a significance map.
2) Construct a weighted Laplacian matrix using the signif-

icance map.
3) Optimize the coordinates of the mesh by solving a sparse

linear system.
4) Deform the image by using the optimized mesh.
5) Uniformly resize the deformed image into the target size.

In the rest of this subsection, we describe a few key techniques
for the image retargeting.

1) Significance Map: The significance map S is defined as
follows:

S = Ŝ +
1

max(∆x)
∆x, (12)

where Ŝ is a saliency map proposed by Itti et al. [25], and
∆x = (( ∂

∂xx)2 + ( ∂
∂y x)2)1/2 is the L2-norm of the gradient.

2) Weighted Laplacian Matrix: The energy among edges
represented as a pair of vertices {k, l} is defined as follows:

U =
∑
{k,l}

wkl‖uk − ul‖2, (13)

where u = (u, v) is a coordinate of a vertex, and wkl is the
weight to control the mesh stretch. We set the weight as:

wkl = exp
(
−|νkl|0.5

σw

)
, νkl =

S(uk) + S(ul)
2

, (14)

where νkl is the essential weight given as the mean of
significance which is then adjusted in wkl by taking a sparse
prior considering the sparseness of the significance map. σw

is an arbitrary standard deviation.
The optimal vertex positions are obtained by differentiating

U :
∂U

∂u
=

∑
l∈N (k)

wlk(uk − ul) = 0 (15)



TABLE I
MEAN ENERGY OF x̂0

Image CT-LP CT-MD CT-RP
Lena 22.13 49.21 17.97

Pepper 36.49 68.84 25.96

where N (k) is the set of k’s adjacent pixels. The optimal
vertex positions can be obtained by solving (15), subject to
the constraint of the positions of boundary vertices. Finally,
the optimal vertex positions uopt = p′ are used to deform the
image pixels.

C. RP-based Contourlet Transform

Finally, our proposed RP is applied to replace LP. In
our preliminary experiments, RP’s retargeting ability is fully
utilized when RP is performed at the first level, i.e., retargeting
for the original image x0. Consequently, the proposed MSMD
decomposition is represented as follows:

xi+1 =

{
Rxi i = 0
L̃xi i > 0

(16)

x̂i =

{
xi −R−1Rxi i = 0
G̃xi i > 0

(17)

ŷi = Di,nx̂i ∀i. (18)

Note that for i > 0, the input signal is a retargeted (deformed)
signal whereas x̂0 has an original structure. Therefore, it can
be considered as an effective MSMD decomposition which
focuses on prominent regions in the image. Note that the
average downsampling factor can be determined by a user-
defined size of the retargeted image. The proposed structure
of the MSMD decomposition is illustrated in Fig. 2.

IV. EXPERIMENTAL RESULTS

In this section, performances of the proposed method
are compared with the conventional contourlet transforms.
Three MSMD transforms, the original contourlet transform
[2] (denoted as CT-LP), the modified contourlet transform [3]
(denoted as CT-MD), and our proposed transform with RP
(denoted as CT-RP), are used for the experiment. For CT-MD,
the downsampling factor d is fixed to 2. For CT-RP, the full-
size image is resized (retargeted) to half width/height and σw

in (14) is set to 0.25. Consequently, all the transforms have
the same redundancy ratio 1.33.

The decomposition level J is set to 5. For the DFB
decomposition level n, different settings have been used: CT-
LP is [0, 0, 4, 4, 5], CT-MD is [2, 2, 3, 4, 5], and CT-RP is
[2, 2, 3, 4, 3]1, where the leftmost number is the coarsest (low-
frequency) scale and the rightmost one is the finest (high-
frequency) scale. Note that the DFB decomposition levels for
the conventional CTs are the same as the original papers [2],
[3].

1The underlined number represents the DFB decomposition level for i = 0.

TABLE II
PSNR OF DENOISED IMAGES (DB)

Lena
σ 5 10 15 20 25

CT-LP 34.61 31.68 29.90 28.65 27.61
CT-MD 34.70 32.35 31.14 30.24 29.44
CT-RP 35.61 33.07 31.62 30.48 29.53

Pepper
σ 5 10 15 20 25

CT-LP 33.53 31.03 29.45 28.25 27.39
CT-MD 33.81 31.93 30.82 29.97 29.30
CT-RP 34.70 32.63 31.23 30.05 29.09

A. Retargeting Performance

First, we examine the essential performance of RP. Fig. 3
presents retargeting results of our mesh-based retargeting.
Clearly edge regions are stretched and smooth regions are
shrank by our retargeting method. Furthermore, Fig. 4 shows
x̂0 of Lena produced by three transforms. Additionally, the
mean energies of x̂0 are summarized in Table I. Clearly the
CT-RP yields smaller residual values than those of the other
contourlet transforms. Since CT-MD has a narrower passband
shape than that of the CT-LP [3], it results larger energy in x̂0.
In comparison with the CT-LP, the CT-RP gives significantly
lower energies of the residual signal.

B. Denoising Performance

We applied the simple hard-thresholding technique for
denoising with the threshold 3σ where σ is the standard
deviation of noise and it can be estimated by the robust median
estimator [26]. PSNRs of the denoised images are summarized
in Table II. It is clear that CT-RP presents uniformly better
performance than the other transforms except σ = 25 of
Pepper. Especially, its performance gain is significant when
the noise level is low since noise-free images are assumed for
the retargeting process. The denoised Pepper images and their
enlarged portions are shown in Figs. 5 and 6, respectively.
Similar to the objective quality comparison, the denoised
image by CT-RP is much better than those of the conventional
contourlet transforms.

V. CONCLUSIONS

In this paper, we presented a new MS image decomposi-
tion with the mesh-based retargeting. It realizes an efficient
MSMD representation of images via the contourlet transform
framework. Its denoising performance is superior to the con-
ventional contourlet transforms. Our future work includes to
investigate more efficient structures for other image processing
applications.
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